Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа Алгебра Мордкович А.Г.
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа Алгебра Мордкович А.Г.

библиотека
материалов

Заместитель директора по УВР

______ Рязанова О.П.

30.08. 2016 г.

Принято на заседании ШМО

протокол №1 от 30.08.2016 г.

«Утверждаю»

Директор МБОУ

«Зарубинская ОШ»

_________Потапова Л.А.

пр. №___П от 30.08.2016 г.






Муниципальное бюджетное общеобразовательное учреждение

«Зарубинская основная школа»

Городецкого муниципального района Нижегородской области







Рабочая программа учебного предмета

Алгебра

7-9 класс

Разработала:

учитель

Шарова

Татьяна

Вадимовна





с. Зарубино

2016 – 2017 учебный год

  1. Пояснительная записка.


Данная рабочая программа составлена на основе:

Федерального Государственного образовательного стандарта,

Базисного учебного плана,

Учебного плана МБОУ «Зарубинская основная школа»,

Программы Математика 5 -6 классы, алгебра 7 – 9 классы алгебра и начала анализа 10 – 11 классы, /авт-сост. И.И.Зубарев, А.Г.Мордкович, - 3-е изд., М.: Мнемозина, 2011 г.


Программа направлена на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Задачи программы:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов, устойчивого интереса учащихся к предмету;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;

  • выявление и формирование математических и творческих способностей.


Предмет «Алгебра» относится к образовательной области «Математика».


Согласно действующему Базисному учебному плану рабочая программа предусматривает обучение алгебры в объеме 3 часа в неделю на протяжении учебного года, 102 часа в год в 7, 8 классах и 99 в 9 классе. Курс реализуется за счет федерального компонента.


На уроках алгебры могут использоваться следующие методы обучения:

- Методы устного изложения знаний учителем и активизации познавательной деятельности учащихся: рассказ, объяснение, лекция, беседа, метод иллюстрации демонстрации при устном изложении изучаемого материала, показ видеофильмов, презентаций.

- Методы закрепления изучаемого материала: беседа, работа с учебником.

- Методы самостоятельной работы учащихся по осмыслению и усвоению нового материала: работа с учебником, с карточками, практические, творческие работы, написание докладов, презентаций.

- Методы учебной работы по применению знаний на практике и выработке умений и навыков: проведение практических занятий.

Контроль за знаниями, умениями и навыками проводится по окончанию изучения темы в виде самостоятельных, контрольных работ, тестов, а также проводится текущий контроль.


Форма обучения – классно-урочная.

Формы деятельности учащихся: индивидуальные, групповые и фронтальные.

Формы контроля - промежуточная и итоговая аттестация обучающихся по курсу алгебры осуществляется согласно Уставу образовательного учреждения и Положению об аттестации обучающихся основной школы



2. Содержание тем учебного курса

7 класс


1. Математический язык. Математическая модель (13 ч )

Числовые и алгебраические выражения. Переменная. Допустимое значение переменной. Недопустимое значение переменной. Первые представления о математическом языке и о математической модели. Линейное уравнение с одной переменной. Линейные уравнения как математические модели реальных ситуаций. Координатная прямая, виды промежутков на ней.

2. Линейная функция (11 ч )

Координатная плоскость. Алгоритм отыскания координат точки. Алгоритм построения точки M(a;b) в прямоугольной системе координат.

Линейное уравнение с двумя переменными. Решение уравнения ax+by+c=0 . График уравнения. Алгоритм построения графика уравнения ax+by+c=0.

Линейная функция. Независимая переменная (аргумент). Зависимая переменная. График линейной функции. Наибольшее и наименьшее значения линейной функции на заданном промежутке. Возрастание и убывание линейной функции.

Линейная функция y = kx+b и ее график.

Взаимное расположение графиков линейной функции.

3. Системы двух линейных уравнений с двумя переменными (13 ч )

Система уравнений. Решение системы уравнений. Графический метод решения системы уравнений. Метод подстановки. Метод алгебраического сложения.

Система двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (текстовые задачи).

4. Степень с натуральным показателем (6 ч )

Степень. Основание степени. Показатель степени. Свойства степени с натуральным показателем. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым показателем.

5. Одночлены (8 ч )

Одночлен. Коэффициент одночлена. Стандартный вид одночлена. Подобные одночлены.

Сложение одночленов. Умножение одночленов. Возведение одночлена в натуральную степень. Деление одночлена на одночлен.

6. Многочлены. Арифметические операции над многочленами (15 ч )

Многочлен. Члены многочлена. Двучлен. Трехчлен. Приведение подобных членов многочлена. Стандартный вид многочлена.

Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен.

Квадрат суммы и квадрат разности. Разность квадратов. Разность кубов и сумма кубов.

Деление многочлена на одночлен.

7. Разложение многочленов на множители (18 ч )

Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения, комбинации различных приемов. Метод выделение полного квадрата.

Понятие алгебраической дроби. Сокращение алгебраической дроби.

Тождество. Тождественно равные выражения. Тождественные преобразования.

8. Функция y=x2 (9 ч )

Функция y=x2, ее свойство и график. Функция y=-x2, ее свойство и график.

Графическое решение уравнений.

Кусочная функция. Чтение графика функции. Область определения функции. Первое представление о непрерывных функциях. Точка разрыва. Разъяснение смысла записи

y = f(x). Функциональная символика.

9. Обобщающее повторение ( 9 ч )

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).


8 класс


1. Алгебраические дроби ( 21 ч )

Понятие алгебраической дроби. Основное свойство алгебраической дроби. Сокращение алгебраических дробей.

Сложение и вычитание алгебраических дробей.

Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень.

Рациональное выражение. Рациональное уравнение. Решение рациональных уравнений (первые представления).

Степень с отрицательным показателем.

2. Функция y=hello_html_m716cb6d9.png Свойства квадратного корня ( 18 ч )

Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел.

Функция y=ax2, ее свойства и график. Выпуклость функции. Область значений функции.

Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Освобождение от иррациональности в знаменателе дроби. Модуль действительного числа. График функции y = |x|. Формула hello_html_45c69be7.png

3. Квадратичная функция. Функция hello_html_74054553.gif( 18 ч )

Функция hello_html_1ec5abb4.gif, ее график и свойства.

Функция hello_html_74054553.gif , ее свойства и график. Гипербола. Асимптота.

Построение графиков функций y = f(x+l), y = f(x)+m, y = f(x+l)+m, y = - f(x) по известному графику функций y = f(x).

Квадратный трехчлен. Квадратичная функция, ее свойства и график. Понятие ограниченной функции. Построение и чтение графиков кусочных функций, составленных из функций у = С, y = kx+m, hello_html_74054553.gif , hello_html_1ec5abb4.gif+bx+c, hello_html_2cedd557.gif, y = |x|.

Графическое решение квадратных уравнений.

4. Квадратные уравнения ( 21 ч )

Квадратное уравнение. Приведенное (неприведенное) квадратное уравнение. Полное (неполное) квадратное уравнение. Корень квадратного уравнения. Решение квадратного уравнения методом разложения на множители, методом выделения полного квадрата.

Дискриминант. Формулы корней квадратного уравнения. Параметр. Уравнение с параметром (начальные представления)

Алгоритм решения рационального уравнения. Биквадратное уравнение. Метод введения новой переменной.

Рациональные уравнения как математические модели реальных ситуаций.

Частные случаи формулы корней квадратного уравнения.

Теорема Виета. Разложение квадратного трехчлена на линейные множители.

Иррациональное уравнение. Метод возведения в квадрат.

5. Неравенства ( 15 ч )

Свойства числовых неравенств.

Неравенство с переменной. Решение неравенств с переменной. Линейное неравенство. Равносильные неравенства. Равносильное преобразование неравенства.

Квадратное неравенство. Алгоритм решения квадратного неравенства.

Возрастающая функция. Убывающая функция. Исследование функций на монотонность (с использованием свойств числовых неравенств).

Приближенные значения действительных чисел, погрешность приближения, приближение по недостатку и избытку. Стандартный вид числа.

6. Обобщающее повторение ( 9 ч )

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 8 класса).


9 класс


1. Рациональные неравенства и их системы ( 16 ч )

Линейные и квадратные неравенства (повторение).

Рациональное неравенство. Метод интервалов.

Множества и операции над ними.

Система неравенств. Решение системы неравенств.

2. Системы уравнений ( 15 ч )

Рациональное уравнение с двумя переменными. Решение уравнения p(x;y) = 0. Равносильные уравнения с двумя переменными. Формула расстояния между двумя точками координатной плоскости. График уравнения hello_html_m691e8bc7.gif. Система уравнений с двумя переменными. Решение системы уравнений. Неравенства и системы неравенств с двумя переменными.

Методы решения систем уравнений (метод постановки, алгебраического сложения, введения новых переменных). Равносильность систем уравнений.

Системы уравнений как математические модели реальных ситуаций.

3. Числовые функции (25 ч )

Функция. Независимая переменная. Зависимая переменная. Область определения функции. Естественная область определения функции. Область значения функции.

Способы задания функции (аналитический, графический, табличный, словесный).

Свойства функций (монотонность, ограниченность, выпуклость, наибольшее и наименьшее значения, непрерывность). Исследование функций: у = С, y = kx+m, hello_html_74054553.gif , hello_html_1ec5abb4.gif+bx+c, hello_html_2cedd557.gif, y = |x|.

Четные и нечетные функции. Алгоритм исследования функции на четность. Графики четной и нечетной функций.

Степенная функция с натуральным показателем, ее свойства и график. Степенная функция с отрицательным целым показателем, ее свойства и график.

Функция hello_html_507d9bf.gif, ее свойства и график.

4. Прогрессии ( 16 ч )

Числовая последовательность. Способы задания числовых последовательностей (аналитический, словесный, рекуррентный). Свойства числовых последовательностей.

Арифметическая прогрессия. Формула n – го члена. Формула суммы членов конечной арифметической прогрессии. Характеристическое свойство.

Геометрическая прогрессия. Формула n – го члена. Формула суммы членов конечной геометрической прогрессии. Характеристическое свойство. Прогрессии и банковские расчеты.

5. Элементы комбинаторики, статистики и теории вероятностей ( 12 ч )

Комбинаторные задачи. Правило умножения. Факториал. Перестановки.

Группировка информации. Общий ряд данных. Кратность варианты измерения.

Табличное представление информации. Частота варианты. Графическое представление информации. Полигон распределение данных. Гистограмма. Числовые характеристики данных измерения (размах, мода, среднее значение).

Вероятность. Событие (случайное, достоверное, невозможное). Классическая вероятностная схема. Противоположные события. Несовместные события. Вероятность суммы двух событий. Вероятность противоположного события. Статистическая устойчивость. Статистическая вероятность.

6. Обобщающее повторение ( 18 ч )

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 9 класса)



3. Требования к уровню подготовки выпускников:

В результате обучения ученик должны знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности; вероятностный характер различных процессов окружающего мира;

  • должны уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы; находить значения корня натуральной степени, степени с рациональным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратов корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные уравнения;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по её аргументу; находить значения аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путём систематического перебора возможных вариантов и с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях.

решать следующие жизненно практические задачи:

  • самостоятельно приобретать и применять знания в различных ситуациях, работать в группах;

  • аргументировать и отстаивать свою точку зрения;

  • пользоваться предметным указателем энциклопедий и справочников для нахождения информации;

  • самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем.






















Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 13.10.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров59
Номер материала ДБ-257727
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх