Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа алгебра 10 класс Колмогоров А.Н. 4 часа
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Рабочая программа алгебра 10 класс Колмогоров А.Н. 4 часа

библиотека
материалов


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


В связи с реальной необходимостью в наши дни большое значение приобрела проблема полноценной базовой математической подготовки учащихся. Учащиеся 10-11 классов определяют для себя значимость математики, её роли в развитии общества в целом. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Интерес к вопросам обучения математики обусловлен жизненной необходимостью выполнять достаточно сложные расчёты, пользоваться общеупотребительной вычислительной техникой, находить в справочниках и применять нужные формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Образовательная политика учебного заведения


Математика играет важную роль в формировании у школьников умения учиться. Обучение математике закладывает основы для формирования приёмов умственной деятельности: школьники учатся проводить анализ, сравнение, классификацию объектов, устанавливать причинно-следственные связи, закономерности, выстраивать логические цепочки рассуждений. Изучая математику, они усваивают определённые обобщённые знания и способы действий. Универсальные математические способы познания способствуют целостному восприятию мира, позволяют выстраивать модели его отдельных процессов и явлений, а также являются основой формирования универсальных учебных действий. Универсальные учебные действия обеспечивают усвоение предметных знаний и интеллектуальное развитие учащихся, формируют способность к самостоятельному поиску и усвоению новой информации, новых знаний и способов действий, что составляет основу умения учиться.

Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями.

Рабочая программа по алгебре и началам анализа составлена на основе следующих нормативных документов:

  • Закон «Об образовании РФ»;

  • «Гигиенические требования к условиям обучения в общеобразовательных учреждениях», утверждённых Постановлением Главного государственного санитарного врача Российской Федерации «О введении в действие санитарно-эпидемиологических правил и нормативов СанПиН 2.4.2.2821-10» от 29.12.2010 г. № 189;

  • Изменения к Приказу Министерства образования РФ от 09.03.2004г. №1312 «Об изменениях в Федеральный базисный учебный план и примерные учебные планы образовательных учреждений РФ» от 03.06.2011 года №1994;

  • Приказ Министерства образование и науки РФ № 74 от 01 февраля 2012 года «О внесении изменений в Федеральный базисный учебный план и примерные учебные планы для образовательных учреждений РФ, реализующих программы общего образования, утвержденные приказом Министерства образования и науки РФ от 9 марта 2004 года № 1312»;

  • Федеральный компонент государственного стандарта общего образования (в соответствии с Законом Российской Федерации «Об образовании» (ст. 7),с Концепцией модернизации российского образования на период с 2011 по 2015 годы, утвержденной распоряжением Правительства Российской Федерации № 163-р от 7 февраля 2011г.;

  • Распоряжение Правительства России от 24 декабря 2013 года № 2506-р о Концепции развития математического образования в Российской Федерации.

  • Приказ Министерства образования и науки Российской Федерации от 7 июля 2015 г. № 692 «О внесении изменений в Порядок проведения государственной итоговой аттестации по образовательным программам основного общего образования».

  • Федерального компонента государственного образовательного стандарта среднего (полного) общего образования по математике,

  • Примерной программы по математике среднего (полного) общего образования (базовый уровень) для общеобразовательных школ, гимназий, лицеев. (Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Дрофа, 4-е изд. – 2006г.)

  • Федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования на 2015-2016 учебный год.

Компоненты учебного и программно-методического комплекса по курсу «Алгебра и начала анализа» включают:

А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын, Б.М. Ивлев, С.И. Шварцбурд Алгебра и начала анализа для 10-11 классов. – М.: Просвещение, 2011г.

Цели и задачи курса.


Изучение предмета направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

Основные задачи:

  • предусмотреть возможность компенсации пробелов в подготовке школьников и недостатков в их математическом развитии, развитии внимания и памяти;

  • обеспечить уровневую дифференциацию в ходе обучения;

  • обеспечить базу математических знаний, достаточную для будущей профессиональной деятельности или последующего обучения в высшей школе;

  • сформировать устойчивый интерес учащихся к предмету;

  • развивать математические и творческие способности учащихся;

  • подготовить обучающихся к осознанному и ответственному выбору жизненного и профессионального пути;

  • расширить понятие множества чисел (от натурального до действительного);

  • изучить степенную, показательную, логарифмическую функции их свойства и графики;

  • овладеть основными способами решения показательных, логарифмических, иррациональных уравнений и неравенств;

  • рассмотреть преобразование тригонометрических выражений (включая решение уравнений) по формулам как алгебраическим, так и тригонометрическим.

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

- выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

- самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

- проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

- самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.


ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА


Обоснование выбора содержания предмета, основные идеи, подходы.


Данный курс характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началам анализа, выявлений их практической значимости.

Характерной особенностью курса являются систематизация и обобщение знаний учащихся, закрепление и развитие умений и навыков, полученных в курсе алгебры, что осуществляется как при изучении нового материала, так и при проведении обобщающего повторения.


Структура курса

ОСНОВЫ ТригонометриИ

Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования тригонометрических выражений. Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства. Арксинус, арккосинус, арктангенс, арккотангенс числа.

Функции

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Выпуклость функции. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Тригонометрические функции, их свойства и графики, периодичность, основной период.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.

Начала математического анализа

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции. Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения и частного. Производные основных элементарных функций. Производные сложной и обратной функций. Применение производной к исследованию функций и построению графиков. Использование производных при решении уравнений и неравенств, текстовых, физических и геометрических задач, нахождении наибольших и наименьших значений.

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Нахождение скорости для процесса, заданного формулой или графиком. Вторая производная и ее физический смысл.

Уравнения и неравенства

Решение тригонометрических уравнений и неравенств. Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение систем уравнений с двумя неизвестными (простейшие типы). Решение систем неравенств с одной переменной. Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Элементы комбинаторики, статистики и теории вероятности

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события.

Логические связи предмета с другими дисциплинами


Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно — научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении алгебры способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождения алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения у учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся волевых и умственных усилий, концентрации внимания, активности развитого воображения, алгебра развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а так же принимать самостоятельные решения.

Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

Изучение алгебры позволяет формировать умения и навыки умственного труда – планирования своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических заданий.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывает внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.

Методы, формы, и средства обучения, применяемые педагогические технологии.


В данном курсе ведущими методами обучения предмету являются: репродуктивный, проблемно-поисковый и самостоятельная работа учащихся.

Основные типы учебных занятий:

  • урок изучения нового учебного материала;

  • урок закрепления и применения знаний;

  • урок обобщающего повторения и систематизации знаний;

  • урок контроля знаний и умений.

Основным типом урока является комбинированный.

Формы организации учебного процесса:

индивидуальные, групповые, индивидуально-групповые, фронтальные.

На уроках используются такие формы занятий как:

  • практические занятия;

  • тренинг,

  • консультация.

Предусматривается применение следующих технологий обучения:

  1. Задачная технология (введение задач с жизненно-практическим содержанием).

  2. Здоровьесберегающие технологии.

  3. Игровые технологии.

  4. Личностно ориентированное обучение.

  5. Применение ИКТ.

  6. Технологии уровневой дифференциации.

  7. Технология обучения на основе решения задач.

  8. Технология обучения на основе схематичных и знаковых моделей.

  9. Технология полного усвоения.

  10. Традиционная классно-урочная.

  11. Технология проблемного обучения.

Мониторинговая система контроля включает в себя:

  • входная диагностическая контрольная работа,

  • итоговая контрольная работа за 1 полугодие,

  • итоговая контрольная работа за год по материалам РОО,

Промежуточная аттестация включает в себя:

  • контрольные работы,

  • самостоятельные работы,

  • математические диктанты,

  • тесты по стержневым темам курса алгебры 10-11 класса,

  • тесты по подготовке к ЕГЭ

Учебно – методический комплекс


Рабочая программа по алгебре и началам анализа разработана и соответствует учебнику: Учеб. для 10–11 кл. общеобразоват. учреждений /А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др.; Под. ред. А.Н. Колмогорова. – М.: Просвещение, 2006-2011. и соответствует Федеральному перечню учебников, рекомендованных Министерством образования и науки РФ к использованию в образовательном процессе в образовательном учреждении на 2015 – 2016 учебный год.
Курс изучения алгебры и начал анализа реализуется в 10 классе.

