Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Статьи / Пространственное воображение учащихся на уроках геометрии

Пространственное воображение учащихся на уроках геометрии



Осталось всего 2 дня приёма заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)


  • Математика

Поделитесь материалом с коллегами:

Пространственное воображение учащихся на уроках геометрии

Не секрет, что многие учащиеся не обладают достаточно развитым пространственным воображением. Проблема старая, но актуальная. Если учитель не решает ее еще тогда, когда ведет младшие и средние классы, то через несколько лет его уроки стереометрии с теми же учениками будут терять большую часть своей эффективности. Все психические процессы, в том числе и пространственное воображение, совершенствуются в результате деятельности. Эта деятельность должна чем-то стимулироваться и направляться, т. е. необходима система упражнений. В этой статье предлагаются нестандартные и занимательные задачи для развития пространственного воображения. В квадратных скобках даны ответы, краткие решения, указания. Для решения многих из этих задач не надо специальных знаний, т. е. их можно предлагать уже в V классе, а некоторые — и в начальной школе. Решение наиболее сложных задач можно поощрять отметкой. 
Первую серию задач можно назвать «выход в пространство».
 Это устные задачи, в которых, казалось бы, ничего не сказано о пространстве. Даже наоборот, упоминание о треугольниках в задаче 2 и о расположении монет в задаче 3 (учащиеся сразу думают, что монеты должны лежать на плоскости) навязывает «плоскостные» образы. Нужно преодолеть это, «вывести» мысль «в пространство», чтобы правильно выполнить предложенные задания. 
1. Разделите круглый сыр тремя разрезами на 8 частей. [Ответ на рис.1].
 
2. Из шести спичек сложите четыре правильных треугольника так, чтобы стороной каждого была целая спичка. [Треугольная пирамида с ребром, равным спичке].
 
3. Расположите 5 одинаковых монет так, чтобы каждая из них касалась четырех остальных. [Ответ на рис. 2].
 
4. Можно ли расположить 6 одинаковых карандашей так, чтобы каждый касался пяти остальных? [Можно, ответ на рис. 3].
 
5. Вырезать из целого листа бумаги такую же фигуру, как на рис. 4а. [Прямоугольный лист разрезать по отрезкам а, b, с (рис. 4б), заштрихованную часть повернуть около прямой l на 180°].
 
hello_html_360e171f.jpg 
Часто советуют сопровождать изучение аксиом стереометрии и их следствий изображениями многогранников, решением задач на построение сечений и т. д. Но ученики должны «видеть» этот многогранник. Поэтому еще до изучения стереометрии надо предлагать учащимся задачи с кубом, параллелепипедом и некоторыми другими фигурами. Эта серия заданий связана с иллюзиями и невозможными объектами.
 На рис. 5 любой математик видит куб, а не только два квадрата, вершины которых попарно соединены. А нарисованы все-таки квадраты... Видеть куб нам позволяет хорошо развитое пространственное воображение. Но удивительно: один раз мы видим этот куб как бы сверху и справа (рис. 6а), а другой — снизу и слева (рис. 6б). Это уже казусы иллюзии, которыми надо уметь управлять, подчиняя свое воображение той реальности, о которой говорится в конкретной задаче. Но многие учащиеся долго не могут этому научиться.



57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Автор
Дата добавления 21.07.2016
Раздел Математика
Подраздел Статьи
Просмотров29
Номер материала ДБ-145382
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх