Инфоурок / Математика / Другие методич. материалы / Прототип задания №2 ЕГЭ проф. 11 класс
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Я люблю природу», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 15 ДЕКАБРЯ!

Конкурс "Я люблю природу"

Прототип задания №2 ЕГЭ проф. 11 класс

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Задание № 2

1. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

2. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.

3. В фирме такси в данный момент свободно 20 машин: 10 черных, 2 желтых и 8 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к ней приедет зеленое такси.

4. В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).

5. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до сотых.

6. В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 — из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции.

7. По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

8. Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.

Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.

9. Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите вероятность того, что мишень будет поражена (либо первым, либо вторым выстрелом).

10. Помещение освещается фонарём с двумя лампами. Вероятность перегорания лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

11. На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них. Найдите вероятность того, что ему попадется выученный вопрос.

12. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

13. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

14. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

15. В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.

16. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.

17. На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России.

18. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятость того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.

19. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

20. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 10, но не дойдя до отметки 1 час.

21. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

22.. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

23. В фирме такси в наличии 50 легковых автомобилей; 27 из них чёрные с жёлтыми надписями на бортах, остальные — жёлтые с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.

24. Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?

25. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

26. Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач.

27. На олимпиаде в вузе участников рассаживают по трём аудиториям. В первых двух по 120 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 250 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.

28. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

29. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

30. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

31. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

32. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

33. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. 

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

34. Вероятность того, что новый электрический чайник прослужит больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна 0,89. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

35. В кармане у Миши было четыре конфеты — «Грильяж», «Белочка», «Коровка» и «Ласточка», а также ключи от квартиры. Вынимая ключи, Миша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Грильяж».

36. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

37. В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

38. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

39. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того. что Аня и Нина окажутся в одной группе.

40. Вероятность того, что новый DVD-проигрыватель в течение года поступит в гарантийный ремонт, равна 0,045. В некотором городе из 1000 проданных DVD-проигрывателей в течение года в гарантийную мастерскую поступила 51 штука. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

41. Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

42. При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.

43. В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.

44. Вася, Петя, Коля и Лёша бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.

45. В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

46. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

47. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?

48. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная батарейка будет забракована системой контроля.

49. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу http://reshuege.ru/formula/f6/f623e75af30e62bbd73d6df5b50bb7b5p.png.

L0.eps

50. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

51. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

52. На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.

53. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.

54. На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая.

55. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что выпадет хотя бы две решки.

56. Научная конференция проводится в 5 дней. Всего запланировано 75 докладов — первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

57. На тарелке 16 пирожков: 7 с рыбой, 5 с вареньем и 4 с вишней. Юля наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

58. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.

59. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что в первый раз выпадает орёл, а во второй — решка.

60. В классе 26 человек, среди них два близнеца — Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

61. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»?

62. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

63. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

64. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?




























Ответы В 6

1. Ответ: 0,52

2. Ответ: 0,125

3. Ответ: 0,4

4. Ответ: 0,027

5. Ответ: 0,98

6. Ответ: 0,36

7. Ответ: 0,02

8. Ответ: 0,408

9. Ответ: 0,91

10. Ответ: 0,91

11. Ответ: 0,95

12. Ответ: 0,02

13. Ответ: 0,25

14. Ответ: 0,1

15. Ответ: 0,2

16. Ответ: 0,4

17. Ответ: 0,3

18. Ответ: 0,38

19. Ответ: 0,35

20. Ответ: 0,25

21. Ответ: 0,9975

22. Ответ: 0,392

23. Ответ: 0,46

24. Ответ: 0,225

25. Ответ: 0,156

26. Ответ: 0,07

27. Ответ: 0,04

28. Ответ: 0,3

29. Ответ: 0,93

30. Ответ: 5

31. Ответ: 0,75

32. Ответ: 0,0545


33. Ответ: 0,25

34. Ответ: 0,08

35. Ответ: 0,25

36. Ответ: 0,14

37. Ответ: 0,4

38. Ответ: 0,6

39. Ответ: 0,1

40. Ответ: 0,006

41. Ответ: 0,8836

42. Ответ: 0,035

43. Ответ: 0,498

44. Ответ: 0,25

45. Ответ: 0,995

46. Ответ: 0,52

47. Ответ: 0,5

48. Ответ: 0,0296

49. Ответ: 0,0625.

50. Ответ: 0,019

51. Ответ: 0,32

52. Ответ: 0,33

53. Ответ: 0,6

54. Ответ: 0,36

55. Ответ: 0,5

56. Ответ: 0,16

57. Ответ: 0,25

58. Ответ: 0,375

59. Ответ: 0,25

60. Ответ: 0,48

61. Ответ: 4

62. Ответ: 0,5

63. Ответ: 0,2

64. Ответ: 0,36























Решение

1. Решение.

Джон промахнется, если схватит пристрелянный револьвер и промахнется из него, или если схватит непристрелянный револьвер и промахнется из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,4·(1 − 0,9) = 0,04 и 0,6·(1 − 0,2) = 0,48. Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,04 + 0,48 = 0,52.

 Ответ: 0,52.

Приведем другое решение.

Джон попадает в муху, если схватит пристрелянный револьвер и попадет из него, или если схватит непристрелянный револьвер и попадает из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,4·0,9 = 0,36 и 0,6·0,2 = 0,12. Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,36 + 0,12 = 0,48. Событие, состоящее в том, что Джон промахнется, противоположное. Его вероятность равна 1 − 0,48 = 0,52.

2. Решение.

Требуется найти вероятность произведения трех событий: «Статор» начинает первую игру, не начинает вторую игру, начинает третью игру. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда находим: 0,5·0,5·0,5 = 0,125.

 Ответ: 0,125.

3. Решение.

Вероятность того, что к заказчице приедет зеленое такси равна

 

http://reshuege.ru/formula/11/11e9208771e8024a23e481b0942444f1p.png.

Ответ: 0,4.

4.

Решение.

Вероятность произведения независимых событий равна произведению вероятностей этих событий. Поэтому вероятность того, что все три продавца заняты равна http://reshuege.ru/formula/f8/f8a67dec64f1741d6563d82516364491p.png

 Ответ: 0,027.

5. Решение.

Пусть завод произвел http://reshuege.ru/formula/7b/7b8b965ad4bca0e41ab51de7b31363a1p.png тарелок. В продажу поступят все качественные тарелки и 20% невыявленных дефектных тарелок: http://reshuege.ru/formula/d3/d374d76f71ef8de773e47c46cd6691d2p.png тарелок. Поскольку качественных из них http://reshuege.ru/formula/c6/c6b459c98001ed7df63ffe97c030536fp.png, вероятность купить качественную тарелку равна

 

http://reshuege.ru/formula/c5/c53b9b25b159bcc45db006e974cc56fcp.png

Ответ: 0,98.

6. Решение.

Всего в соревнованиях принимает участие 4 + 7 + 9 + 5 = 25 спортсменов. Значит, вероятность того, что спортсмен, который выступает последним, окажется из Швеции, равна

 

http://reshuege.ru/formula/c1/c14ab6dea53d98e0b376deebb3a5b098p.png

Ответ: 0,36.

  7. Решение.

Вероятность того, что первый магазин не доставит товар равна 1 − 0,9 = 0,1. Вероятность того, что второй магазин не доставит товар равна 1 − 0,8 = 0,2. Поскольку эти события независимы, вероятность их произведения (оба магазина не доставят товар) равна произведению вероятностей этих событий: 0,1 · 0,2 = 0,02.

 Ответ: 0,02.

8. Решение.

Для того, чтобы поступить хоть куда-нибудь, З. нужно сдать и русский, и математику как минимум на 70 баллов, а помимо этого еще сдать иностранный язык или обществознание не менее, чем на 70 баллов. Пусть ABC и D — это события, в которых З. сдает соответственно математику, русский, иностранный и обществознание не менее, чем на 70 баллов. Тогда поскольку 

http://reshuege.ru/formula/e6/e6299ddec4de22d12a0be5d874dfbe7fp.png 

для вероятности поступления имеем: 

http://reshuege.ru/formula/e4/e40ef7f1a1a151be2527d98995121ffap.png

http://reshuege.ru/formula/f0/f0763793688d6a20f78157ba859b75cbp.png 

Ответ: 0,408.

 Приведем другую запись этого решения.

В силу независимости событий, вероятность успешно сдать экзамены на лингвистику: 0,6·0,8·0,7 = 0,336, вероятность успешно сдать экзамены на коммерцию: 0,6·0,8·0,5 = 0,24, вероятность успешно сдать экзамены и на «Лингвистику», и на «Коммерцию»: 0,6·0,8·0,7·0,5 = 0,168. Успешная сдача экзаменов на «Лингвистику» и на «Коммерцию» — события совместные, поэтому вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Тем самым, поступить на одну из этих специальностей абитуриент может с вероятностью 0,336 + 0,24 − 0,168 = 0,408.

Ответ: 0,408

9. Решение.

Пусть A — событие, состоящее в том, что мишень поражена стрелком с первого выстрела, B — событие, состоящее в том, что мишень поражена со второго выстрела. Вероятность события A равнаP(A) = 0,7. Событие B наступает, если, стреляя первый раз, стрелок промахнулся, а, стреляя второй раз, попал. Это независимые события, их вероятность равна произведению вероятностей этих событий:P(B) = 0,3·0,7 = 0,21. События A и B несовместные, вероятность их суммы равна сумме вероятностей этих событий: 

P(A + B) = P(A) + P(B) = 0,7 + 0,21 = 0,91.

Ответ: 0,91.

10. Решение.

Найдем вероятность того, что перегорят обе лампы. Эти события независимые, вероятность их произведения равно произведению вероятностей этих событий: 0,3·0,3 = 0,09.

Событие, состоящее в том, что не перегорит хотя бы одна лампа, противоположное. Следовательно, его вероятность равна 1 − 0,09 = 0,91.

 Ответ: 0,91.

11. Решение.

Андрей выучил 60 – 3 = 57 вопросов. Поэтому вероятность того, что на экзамене ему попадется выученный вопрос равна

http://reshuege.ru/formula/5f/5f8b669501960fa42d9101f52eb53fe6p.png.

Ответ: 0,95.

12. Решение.

Поскольку биатлонист попадает в мишени с вероятностью 0,8, он промахивается с вероятностью 1 − 0,8 = 0,2. Cобытия попасть или промахнуться при каждом выстреле независимы, вероятность произведения независимых событий равна произведению их вероятностей. Тем самым, вероятность события «попал, попал, попал, промахнулся, промахнулся» равна 

http://reshuege.ru/formula/2e/2e93f3ee6a77b1917c6fe3c58c53931bp.png 

Ответ: 0,02.

13. Решение.

В чемпионате принимает участие http://reshuege.ru/formula/7f/7fcb4ef1f1fc64028778ae3f2d2f6401p.png спортсменок из Китая. Тогда вероятность того, что спортсменка, выступающая первой, окажется из Китая, равна 

http://reshuege.ru/formula/b8/b8da0d73d8e842977b58734e7af810c9p.png

Ответ: 0,25. 

14. Решение.

В самолете 12 + 18 = 30 мест удобны пассажиру В., а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30 : 300 = 0,1.

 Ответ: 0,1.

15. Решение.

Вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике, равна http://reshuege.ru/formula/a3/a370e3694ffac6e78c8e2cfb35961ce3p.png 

Ответ: 0,2.

16. Решение.

Двухрублевые монеты могут лежать в одном кармане, если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий: 

http://reshuege.ru/formula/25/251e8559e0b4057710eecaa08ea1a83fp.png

Ответ: 0,4.

Приведем другое решение.

Количество способов взять 3 монеты из 6, чтобы переложить их в другой карман, равно http://reshuege.ru/formula/d1/d13a2102b442c6d3ed27d1569297782cp.png Количество способов выбрать 3 рублевых монеты из 4 рублевых монет равно 4. Количество способов взять вместе с двумя двухрублевыми монетами одну рублевую монету из имеющихся 4 рублевых монет тоже равно 4. Поэтому искомая вероятность того, что двухрублевые монеты лежат в одном кармане, равна 

http://reshuege.ru/formula/ee/eecafbf8f4f0815a0d6a63fa795b1564p.png 

Ответ: 0,4

17. Решение.

Всего в семинаре принимает участие 3 + 3 + 4 = 10 ученых, значит, вероятность того, что ученый, который выступает восьмым, окажется из России, равна 3:10 = 0,3.

 Ответ: 0,3.

18. Решение.

Рассмотрим события A = «в автобусе меньше 15 пассажиров» и В = «в автобусе от 15 до 19 пассажиров». Их сумма — событие A + B = «в автобусе меньше 20 пассажиров». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: 

P(A + B) = P(A) + P(B). 

Тогда, используя данные задачи, получаем: 0,94 = 0,56 + P(В), откуда P(В) = 0,94 − 0,56 = 0,38.

 Ответ: 0,38.

19. Решение.

Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: 0,2 + 0,15 = 0,35.

Ответ: 0,35.

20. Решение.

На циферблате между десятью часами и одним часом три часовых деления. Всего на циферблате 12 часовых делений. Поэтому искомая вероятность равна: 

http://reshuege.ru/formula/3e/3e3b5ff5971c659d970f7856579c5906p.png

Ответ: 0,25.

21. Решение.

Найдем вероятность того, что неисправны оба автомата. Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий: 0,05 · 0,05 = 0,0025. 

Событие, состоящее в том, что исправен хотя бы один автомат, противоположное. Следовательно, его вероятность равна 1 − 0,0025 = 0,9975.

Ответ: 0,9975.

Приведем другое решение.

Вероятность того, что исправен первый автомат (событие А) равна 0,95. Вероятность того, что исправен второй автомат (событие В) равна 0,95. Это совместные независимые события. Вероятность их произведения равна произведению вероятностей этих событий, а вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Имеем

P(A + B) = P(A) + P(B) − P(A·B) = P(A) + P(B) − P(A)P(B) = 0,95 + 0,95 − 0,95·0,95 = 0,9975. 

Ответ: 0,9975

22. Решение.

Для погоды на 4, 5 и 6 июля есть 4 варианта: ХХО, ХОО, ОХО, ООО (здесь Х — хорошая, О — отличная погода). Найдем вероятности наступления такой погоды: 

P(XXO) = 0,8·0,8·0,2 = 0,128;

P(XOO) = 0,8·0,2·0,8 = 0,128;

P(OXO) = 0,2·0,2·0,2 = 0,008;

P(OOO) = 0,2·0,8·0,8 = 0,128. 

Указанные события несовместные, вероятность их суммы равна сумме вероятностей этих событий: 

P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392. 

Ответ: 0,392.

23. Решение.

Машин желтого цвета с черными надписями 23, всего машин 50. Поэтому вероятность того, что на случайный вызов приедет машина желтого цвета с черными надписями, равна: 

http://reshuege.ru/formula/4a/4a4721d9dd7ee0ca0d771bd2e351da60p.png 

Ответ: 0,46.

24. Решение.

На третий день запланировано http://reshuege.ru/formula/ab/abb6eb3190d688aa62e61c2b826efaefp.png выступлений. Значит, вероятность того, что выступление представителя из России окажется запланированным на третий день конкурса, равна 

http://reshuege.ru/formula/89/8974f6634a7e90dbae4fef4ac754d7fdp.png 

Ответ: 0,225.

25. Решение.

Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей: 0,52 · 0,3 = 0,156.

Ответ: 0,156.

26. Решение.

Рассмотрим события A = «учащийся решит 11 задач» и В = «учащийся решит больше 11 задач». Их сумма — событие A + B = «учащийся решит больше 10 задач». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: P(A + B) = P(A) + P(B). 

Тогда, используя данные задачи, получаем: 0,74 = P(A) + 0,67, откуда P(A) = 0,74 − 0,67 = 0,07.

Ответ: 0,07.

27. Решение.

Всего в запасную аудиторию направили 250 − 120 − 120 = 10 человек. Поэтому вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории, равна 10 : 250 = 0,04. 

Ответ: 0,04.

28. Решение.

Натуральных чисел от 10 до 19 десять, из них на три делятся три числа: 12, 15, 18. Следовательно, искомая вероятность равна 3:10 = 0,3. 

Ответ: 0,3.

29. Решение.

По условию на каждые 100 + 8 = 108 сумок приходится 100 качественных сумок. Значит, вероятность того, что купленная сумка окажется качественной, равна 

http://reshuege.ru/formula/90/90936b1da4cc9d26ee1ba8606caddc51p.png 

Ответ: 0,93.

30. Решение.

Найдем вероятность противоположного события, состоящего в том, что цель не будет уничтожена за n выстрелов. Вероятность промахнуться при первом выстреле равна 0,6, а при каждом следующем — 0,4. Эти события независимые, вероятность их произведения равна произведению вероятности этих событий. Поэтому вероятность промахнуться при n выстрелах равна: http://reshuege.ru/formula/6a/6a3cc06a62b8987d6771a0a6a8d453f0p.png 

Осталось найти наименьшее натуральное решение неравенства 

http://reshuege.ru/formula/02/024cc1e4a1edce037fd554caf51c156bp.png 

Последовательно проверяя значения http://reshuege.ru/formula/7b/7b8b965ad4bca0e41ab51de7b31363a1p.png, равные 1, 2, 3 и т. д. находим, что искомым решением является http://reshuege.ru/formula/44/44d21af66b0874d9b45905ea79807cb3p.png. Следовательно, необходимо сделать 5 выстрелов. 

Ответ: 5.

Примечание.

Можно решать задачу «по действиям», вычисляя вероятность уцелеть после ряда последовательных промахов: Р(1) = 0,6.

Р(2) = Р(1)·0,4 = 0,24.

Р(3) = Р(2)·0,4 = 0,096.

Р(4) = Р(3)·0,4 = 0,0384;

Р(5) = Р(4)·0,4 = 0,01536. 

Последняя вероятность меньше 0,02, поэтому достаточно пяти выстрелов по мишени. 

Приведем другое решение.

Вероятность поразить мишень равна сумме вероятностей поразить ее при первом, втором, третьем и т. д. выстрелах. Поэтому задача сводится к нахождению наименьшего натурального решения неравенства 

http://reshuege.ru/formula/20/20d4a147eff1c8ad75f6b0f45c473dbcp.png 

В нашем случае неравенство решается подбором, в общем случае понадобится формула суммы геометрической прогрессии, использование которой сведет задачу к простейшему логарифмическому неравенству.

Ответ: 5

31. Решение.

Пусть событие http://reshuege.ru/formula/7f/7fc56270e7a70fa81a5935b72eacbe29p.png состоит в том, что яйцо имеет высшую категорию, события http://reshuege.ru/formula/26/262e0afc75c8a9fc536a7dce57e6ebe1p.png и http://reshuege.ru/formula/6f/6f5ef944a2d6b5db7b0f5eb7664fbe8dp.png состоят в том, что яйцо произведено в первом и втором хозяйствах соответственно. Тогда события http://reshuege.ru/formula/f5/f500caaab5c19b4321bd68831e12a0eap.png и http://reshuege.ru/formula/c7/c7eefbce7734146c7471c482364a5d47p.png— события, состоящие в том, что яйцо высшей категории произведено в первом и втором хозяйстве соответственно. По формуле полной вероятности, вероятность того, что будет куплено яйцо высшей категории, равна: 

http://reshuege.ru/formula/ef/efa47ebfca168ea738a3f0040fac303cp.png

http://reshuege.ru/formula/55/5598be32afb4b9442fcd9cb2bbf61b19p.png 

Поскольку по условию эта вероятность равна 0,35, поэтому для вероятности того, что купленное яйцо произведено в первом хозяйстве имеем: http://reshuege.ru/formula/b3/b378a696acdaf68e7170917760831685p.png 

Примечание Ивана Высоцкого.

Это решение можно записать коротко. Пусть http://reshuege.ru/formula/9d/9dd4e461268c8034f5c8564e155c67a6p.png — искомая вероятность того, что куплено яйцо, произведенное в первом хозяйстве. Тогда http://reshuege.ru/formula/95/951ebf3d84016150c6241fb72a055f79p.png — вероятность того, что куплено яйцо, произведенное во втором хозяйстве. По формуле полной вероятности имеем:

http://reshuege.ru/formula/18/182c3e7ce3e322391909a79477a0813cp.png

Ответ: 0,75.

Приведем другое решение.

Пусть в первом хозяйстве агрофирма закупает http://reshuege.ru/formula/9d/9dd4e461268c8034f5c8564e155c67a6p.png яиц, в том числе, http://reshuege.ru/formula/70/70d344fee699574518fe485e9aeb6ea3p.png яиц высшей категории, а во втором хозяйстве — http://reshuege.ru/formula/41/415290769594460e2e485922904f345dp.png яиц, в том числе http://reshuege.ru/formula/a8/a8d99afe625ed7d5fe17d34c6cc56979p.png яиц высшей категории. Тем самым, всего агроформа закупает http://reshuege.ru/formula/45/45df18c90c71ea2066f8596159e11288p.png яиц, в том числе http://reshuege.ru/formula/33/33562a9a4f6bb95a01331999b20bda05p.png яиц высшей категории. По условию, высшую категорию имеют 35% яиц, тогда:

 

http://reshuege.ru/formula/6f/6f615ec80e42ffe7e875bc2a4aa06604p.png

Следовательно, у первого хозяйства закупают в три раза больше яиц, чем у второго. Поэтому вероятность того, что купленное яйцо окажется из первого хозяйства равна 

http://reshuege.ru/formula/3b/3b2112c18b562b0b6ae46743f03b0731p.png 

Ответ: 0,75

32. Решение.

Анализ пациента может быть положительным по двум причинам: А) пациент болеет гепатитом, его анализ верен; B) пациент не болеет гепатитом, его анализ ложен. Это несовместные события, вероятность их суммы равна сумме вероятностей этих событий. Имеем: 

http://reshuege.ru/formula/70/700b1a16b70d9fa8bf845f755471fd4ep.png

http://reshuege.ru/formula/54/5489873a091bdb96f38b570cc53c5532p.png

http://reshuege.ru/formula/a8/a87b23e4e5b1a1cb5187a576b61ee1e6p.png 

Ответ: 0,0545.

33. Решение.

Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек. Тем самым, она равна 

http://reshuege.ru/formula/18/18396f626aca1503ffa80281396d1981p.png 

Ответ: 0,25.

34. Решение.

Пусть A = «чайник прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух лет», тогда A + B = «чайник прослужит больше года». 

События A и В совместные, вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Вероятность произведения этих событий, состоящего в том, что чайник выйдет из строя ровно через два года — строго в тот же день, час и секунду — равна нулю. Тогда: 

P(A + B) = P(A) + P(B) − P(A·B) = P(A) + P(B),

откуда, используя данные из условия, получаем 0,97 = P(A) + 0,89.

Тем самым, для искомой вероятности имеем: P(A) = 0,97 − 0,89 = 0,08. 

Ответ: 0,08.

35. Решение.

В кармане было 4 конфеты, а выпала одна конфета. Поэтому вероятность этого события равна одной четвертой. 

Ответ: 0,25.

36. Решение.

Количество исходов, при которых в результате броска игральных костей выпадет 8 очков, равно 5: 2+6, 3+5, 4+4, 5+3, 6+2. Каждый из кубиков может выпасть шестью вариантами, поэтому общее число исходов равно 6·6 = 36. Следовательно, вероятность того, что в сумме выпадет 8 очков, равна 

http://reshuege.ru/formula/54/54ebaca3b23e551073d7e104ce803718p.png

Ответ: 0,14.

37. Решение.

Всего туристов пять, случайным образом из них выбирают двоих. Вероятность быть выбранным равна 2 : 5 = 0,4.

Ответ: 0,4.

38. Решение.

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий: 

http://reshuege.ru/formula/a8/a8a860158d5d26f5a722e932da41f108p.png 

Другое рассуждение.

Вероятность того, что Петя взял пятирублевую монету, затем десятирублевую, и затем еще одну десятирублевую (в указанном порядке) равна http://reshuege.ru/formula/b4/b451d67d5b1aa09f3f9b428355d06ca8p.png 

Поскольку Петя мог достать пятирублевую монету не только первой, но и второй или третьей, вероятность достать набор из одной пятирублевой и двух десятирублевых монет в 3 раза больше. Тем самым, она равна 0,6. 

Ответ: 0,6.

Приведем другое решение. Количество способов взять 3 монеты из 6, чтобы переложить их в другой карман, равно http://reshuege.ru/formula/d1/d13a2102b442c6d3ed27d1569297782cp.png Количество способов выбрать 1 пятирублевую монету из 2 пятирублевых монет и взять вместе с ней еще 2 десятирублевых монеты из имеющихся 4 десятирублевых монет по правилу произведения равно http://reshuege.ru/formula/c6/c681bdf76454cc1ecf7060b4dccfd54bp.png Поэтому искомая вероятность того, что пятирублевые монеты лежат в разных карманах, равна

 

http://reshuege.ru/formula/fb/fba8ac1325045693bd0588090d421de3p.png 

Ответ: 0,6

39. Решение.

Пусть Аня оказалась в некоторой группе. Тогда для 20 оставшихся учащихся оказаться с ней в одной группе есть две возможности. Вероятность этого события равна 2 : 20 = 0,1. 

Приведем комбинаторное решение. Всего способов выбрать 3 учащихся из 21 учащегося класса равно http://reshuege.ru/formula/d9/d9f63f8864f0b13ecbf29cc3d4c97085p.png. Выбрать пару «Аня и Нина» и поместить их в одну из семи групп можно http://reshuege.ru/formula/84/8487f457593afb52c8560e53a85af4d1p.png способами. Добавить в эту группу еще одного из оставшихся 19 учащихся можно http://reshuege.ru/formula/f1/f13a90b9359da89f9b55758bdff1eb46p.png способами. Поэтому вероятность того, что девочки окажутся в одной группе равна 

http://reshuege.ru/formula/8a/8ab8fea80c5fa58709f9f0cd3fb899f6p.png 

Приведем еще одно решение. Рассмотрим первую группу. Вероятность того, что Аня окажется в ней, равна http://reshuege.ru/formula/ce/ce1e24883df65007081d9c3ede0deef0p.png. Если Аня уже находится в первой группе, то вероятность того, что Нина окажется этой же группе равна http://reshuege.ru/formula/ec/ec671ad56fde5558c3928c6291c2bf8cp.png. Поскольку все семь групп равноправны, вероятность того, что подруги окажутся в одной группе, равна 

http://reshuege.ru/formula/a8/a8f6b3bd7f2ed47dc66a53ff6648e744p.png 

Ответ: 0,1.

40. Решение.

Частота (относительная частота) события «гарантийный ремонт» равна 51 : 1000  = 0,051. Она отличается от предсказанной вероятности на 0,006. 

Ответ: 0,006.

41. Решение.

Вероятность того, что батарейка исправна, равна 0,94. Вероятность произведения независимых событий (обе батарейки окажутся исправными) равна произведению вероятностей этих событий: 0,94·0,94 = 0,8836.

 

Ответ: 0,8836.

42. Решение.

По условию, диаметр подшипника будет лежать в пределах от 66,99 до 67,01 мм с вероятностью 0,965. Поэтому искомая вероятность противоположного события равна 1 − 0,965 = 0,035. 

Ответ: 0,035.

43. Решение.

Из 5000 тысяч новорожденных 5000 − 2512 = 2488 девочек. Поэтому частота рождения девочек равна 

http://reshuege.ru/formula/df/df9f45a4172730e94cda0fe8ff8b9caap.png 

Ответ: 0,498.

44. Решение.

Жребий начать игру может выпасть каждому из четырех мальчиков. Вероятность того, что это будет именно Петя, равна одной четвертой.

Ответ: 0,25.

45. Решение.

в среднем из 1000 садовых насосов, поступивших в продажу, 1000 − 5 = 995 не подтекают. Значит, вероятность того, что один случайно выбранный для контроля насос не подтекает, равна 

http://reshuege.ru/formula/18/188203a84b9ddb09686a111a0bc69330p.png

Ответ: 0,995.

46. Решение.

Рассмотрим события А = кофе закончится в первом автомате,

В = кофе закончится во втором автомате.

Тогда A·B = кофе закончится в обоих автоматах,

A + B = кофе закончится хотя бы в одном автомате. 

По условию P(A) = P(B) = 0,3; P(A·B) = 0,12. 

События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения: 

P(A + B) = P(A) + P(B) − P(A·B) = 0,3 + 0,3 − 0,12 = 0,48.

Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 − 0,48 = 0,52.

Ответ: 0,52.

Приведем другое решение.

Вероятность того, что кофе останется в первом автомате равна 1 − 0,3 = 0,7. Вероятность того, что кофе останется во втором автомате равна 1 − 0,3 = 0,7. Вероятность того, что кофе останется в первом или втором автомате равна 1 − 0,12 = 0,88. Поскольку P(A + B) = P(A) + P(B) − P(A·B), имеем: 0,88 = 0,7 + 0,7 − х, откуда искомая вероятость х = 0,52. 

Примечание.

Заметим, что события А и В не являются независимыми. Действительно, вероятность произведения независимых событий была бы равна произведению вероятностей этих событий: P(A·B) = 0,3·0,3 = 0,09, однако по условию эта вероятность равна 0,12.

Ответ: 0,52

47. Решение.

На клавиатуре телефона 10 цифр, из них 5 четных: 0, 2, 4, 6, 8. Поэтому вероятность того, что случайно будет нажата четная цифра равна 5 : 10 = 0,5.

 Ответ: 0,5.

48. Решение.

Ситуация, при которой батарейка будет забракована, может сложиться в результате событий: A = батарейка действительно неисправна и забракована справедливо или В = батарейка исправна, но по ошибке забракована. Это несовместные события, вероятность их суммы равна сумме вероятностей эти событий. Имеем: 

http://reshuege.ru/formula/9f/9f7d31f3c8b8ba70d7ff0b59e0a5c207p.png 

Ответ: 0,0296.

49. Решение.

http://reshuege.ru/get_file?id=6982

На каждой из четырех отмеченных развилок паук с вероятностью 0,5 может выбрать или путь, ведущий к выходу D, или другой путь. Это независимые события, вероятность их произведения (паук дойдет до выхода D) равна произведению вероятностей этих событий. Поэтому вероятность прийти к выходу D равна (0,5)4 = 0,0625. 

Ответ: 0,0625.

50. Решение.

Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,45 · 0,03 = 0,0135. 

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,55 · 0,01 = 0,0055. 

Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна 0,0135 + 0,0055 = 0,019. 

Ответ: 0,019.

51. Решение.

Команда может получить не меньше 4 очков в двух играх тремя способами: 3+1, 1+3, 3+3. Эти события несовместны, вероятность их суммы равна сумме их вероятностей. Каждое из этих событий представляет собой произведение двух независимых событий — результата в первой и во второй игре. Отсюда имеем: 

http://reshuege.ru/formula/5f/5f7018ac94b5926800b76f56df3a419ap.pnghttp://reshuege.ru/formula/61/613068c5a98aebc47b508db329a058a5p.png 

Ответ: 0,32.

52. Решение.

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (Д — Дания, Ш — Швеция, Н — Норвегия): 

...Д...Ш...Н..., ...Д...Н...Ш..., ...Ш...Н...Д..., ...Ш...Д...Н..., ...Н...Д...Ш..., ...Н...Ш...Д... 

Дания находится после Швеции и Норвегии в двух случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна 

http://reshuege.ru/formula/8e/8e3dc7e9e3e5548de192c215f0248389p.png 

Ответ: 0,33.

Замечание.

Пусть требуется найти вероятность того, что датские музыканты окажутся последними среди http://reshuege.ru/formula/7b/7b8b965ad4bca0e41ab51de7b31363a1p.pngвыступающих от разных государств групп. Поставим команду Дании на последнее место и найдем количество перестановок без повторений из http://reshuege.ru/formula/a4/a438673491daae8148eae77373b6a467p.png предыдущих групп: оно равно http://reshuege.ru/formula/e2/e284a61c63332f2790cb83f8f11ec36ap.png Общее количество перестановок из всех http://reshuege.ru/formula/7b/7b8b965ad4bca0e41ab51de7b31363a1p.png групп равно http://reshuege.ru/formula/38/388f554901ba5d77339eec8b26beebeap.png Поэтому искомая вероятность равна 

http://reshuege.ru/formula/ea/ea51158812686639b4c1bf17d2b4c5e6p.png 

Ответ: 0,33

53. Решение.

Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 

http://reshuege.ru/formula/28/28a3363774696283278be03bc47f55e6p.png 

Ответ: 0,6.

54. Решение.

Вероятность того, что шестым будет выступать прыгун из Парагвая, равна 

http://reshuege.ru/formula/c1/c14ab6dea53d98e0b376deebb3a5b098p.png

Ответ: 0,36.

55. Решение.

Всего возможных исходов — 8: орел-орел-орел, орел-орел-решка, орел-решка-решка, орел-решка-орел, решка-решка-решка, решка-решка-орел, решка-орел-орел, решка-орел-решка. Благоприятными являются четыре: решка-решка-решка, решка-решка-орел, решка-орел-решка, орел-решка-решка. Следовательно, искомая вероятность равна 4 : 8 = 0,5.

Ответ: 0,5.

56. Решение.

За первые три дня будет прочитан 51 доклад, на последние два дня планируется 24 доклада. Поэтому на последний день запланировано 12 докладов. Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равнаhttp://reshuege.ru/formula/ad/adebf7b1109b34992aeea94fda513b11p.png 

Ответ: 0,16.

57. Решение.

вероятность того, что пирожок окажется с вишней равнаhttp://reshuege.ru/formula/e8/e8214a55865c6e0d5d674fb959e50dc3p.png.

Ответ: 0,25.

58. Решение.

Обозначим «1» ту сторону монеты, которая отвечает за выигрыш жребия «Физиком», другую сторону монеты обозначим «0». Тогда благоприятных комбинаций три: 110, 101, 011, а всего комбинаций 23 = 8: 000, 001, 010, 011, 100, 101, 110, 111. Тем самым, искомая вероятность равна: 

http://reshuege.ru/formula/03/031979b29b7196ff8f76f7ab8bf979f6p.png 

Ответ: 0,375.

59. Решение.

Всего возможных исходов — четыре: орел-орел, орел-решка, решка-орел, решка-решка. Благоприятным является один: орел-решка. Следовательно, искомая вероятность равна 1 : 4 = 0,25.

Ответ: 0,25.

60. Решение.

Пусть один из близнецов находится в некоторой группе. Вместе с ним в группе окажутся 12 человек из 25 оставшихся одноклассников. Вероятность того, что второй близнец окажется среди этих 12 человек, равна 12 : 25 = 0,48.

Ответ: 0,48

61. Решение.

Сумма очков может быть равна 5 в четырех случаях: «3 + 2», «2 + 3», «1 + 4», «4 + 1». 

Ответ: 4.

62. Решение.

Равновозможны 4 исхода эксперимента: орел-орел, орел-решка, решка-орел, решка-решка. Орел выпадает ровно один раз в двух случаях: орел-решка и решка-орел. Поэтому вероятность того, что орел выпадет ровно 1 раз, равна 

http://reshuege.ru/formula/c1/c13eebc9b68a7494a92026340bec1ba2p.png.

Ответ: 0,5.

63. Решение.

На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист П. полетит первым рейсом вертолёта, равна: 

http://reshuege.ru/formula/24/24205c2c5a498efd3a39e4edebdee42cp.png

 

Ответ: 0,2.

64. Решение.

В первом туре Руслан Орлов может сыграть с 26 − 1 = 25 бадминтонистами, из которых 10 − 1 = 9 из России. Значит, вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна 

http://reshuege.ru/formula/c1/c14ab6dea53d98e0b376deebb3a5b098p.png

Ответ: 0,36.














Общая информация

Номер материала: ДВ-485905

Похожие материалы