МЕСТО УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Учебный план школы рассчитан на 34 учебные недели в соответствии с Региональным базисным учебным планом для образовательных учреждений Республики Башкортостан. В связи с обращением учеников и родителей добавлен 1 час из школьного компонента на изучение алгебры и начал анализа на базовом уровне в 10 классе отведено 4 часа , 136 часов за учебный год. Рабочая программа по алгебре и началам анализа ориентирована на использование учебника для 10-11 кл. общеобразовательных учреждений/А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др.-М.: Просвещение, 2009. Материалы для рабочей программы составлены на основе:

- федерального компонента государственного стандарта общего образования;

- программы по алгебре и началам анализа среднего (полного) общего образования;

- федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях;

- с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования;

- базисного учебного плана.

Контроль:

Программа рассчитана на 136 часов в год (4 часа в неделю), из них:

на итоговое повторение в конце года 9 часов, остальные часы распределила по всем темам;

на контрольные работы отведено 8 часов.


РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА


Огромную важность в непрерывном образовании личности приобретают вопросы, требующие высокого уровня образования, связанного с непосредственным применением математики. Таким образом, расширяется круг школьников, для которых математика становится профессионально значимым предметом. Особенность изучаемого курса состоит в формировании математического стиля мышления, проявляющегося в определённых умственных навыках. Использование в математике нескольких математических языков даёт возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые средства. Математическое образование вносит свой вклад в формирование общей культуры человека: знакомство с методами познания действительности (понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач). Понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей. Изучение математики развивает воображение, пространственные представления. История развития математического знания даёт возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Содержание уроков математики направлено на формирование таких ценностных ориентиров как : Воспитание трудолюбия, творческого отношения к учению, труду, дисциплинированность, последовательность, настойчивость и самостоятельность. Требования к результатам освоения основных образовательных программ.


Личностные результаты


- готовность и способность обучающихся к саморазвитию;

- сформированность мотивации к учению и познанию;

-ценностно-смысловые установки, отражающие их индивидуально-личностные позиции, социальные компетентности, личностные качества;

- умение решать задачи реальной действительности математическими методами;

- самостоятельно определять и высказывать простые общие для всех людей правила поведения в общении и сотрудничестве, делать выбор какой поступок совершить.

Метапредметные результаты


- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

- умение строить и исследовать математические модели для описания и решения прикладных задач, задач из смежных дисциплин;

- выполнение и самостоятельное составление алгоритмических предписаний и инструкций на математическом материале, выполнения расчетов практического характера, использование математических формул и самостоятельное составление формул на основе обобщения частных случаев и эксперимента; - умение самостоятельно работать с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

- умение проводить доказательные рассуждения, логические обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

- умение организовать свою деятельность: определять цель деятельности на уроке, высказывать свою версию, сравнивать ее с другими, определять последовательность действий для решения предметной задачи, давать оценку и самооценку совей работы и работы всех; - умение мыслить: наблюдать и делать выводы самостоятельно; сравнивать группировать предметы, явления, определять причины явлений событий, обобщать знания и делать выводы;

- умение общаться: соблюдать правила этикета в общении, высказывать и доказывать свою точку зрения.


Предметные результаты.


В результате изучения математики на базовом уровне ученик должен знать/понимать:

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

- вероятностный характер различных процессов окружающего мира;

  • АЛГЕБРА уметь:

- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы и тригонометрические функции;

- вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования; использовать приобретенные знания и умения в практической деятельности и повседневной жизни;

- для практических расчетов по формулам, включая формулы, содержащие степени, радикалы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

  • ФУНКЦИИ И ГРАФИКИ уметь:

- определять значение функции по значению аргумента при различных способах задания функции;

- строить графики изученных функций;

- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков; использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

- для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

  • НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА уметь:

- вычислять производные и первообразные элементарных функций, используя справочные материалы;

- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

- вычислять в простейших случаях площади с использованием первообразной; использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

- для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

  • УРАВНЕНИЯ И НЕРАВЕНСТВА уметь:

- решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

- составлять уравнения и неравенства по условию задачи;

- использовать для приближенного решения уравнений и неравенств графическим методом;

- изображать на координатной плоскости множества решений простейших уравнений и их систем; использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

- для построения и исследования простейших математических моделей;




СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

1. Тригонометрические функции. Тождественные преобразования тригонометрических выражений. Тригонометрические функции числового аргумента: синус, косинус и тангенс. Периодические функции. Свойства и графики тригонометрических функций. Основная цель – расширить и закрепить знаниями умения, связанные с тождественными преобразованиями тригонометрических выражений; изучить свойства тригонометрических функций и познакомить с графиками. Изучение темы начинается с вводного повторения, в ходе которого напоминаются основные формулы тригонометрии, известные из курса алгебры, и выводятся некоторые новые формулы. Особое внимание следует уделить работе с единичной окружностью. Она становится основной для определения синуса и косинуса числового аргумента и используется далее для ввода свойств тригонометрических уравнений. Систематизируются свержения о функциях и графиках, вводятся новые понятия, связанные с исследованием функций (экстремумы, периодичность) и общая схема исследования функций. В соответствии с этой общей схемой проводится исследование функций синус, косинус, тангенс и строятся их графики.

2. Тригонометрические уравнения. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Основная цель – сформировать умение решать простейшие тригонометрические уравнения и познакомить с некоторыми приемами решения тригонометрических уравнений. Решение простейших тригонометрических уравнений основывается на изученных свойствах тригонометрических функций . При этом целесообразно широко использовать иллюстрации с помощью единичной окружности. Отдельного внимания заслуживают уравнения вида sinx=1, cosx=0 и т п. Их решение целесообразно сводить к применению общих формул. Отработка каких-либо специальных приемов решения более сложных тригонометрических уравнений не предусматривается. Достаточно рассмотреть отдельные примеры решения таких уравнений, подчеркивая общую идею решения: приведения решения к виду, содержащему лишь одну тригонометрическую функцию одного и того же аргумента, с последующей заменой. Материал, касающийся тригонометрических неравенств и систем уравнений, не является обязательным. Как и в предыдущей теме, предполагается возможность использования справочных материалов.

3. Производная. Производные суммы, произведения и частного. Производная степенной функции с целым показателем. Производная синуса и косинуса. Основная цель - ввести понятие производной; научить находить производные функций в случаях, не требующих трудоемких выкладок. При введении понятия производной и изучении ее свойств следует опираться на наглядно-интуитивные представления учащихся о приближении значений функции к некоторому числу, о приближении участка кривой к прямой линии и т.д. Важно отработать умение применять правила и теоремы нахождения производных.

4. Применение производной. Геометрический и механический смысл производной. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьшего значений. Основная цель – ознакомить с простейшими методами дифференциального исчисления и выработать умение применять их для исследования функций и построения графиков. Опора на геометрический и механический смысл производной делает интуитивно ясными критерии возрастания и убывания функций, признаки максимума и минимума. Основное внимание должно быть уделено разнообразным задачам, связанным с использованием производной для исследования функций. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в Ознакомительном плане.







УЧЕБНО – ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ АЛГЕБРА 10 КЛАСС


урока

Дата

Тема урока

Количество часов

Примечание

По плану

Фактически

1

1.09


Синус, косинус, тангенс и котангенс (повторение).

1


2

2.09


Радианная мера угла.

1


3

3.09


Основные формулы тригонометрии.

1


4

7.09


Синус, косинус, тангенс и котангенс (повторение). Основные формулы тригонометрии.

1


5


8.09


Формулы сложения.

1


6

9.09


Формулы двойного, тройного и половинного аргумента

1


7

10.09


Формулы понижения степени.

1


8


14.09


Формулы приведения.

1


9

15.09


Формулы приведения.

1


10

16.09


Применение формул приведения при решении задач.

1


11


17.09


Преобразование суммы и разности тригонометрических функций в  произведение.

1


12

21.09


Преобразование суммы и разности тригонометрических функций в  произведение.

1


13

22.09


Преобразование суммы и разности тригонометрических функций в  произведение.

1


14


23.09


Применение основных тригонометрических формул к преобразованию выражений.

1


15

28.09


Применение основных тригонометрических формул к преобразованию выражений.

1


16

29.09


Применение основных тригонометрических формул к преобразованию выражений.

1


17

30.09


Применение основных тригонометрических формул к преобразованию выражений.

1


18

01.10.


Контрольная работа № 1. Преобразование тригонометрических выражений

1


19

05.10


Тригонометрические функции.

1



20

06.10


Тригонометрические функции и их графики.

1


21

07.10


Графики тригонометрических функций.

1


22

08.10


Графики тригонометрических функций.

1


23

12.10


Построение графиков тригонометрических функций.

1


24

13.10


Построение графиков тригонометрических функций.

1


25

14.10


Функции и графики.

1


26

15.10


Функции и графики.

1


27

19.10


Построение графиков.

1


28

20.10


Преобразование графиков.

1


29

21.10


Преобразование графиков.

1


30

22.10


Четные и нечетные функции.

1


31

26.10


Периодичность тригонометрических функций.

1


32

27.10


Четные и нечетные функции.

1


33

28.10


Возрастание и убывание функций.

1


34

29.10


Экстремумы функции.

1


35

05.11.


Исследование функций.

1


36

09.11


Построение графиков функций.

1


37

10.11


Исследование функций.

1


38

11.11


Построение графиков функций.

1


39

12.11


Исследование функций. Построение графиков функций.

1


40

16.11


Исследование функций. Повторение.

1


41

17.11


Свойства тригонометрических функций.

1


42

18.11


Гармонические колебания.

1


43

19.11


Свойства тригонометрических функций. Гармонические колебания.

1


44

23.11.


Зачет № 1.

1


45

24.11.


Контрольная работа № 2. Основные свойства функций.

1


46

25.11


Арксинус, арккосинус и арктангенс.

1


47

26.11


Нахождение арксинуса, арккосинуса и арктангенса.

1


48

30.11


Нахождение арксинуса, арккосинуса и арктангенса.

1


49

01.12


Вычисления арксинуса, арккосинуса и арктангенса.

1


50

02.12


Решение простейших тригонометрических уравнений.

1


51

03.12


Решение простейших тригонометрических уравнений.

1


52

07.12


Простейшие тригонометрические уравнения.

1


53

08.12


Решение уравнений по формулам.

1


54

09.12


Решение уравнений по формулам.

1


55

10.12


Решение простейших тригонометрических уравнений.

1


56

14.12


Решение простейших тригонометрических уравнений.

1


57

15.12.


Контрольная работа № 3. Решение простейших тригонометрических уравнений и неравенств.

1


58

16.12


Основные методы решения тригонометрических уравнений

1


59

17.12


Методы решения тригонометрических уравнений

1


60

21.12


Решения тригонометрических уравнений

1


61

22.12


Решения тригонометрических уравнений

1


62

23.12


Методы решения тригонометрических уравнений

1


63

24.12


Решение систем тригонометрических уравнений

1


64

28.12


Решение систем уравнений

1


65

29.12


Методы решения систем тригонометрических уравнений

1


66

14.01


Методы решения систем тригонометрических уравнений

1


67

18.01.


Решение систем уравнений. Повторение.

1


68

19.01.


Контрольная работа № 4. Решение тригонометрических уравнений и систем уравнений.

1


69

20.01


Приращение функции

1


70

21.01


Приращение функции

1


71

25.01


Понятие о производной.

1


72

26.01


Производная.

1


73

27.01


Вычисление производной по определению.

1


74

28.01


Вычисление производной.

1


75

01.02


Понятие о непрерывности и предельном переходе.

1


76

02.02


Понятие о непрерывности и предельном переходе.

1


77

03.02


Правила вычисления производных.

1


78

04.02


Правила вычисления производных.

1


79

08.02


Вычисления производных по формулам.

1


80

09.02


Правила вычисления производных.

1


81

10.02


Правила вычисления производных.

1


82

11.02


Производная сложной функции.

1


83

15.02


Производная сложной функции.

1


84

16.02


Производная сложной функции.

1


85

17.02


Производные тригонометрических функций.

1


86

18.02


Производные тригонометрических функций.

1


87

22.02


Производные тригонометрических функций.

1


88

24.02


Вычисление производных тригонометрических функций.

1


89

25.02.


Контрольная работа № 5. Производная.

1


90

29.02


Применение непрерывности.

1


91

01.03


Метод интервалов.

1


92

02.03


Применение непрерывности.

1


93

03.03


Применение непрерывности. Метод интервалов.

1


94

07.03


Применение непрерывности. Метод интервалов.

1


95

09.03


Касательная к графику функции.

1


96

10.03


Касательная к графику функции.

1


97

14.03


Нахождение касательной к графику функции.

1


98

15.03


Нахождение касательной к графику функции.

1


99

16.03.


Приближенные вычисления.

1


100

17.03


Производная в физике и технике.

1


101

21.03


Производная в физике и технике.

1


102

22.03


Приближенные вычисления.

1


103

23.03


Касательная к графику функции. Производная в физике и технике.

1


104

24.03.


Повторение.

1


105

04.04.


Контрольная работа №6. Применение непрерывности и производной.

1


106

05.04


Признак возрастания (убывания) функции.

1


107

06.04


Признак возрастания (убывания) функции.

1


108

07.04


Решение задач на применение признаков возрастания (убывания) функции.

1


109

11.04


Критические точки функции.

1


110

12.04


Максимумы и минимумы функции.

1


111

13.04


Критические точки функции. Максимумы и минимумы функции.

1


112

14.04


Примеры применения производной к исследованию функций.

1


113

18.04


Примеры применения производной к исследованию функций.

1


114

19.04


Примеры применения производной к исследованию функций.

1


115

20.04


Применения производной к исследованию функций

1


116

21.04


Применения производной к исследованию функций

1


117

25.04


Применения производной к исследованию функций

1


118

26.04


Наибольшее и наименьшее значения функции.

1


119

27.04


Наибольшее и наименьшее значения функции.

1


120

28.04


Наибольшее и наименьшее значения функции.

1


121

03.05


Признак возрастания (убывания) функции.

1


122

04.05


Критические точки функции. Максимумы и минимумы функции.

1


123

05.05


Повторение

1


124

10.05


Контрольная работа №7.Применение производной к исследованию функций

1


125-134

11.05-26.05


Повторение

10


135

30.05.


Итоговая контрольная работа №8

1


136

31.05.


Работа над ошибками

1









ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА


Учебно - методическое обеспечение

  1. Математика. Подготовка к ЕГЭ 2010 / под ред. Ф.Ф. Лысенко, С.Ю. Кулабухова. - Ростов-на-Дону: Легион-М, 2009.

  2. Алгебра и начала анализа. Тесты для промежуточной аттестации в 10 классе. Под редакцией Ф. Ф. Лысенко. Ростов-на-Дону: Легион,2007.

3.Программы общеобразовательных учреждений. Алгебра и начала математического анализа 10-11 классы, - М.Просвещение, 2010, составитель Т.А. Бурмистрова

4. . Раздаточный материал (карточки с заданиями для самостоятельных и контрольных работ).

Материально – техническое обеспечение

1. Портреты математиков.

2. Таблицы для уроков математики.

3. Циркуль, транспортир, угольник, линейка.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ


В результате изучения математики на базовом уровне ученик должен научиться:

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира;





Автор
Дата добавления 21.11.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров978
Номер материала ДВ-175690
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх