Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа элективного курса для 10 класса на тему "Функция в ЕГЭ"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа элективного курса для 10 класса на тему "Функция в ЕГЭ"

библиотека
материалов

Муниципальное общеобразовательное учреждение

«Осташевская средняя общеобразовательная школа»






Рабочая программа элективного курса



«Функция в ЕГЭ»



для 10 класса (68 часов)





Учитель - Шорникова Светлана Павловна





















на 2015-2016 учебный год

Программа элективного курса по математике «Функция в ЕГЭ» для учащихся 10 классов.



Пояснительная записка

Данный курс «Функция в ЕГЭ» поддерживает изучение основного курса математики и способствует лучшему усвоению базового курса математики и успешной сдачи ЕГЭ. Материал этого курса может быть использован учителем как на уроке математики в 10 классах, так и на факультативных занятиях, или на кружке.

Данная программа может заинтересовать учащихся в лучшей подготовке к ЕГЭ, она привлечет внимание тех учеников, которым захочется глубже познакомиться с ее методами и идеями. Предлагаемый курс систематизирует все знания о функции, которые содержатся в алгебре 7 – 10 класса. Надо отметить, что знания о функциях и навыки работы с их графиками совершенно необходимы каждому ученику, желающему хорошо сдать ЕГЭ, а также являются хорошим подспорьем для успешных выступлений на олимпиадах.

Задача сегодняшнего дня не только овладение какой-то суммой знаний, но и применение их на практике. В связи с этим в данном курсе предусмотрены практические работы с графиками функции, показать применение этих знаний в различных областях науки и техники.


Цели курса:

- восполнить некоторые содержательные пробелы основного курса знания о функциях.

-систематизация, обобщение знаний о функциях и их графиках.

- продолжить формирование качеств мышления, необходимых человеку для жизни в современном обществе.

- подготовка к успешной сдаче ЕГЭ.


Задачи курса:

- формирование у учащихся умений решать нестандартные задания, связанные с понятием функции.

-продолжить формирование умения быстро, оперативно читать график функции, строить его.

- научиться решать задачи в ЕГЭ.

-продолжить развитие математической культуры

-помочь ученику оценить свой потенциал с точки зрения образовательной перспективы.


Данный курс рассчитан на 68 часов. В программе приводится примерное распределение учебного времени. Каждое занятие состоит из трех частей: объяснение учителя, объяснение учащихся, тестирование.

Основные формы организации учебных занятий: лекция, практические работы, семинар, творческие задания.

Разнообразный дидактический материал дает возможность отбирать дополнительные материалы для учащихся разной степени подготовки. Все задания направлены на развитие интереса школьника к предмету, подготовку к ЕГЭ, расширение представлений об изучаемом материале, решение новых и интересных задач.

Программа может быть эффективно использована 10-11 классах с любой степенью подготовленности, способствует успешной сдаче ЕГЭ, развитию познавательных интересов, мышления.






























Тематическое планирование

Тема

Кол-во часов

Дата

План.

Факт.

1

Что такое функция? Ее назначение. Способы задания функции.

2



2

Основные характеристики функции.

2



3-4

Линейная функция. График. Свойства. Линейная функция на ЕГЭ.

3



5

Обратная пропорциональность. Ее свойства, график. Задания из ЕГЭ.

2



6-7

Квадратичная функция, ее свойства, график. Задания из ЕГЭ.

3



8

Преобразование графиков функции.

2



9

Практическая работа. «Построение графика функции с помощью основных преобразований»

3



10

Тестирование

4



11

Степенная функция с целым отрицательным показателем.

2



12

Функция у = √х, ее свойства и график.

3



13-14

Функция у = 2n+1√х , ее свойства, график

3



15

Нахождение ООФ

3



16

Практический семинар. Решение задач на нахождение ООФ из ЕГЭ

2



17-18

Нахождение множества значений функции.

4



19

Семинар. Решение заданий из ЕГЭ на определение периода функции, определение четной и нечетной функции.

2



20-21

Графическое решение неравенств.

4



22

Обратная функция.

2



23-24

Логарифмическая и показательная функция, ее свойства и графики.

4



25-28

Применение функции. Задания из ЕГЭ

6



29

Обратные тригонометрические функции.

2



30

Графики функций с модулем.

4



31

Практическая работа по построению графиков функции с модулем.

3



32

Функция на службе у человека. Форма проведения: «Устный журнал».

2



33-34

Конкурс презентаций по функциям.

1




В результате изучения курса учащиеся должны уметь:

- уверенно определять вид функции.

- записывать, определять свойства функции.

- строить графики основных функций, функций с модулем, тригонометрических функций.

- читать графики функций.

- распознавать графики функции

- находить область определения и область значения функции по графику и аналитическим путем

- выработать алгоритм работы с тестами

- уметь осуществлять самоконтроль своей деятельности.

Содержание программы



Тема 1: «Что такое функция? Её назначение. Способы задания».

Методы обучения: беседа, выполнение тренировочных упражнений.

Форма контроля: тестирование.

Функциональная линия является одной из основных содержательных линий в курсе математики. Ранее функция описывалась с помощью соответствия между элементов двух произвольных множеств, с помощью бинарных отношений. В настоящее время под функцией подразумевается зависимость (или закон), по которой каждому значению независимой переменной соответствует единственное значение зависимой переменной. Такой подход обусловлен большей подготовленностью учащихся своим жизненным опытом к такому определению, более легким восприятием, близостью причинно-следственным отношениям. Ее применение: математика, физика, биология, химия, астрономия, медицина, радиотехника и др.

Способы задания: словесный, табличный, формула, графический.

См. приложение 1.



Тема 2: «Основные характеристики функции».

Методы обучения: беседа

Форма контроля: практическая работа по описанию графика функции по схеме.

Основные характеристики функции:

1)область определения;

2)область значений;

3)четность функции;

4)периодичность;

5)нули функции;

6)точки пересечения с осями координат;

7)промежутки знакопостоянства;

8)промежутки монотонности;

9)экстремальные точки;

10)экстремумы;

11)наибольшее и наименьшее значение;

12)ограниченность функции.

Функция у = f(x) называется ограниченной, если ее область значений ограничена, то есть если все ее значения лежат на каком-нибудь конечном промежутке. В противном случае функцию называют неограниченной.

См. приложение 2.



Тема3: «Линейная функция. Ее график, свойства. Задания из ЕГЭ».

Метод обучения: лекция, тренажер.

Форма контроля: тестирование.

1)Линейная функция имеет вид у = kх+b;

2)область определения и область значения: все действительные числа;

3)нули функции у=0, при х = -b/k, k ≠0;

4)если k >0, то функция возрастающая, α – острый

α – угол между прямой графика функции у= kx +b и положительным направлением оси Ох.

5)если k <0, то функция убывающая; α – тупой

6)если угловые коэффициенты графиков функции одинаковы , то прямые параллельны.

См. приложение 3.



Тема 4: «Обратная пропорциональность. Ее свойства и график».

Методы обучения: лекция

Форма контроля: самостоятельная работа.

Это функция вида у = k/x, где k≠0. Область определения и область значения – все числа, кроме 0. Нули не существуют

Если k>0, то функция убывающая, если k<0 то функция возрастающая.

Промежутки знакопостоянства:

k>0, у>0 при х >0, у<0 при х<0

k<0, у>0 при х<0, у<0 при х>0.

Экстремальных точек и экстремумов не существует, наибольших и наименьших значений нет.

См. приложение 4.



Тема5: «Квадратичная функция. Ее свойства и график. Задания из ЕГЭ».

Методы обучения: лекция.

Форма контроля: тестирование.

Это функция вида у = ах2 + bx + c, где a,b,c - числа и а≠0

Перечислить все характеристики по общей схеме (см. тему 2).

См. приложение 5.



Тема 6: «Преобразование графиков функции».

Методы обучения: беседа

Форма контроля: компьютерное тестирование, практическая работа.

Предлагаем использовать интерактивную доску.

Если известен график функции у=f(x), то с помощью геометрических преобразований можно построить графики более сложных функций.

1)График функции у=Аf(x) получается из графика у=f(x) «растяжением» вдоль оси Оу в А раз при А>1 и «сжатием» вдоль этой оси в 1/А раз при 0<А<1 (рис.1)

2)График функции y=f(ωx) получается «сжатием» графика y=f(x) в ω раз к оси Оу при ω >1 или «растяжением» в 1/ω раз от этой оси Оу при 0<ω<1 (рис.2)hello_html_m236e4b45.pnghello_html_20d055e6.pnghello_html_5ce68089.png

hello_html_30bb0e29.pnghello_html_m7ac70477.png















3)График функции y=f(x+b) получается параллельным переносом графика y=f(x) в отрицательном направлении оси Ох на IbI при b>0 и в положительном направлении на IbI при b<0 (рис.3)hello_html_m38f64328.pnghello_html_m2cbc242.png



4)График функции y=f(x) + M получается параллельным переносом графика y=f(x) в положительном направлении оси Оу на М при М>0 и в отрицательном направлении на IMI при М<0 (рис.4)

hello_html_m15ac2786.png

5)График функции у=- f(x) получается симметричным отображением (зеркальным отражением) графика у=f(x) относительно оси Ох (рис.5)

hello_html_m6d5ecb21.png



6)График функции у= f(-x) получается симметричным отображением (зеркальным отражением) графика у=f(x) относительно оси Оу. (рис.6)

hello_html_3f21c119.png

См. приложение 6.



Тема 7: «Построение графика функции с помощью основных преобразований»

Метод обучения: беседа

Форма контроля: практическая работа.

1)Построить в одной системе координат графики функции:

А) у = 3х+5

У = -3х+5

У= 3х-4

У= 3х

Б) у=3/х

У=3/х-3

У=3/3-х

У=3/х-3 + 2

У=3/х+3

В) у=х2

У = - (х+2)2

У=(х-4)2 + 2

См . приложение 7.



Тема 8. См. приложение 8.

Тема 9: «Степенная функция с целым отрицательным показателем».

Метод обучения: лекция.

Форма контроля: самостоятельная работа.

Изучаются свойства по схеме (см. тему 2)

Если n – нечетная, графиком функции является гипербола. Если n - четная, графиком функции являются две кривые, расположенные в первом и втором координатных углах.

См. приложение 9.



Тема 10: «Функция у = hello_html_m4c6f2b34.gif . Ее свойства и график».

Метод обучения: беседа

Форма контроля: практическая работа.

Изучаются свойства по схеме (см. тему 2)



Тема 11: «Функция у= hello_html_ma84148d.gif. Ее свойства. График».

Метод обучения: беседа

Форма контроля: практическая работа.

Изучаются свойства по схеме (см.тему 2)

См. приложение 10.



Тема 12: «Нахождение области определения функции».

Метод обучения: лекция.

Форма контроля: тестирование.

Областью определения функции называется значение переменной, при котором функция имеет смысл.

Показать учащимся нахождение области определения для всех видов функции, изучаемых в алгебре с 7-11 класс.

См. приложение 11.



Тема 13: «Нахождение области определения функции в заданиях ЕГЭ».

Метод обучения: беседа.

Форма контроля: тестирование.

См.приложение 12.



Тема14: «Нахождение множества значений функции».

Метод обучения: лекция.

Форма контроля: самостоятельная работа.

См.приложение 13.



Тема 15: «Определение свойств функции в заданиях ЕГЭ».

Метод обучения: эвристическая беседа.

Форма контроля: тестирование.

См.приложение 14.



Тема 16: «Графическое решение неравенств».

Метод обучения: лекция.

Форма контроля: тестирование.

См.приложение 15.



Тема 17: «Обратные функции».

Метод обучения: лекция.

Форма контроля: самостоятельная работа.

Для того чтобы функция у=f(x) при х€ [a;b] существовала обратная к ней функция, необходимо достаточно, чтобы функция у=f(x) была монотонной при х€[a;b] (то есть или только возрастающая; или только убывающая). Пример: для функции у=х3 обратная является у=hello_html_m38b8e446.gif , х – любое число. Для функции у=х2, при х€ R, обратной не существует, однако при х>0 для у=х2, обратной является функция у=hello_html_m34792c1c.gif, для функции у=х2, при х<0, обратной является функция у=-hello_html_m34792c1c.gif. Графики прямой и обратной функции симметричны друг другу относительно прямой у=х.

См.приложение 16.



Тема 18: «Логарифмическая и показательная функции».

Метод обучения: беседа.

Форма контроля? Самостоятельная работа.

См. приложение 17.



Тема 19: «Тригонометрические функции на ЕГЭ».

Метод обучения: лекция.

Форма контроля: тестирование.

См. приложение 18.



Тема 20: «Обратные тригонометрические функции».

Метод обучения: лекция.

Форма контроля: самостоятельная работа.

См.приложение 19.



Тема 21: «Построение графиков функции с модулем».

Метод обучения: лекция.

Форма контроля: практическая работа.

См. приложение 20.





















Литература

1. Веременюк В.В. тренажер по математике для подготовки к централизованному тестированию и экзамену / В.В. Веременюк . – Минск: ТетраСистемс, 2009. – 176с.

2. Гребенч М.К, Новоселов С.И. Курс математического анализа. Т.I. – М.:Уч-пед издательство, 2000. – 511с.

3. Кравец Е.В., Радьков А.М. Числа и функции в тестах: Учеб.-метод. Пособие. – Мн.: изд. В.М.Скакун, 2006. – 192с.

4. Колесникова С.И. математика. Интенсивный курс подготовки к ЕГЭ / С.И.Колесникова. – 4-е изд. – М.: Айрис-пресс, 2013.-304с.

5. Математика. Подготовка к ЕГЭ-2008. Вступительные испытания. Под редакцией Ф.Ф. Лысенко. – Ростов-на – Дону: Легион, 2012. 400с.

6. Математика. Тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов / сост. Г.И. Ковалева, Т.И. Бузулина, О.Л. Безрукова, Ю.А. Розка – Волгоград: Учитель, 2013. – 494с.

7. Пособие по математике для поступающих в Вузы. Под редакцией Г.Н. Яковлева. – М.: Наука, 2014. – 608с.

8.Петров К.А. Квадратичная функция и ее применение: Кн. Для учащихся. – М.: Просвещение, 2008. – 96с.

9.Сычева Е.И., Сычев А.В. Тестовые задания по математике: алгебра 9 кл. – М.: Школьная пресса, 2012. – 62с.

10.Симонов Р.А. Математическая мысль Древней Руси. – М.: Наука, 2013. – 120с.

11.Шабунин М.И.Математика. Алгебра .Начала математического анализа. Профильный уровень: методическое пособие для 10 класса . – М.: БИНОМ. Лаборатория знаний, 2013. – 448с.

12.Функции и графики (основные приемы). Под редакцией Э.Э.Шноль. – М.: Наука, 2013. – 93с.



















Приложение 1

Тренировочный тест.

1.Среди определений функции укажите правильные и неправильные.

1.1. Функцией называется зависимость одной переменой от другой.

1.2.Функцией называется правило нахождения значений одной переменной (зависимой) по заданному значению другой переменной (независимой).

1.3.Зависимость одной переменной от другой, в которой каждому значению независимой переменной соответствует единственное значение зависимой переменной, называется функцией.

1.4. Зависимость переменной у от переменной х называется функцией, если каждому значению у соответствует единственное значение х.

1.5.Зависимость переменной у от переменной х называется функцией, если каждому значению х соответствует хотя бы одно значение у.

1.6. График зависимости одной переменной от другой называется функцией.



2.Среди следующих зависимостей укажите функциональные.

2.1.Зависимость температуры воздуха от времени суток.

2.2. Зависимость роста человека от его возраста.

2.3. Зависимость количества пассажиров от количества мест в салоне автомобиля.

2.4. Зависимость пути от времени, за которое этот путь пройден.

2.5. Зависимость количества делителей от числа.

2.6. Зависимость количества рисунков в книге от количества страниц в ней.



3.Среди следующих таблиц укажите те, которые задают функциональную зависимость переменной а от переменной b.

b

1

2

3

a

-5

6

7

3.1.



b

-1

0

0

1

a

1

2

3

4

3.2.





b

2

3

4

5

a

1

1

2

1

3.3.





b

0.5

1

1.5

0

2.5

a

0.5

2

0.5

1

0.5

3.4.





b

-2

-1

0

-1

-2

a

-2

-1

0

1

2

3.5.





b

2

4

9

100

a

1

1

2

2

3.6.





4.Среди формул укажите те, которые задают функциональную зависимость переменной z от переменной х.

4.1. z = x +10.

4.2. z = IxI.

4.3.IzI = x.

4.4.z=x/10.

4.5.z2 = x.

4.6.z3 = x+29.

5.Среди следующих линий координатной плоскости укажите те, которые являются графиками функций от аргумента х.

C:\Documents and Settings\Lanzer\Мои документы\Мои рисунки\Изображение\88.JPG

















Приложение 2

1.Укажите область определения функции, график которой изображен на рисунке.

hello_html_5ab71fe8.png









1)[-4;4] 2)[-2;2] 3)[-4;-2]U[2;4] 4)(-2;1)

2.Укажите множество значений функции, график которой изображен на рисунке.

hello_html_m121741c3.png











1)[-4;5] 2)[-3;4] 3)[-2;2] 4)[-1;2]

3.Укажите график функции, заданной формулой у=0,5х

hello_html_8be5478.png

4.На рисунке изображен график функции у=f(x). Укажите промежуток, на котором функция f(x) монотонна.

hello_html_27a32df7.png

  1. [-4;2) 2) [-3;1) 3)[1;3) 4)(-1;2)

5.Функция у=f(x) задана графиком на промежутке [-5;5]. Укажите количество точек минимума этой функции.

hello_html_m7119eafb.png

  1. 1 2) 4 3)3 4)2

6.Функция y=f(x) задана на отрезке [-7;7] . укажите множество значений аргумента, при которых функция положительна.

hello_html_m709d6cb9.png

1)[-5;-3]U[6;7] 2)[-7;-1]U[5;7] 3)[-7;-5]U(-5;-1)U(5;7] 4)(-5;-3)U[1;7].



7.Функция у=f(x) задана графиком на промежутке [-5;5). Укажите наибольшее значение функции f(x).

hello_html_3f42ec19.png





Приложение 3

1.Среди данных функции укажите линейные.

1.1. у = 5-7х.

1.2.у=3(2х+5).

1.3.у=2/х-1.

1.4.у=4х+5х2.

1.5.у=х+2/5.

1.6.у=5.



2.Среди следующих графиков укажите тот, который является графиком функции у=-2х+4.

C:\Documents and Settings\Serg\Мои документы\Мои рисунки\Безымянный.JPG



3.Укажите верные и неверные среди утверждений о графике функции у=2х-1.

3.1.Точка с координатами (1;1) принадлежит графику функции.

3.2.График пересекает ось Оу в точке (0;-1).

3.3.График функции не пересекает ось Ох.

3.4. График функции не проходит через точку (-1;3).

3.5. График функции пересекает график функции у=5.

3.6. График функции не проходит через начало координат.



4.Среди функции укажите ту, график которой изображен на рисунке.

hello_html_m29878dac.png

4.1. у=-2х+4.

4.2.у=-2х-4.

4.3.у=2х+4.

4.4.у=2х-4.

4.5.у=х+4.

4.6.у=2х-2.



5.Укажите верные и неверные среди утверждений о взаимном расположении графиков линейных функций..

5.1. График функций у = -3х +6 и у = 4х-5 пересекаются.

5.2. График функций у=0,4х + 8 и у=0,5х-7 параллельны.

5.3. График функций у=2,5х +4 и у = 2,5х +4 совпадают.

5.4.Графики двух линейных функций не могут иметь более одной общей точки.

5.5.Графики двух линейных функций могут не иметь ни одной общей точки.

5.6. Если k1k2 , то независимо от b1 и b2 , графики двух линейных функций у= k1х + b1 и у= k2х+ b2 (k1,k2, b1 ,b2 - некоторые числа), пересекаются.

6.На рисунке показан эскиз графика функции, заданной формулой вида у=kx+b, где k,b – некоторые числа.

hello_html_58b412c5.png



Среди утверждений о значениях k и b укажите верные и неверные.

6.1.k=0, b<0/

6.2.k>0, b=0.

6.3.k>0,b>0.

6.4.k>0, b<0.

6.5.k <0, b>0.

6.6. k <0, b<0.



Приложение 4. Тренировочный тест.

1.Функция задана формулой у=8/х. укажите верные и неверные среди следующих суждений о ней.

1.1. При х = 1, у=1.

1.2. Функция определена для х=0.

1.3.Значение функции равно 2 при х=4.

1.4.Не существует значения х, при котором значение функции равнялось бы -2,5.

1.5.Значение функции не может быть равно 0.

1.6.Область определения данной функции – все числа, кроме 0.

1.7.При любом х>0 значение функции – положительное число.

1.8.Графику функции принадлежит точка (-1;-8).



2.Укажите верные и неверные среди высказываний о графике функции у= hello_html_38e3e06b.gif , где k- любое, не равное нулю, число.

2.1.График данной функции не имеет точек пересечения с осями координат.

2.2. График данной функции симметричен относительно начала координат.

2.3. График данной функции не пересекает ось Оу.

2.4.Точка пересечения графика указанной функции с осью Ох имеет координаты (-k;0).

2.5. График данной функции пересекается с прямой х=0.

2.6. График данной функции всегда расположен во второй и четвертой координатных четвертях.

2.7.В зависимости от k график функции может лежать в первой и третьей или во второй и четвертой координатных четвертях.

2.8. График данной функции является гипербола.



Приложение 5. Тренировочный тест

1.На рисунке схематично изображен график функции у=ах2 (а≠0).

C:\Documents and Settings\Lanzer\Мои документы\Мои рисунки\Изображение\56.JPG

C:\Documents and Settings\Lanzer\Мои документы\Мои рисунки\Изображение\77.JPG



Среди графиков укажите тот, который является графиком функции у= а(х-2)2 + 1.



























2.Среди функций, заданных формулами, укажите ту, график которой изображен на рисунке.

C:\Documents and Settings\Lanzer\Мои документы\Мои рисунки\Изображение\9.JPG

2.1. у=-х2 + 4х +2.

2.2.у=-(х+2)2 + 2.

2.3.у=-х2+4х+5.

2.4.у=х2-4х-5.

2.5.у= - (х-2)2+9.

2.6.у=-(х-2)2 +2.



3.Функция задана формулой у=х2-6х+9. Укажите верные и неверные высказывания о ней.

3.1.Графиком функции является парабола с вершиной в точке с абсциссой х0 =3.

3.2.Область определения функции – все действительные числа.

3.3. Область значений функции – все действительные числа.

3.4.График функции касается оси Ох в точке (3;0).

3.5.Функция возрастает га (-∞;3) и убывает на (3;+∞).

3.6.Функция положительна для любого х.



4. О квадратичной функции известно, что она возрастает на (-∞;2) и убывает на (2;+∞). Среди формул укажите те, которые задают такую функцию.

4.1. у= =Ix-2I.

4.2.у=-(х-2)2.

4.3.у=-х2+4х-2.

4.4.у=х2-4х+2.

4.5.у=-х2-4х+2.

4.6.у=-(х-2)2+1.



5.Определите знаки a,b,c , по эскизу графика функции вида ax2+bx+c , который изображен на рисунке и укажите верные и неверные среди ответов.

C:\Documents and Settings\Lanzer\Мои документы\Мои рисунки\Изображение\6.JPG

5.1. a<0,b>0,chello_html_m360d6129.gif.

5.2. a<0,b>0,chello_html_m360d6129.gif.

5.3. a<0,b<0,chello_html_m360d6129.gif.

5.4. a<0,b<0,chello_html_m360d6129.gif.

5.5. a>0,b<0,chello_html_m360d6129.gif.

5.6. a>0,b>0,chello_html_m360d6129.gif.



Приложение 12.

1.Найдите область определения функции y=log2 (x2+x).

1)(0;+∞) 2)(- ∞;-1)U(0;+ ∞) 3)(-1;+ ∞) 4)(-1;0)

2.Укажите наибольшее из приведенных чисел, не принадлежащее области определения функции y=9log(IxI -1).

1)3 2)1 3)-1 4)-3

3.Какое из следующих чисел входит в область определения функции y = log4 hello_html_m72011ec2.gif) ?

1)1 2)3 3)2 4) ни одно из перечисленных

4.При каких а уравнение log2 Itgα – 1I =x имеет хотя бы один корень?

1) α>1

2) α≠π/4 +πk, kZ

3) α≠π/4 +πk, α≠π/2+πk, kZ

4)(-∞;+∞)



Приложение 13.

1.Укажите множество значений функции у= sin 3х+2.

1) (-5;5) 2)[1;3] 3)[1;5] 4)(1;5)

2.Укажите наибольшее число из области значений функции у= 2cos 3х/2-4.

1)-6 2)6 3)-4 4)-2

3.Найдите область значений функции у= tgх+1.

1)[1;+∞) 2) (-∞;1] 3)(- ∞;+∞) [0;1]

4.Укажите наименьшее целое число из области значений функции у=12,7 + 5 sin(3х-2).

1)-5 2)8 3)5 4)17

5.Укажите функцию, множеством значений которой является отрезок [-2;2].

1) y=cos2x 2)y=sin2x 3)y=cos2x+2 4) y=2sin4x

6.Найдите множество значений функции у=tg2x на отрезке [hello_html_6e0da89e.gif].

1)[hello_html_7165f4e1.gif] 2) [hello_html_m5f86187a.gif; 1] 3) [hello_html_m3afc79ae.gif ; hello_html_542a11df.gif 4) [1;hello_html_m4ec2c24d.gif]

7.Укажите множество значений функции у=f(x), заданной графиком на отрезке [-1;1].hello_html_60d937b4.png













  1. [-1;1] 2)[hello_html_m95bb4b1.gif ] 3) (-1;1) 4) (-π; π)

8.Найдите сумму всех целых чисел, которые входят в область значений функции y=4cos2x – 7.

1)-25 2)25 3)-22 4)0



Приложение 15.

1.На рисунке изображен график функции у=f(x) и y=g(x). Решите неравенство f(x) <g(x).

hello_html_m21a7e6e8.png

1)[-6;-3]U[1;3] 2)[-6;-3]U(1;3] 3)[-4;1]U[3;5] 4)(-4;1)U(3;5)

2.На рисунке изображен график функции у=f(x) ) и y=g(x). Решите неравенство f(x) ≥g(x).

hello_html_3690c84f.png

1)[-6;-5]U[-1;5] 2)[-5;-1] 3)[-5;5] 4)[-1;5]

3. На рисунке изображен график функции у=f(x) ) и y=g(x). Укажите наименьшее целое решение неравенства f(x) ≤g(x).

hello_html_24204881.jpg

1)0 2)4 3)-4 4)-3

4. На рисунке изображен график функции у=f(x) и y=g(x). Найдите количество целочисленных решений неравенства f(x) >g(x).

hello_html_66f38.jpg

1)8 2)7 3)6 4)5

5. На рисунке изображен график функции у=f(x). Найдите промежутки, не содержащие ни одного решения неравенства f(x) ≤0.

hello_html_533c140c.jpg

1)(-5;-2)U(2;5) 2)[-6;-5)U(-2;2)U(5;6] 3)[-5;-2]U[2;5] 4)[-6;-5]U[-2;2]U[5;6]

6. На рисунке изображен график функции у=f(x). Найдите промежутки, не содержащие ни одного решения неравенства f(x)≥2.

hello_html_m117ae123.jpg

1)(-3;3) 2)(-5;-3)U(3;5) 3)[-3;3] 4)[-5;-3]U[3;5]

7. На рисунке изображены графики функции у=f(x) и y=g(x). Пусть х0 – наименьшее целое решение неравенства f(x) ≥g(x). Найдите f(x0).

hello_html_m43a99b68.png

1)3 2)2 3)1 4)-1



8. На рисунке изображены графики функции у=f(x) и y=g(x). В каком из промежутков содержится множество решений неравенства f(x) <g(x).

hello_html_4797c496.png











1)[3;6] 2)[1;3] 3)[-3;-1] 4)[-5;-1]



Приложение 17.

1.Найдите область значений функции у=3+2х.

1)[3;+∞) 2)(3; +∞) 3)(- ∞;3] 4) (-∞;3)

2.Укажите множество значений функции у= 7-5х.

1) (-∞;7) 2)(- ∞;-7) 3)(7;+ ∞) 4)(- ∞;7]

3.Укажите наибольшее целое значение функции у=-4х+2 – 3.

1) 0 2)4 3)-3 4)-4

4.Укажите число, не принадлежащее множеству значений функции у=(1/3)2х+1 +15.

1)15 2)20 3)43 4)28

5. Укажите множество значений функции у=log1/3 (x+2).

1)(0;-2) 2)(0;2) 3)(- ∞;+∞) 4)[-2;0)

6.Укажите наименьшее целое значение функции у=log5 (x2+5).

1)1 2)-1 3)0 4)-5

7.Укажите функцию, множеством значений которой является промежуток (1; +∞).

1)y=log2(x+1) 2)y=5x+1 3)y==log1/2(x-1) 4)y=3x-1

8. Укажите множество значений функции у=f(x), заданной графиком на промежутке (-1;2]

hello_html_m680ccab9.png

1)[1/2;4] 2)[1/2;4) 3)(1/2;4] 4)(1/2;4)



Приложение 18.

1.укажите множество значений функции y=sin3x+5.

1)(-4;6) 2)[4;6] 3)[-1;5) 4)(0;6)

2.Найдите область значений функции у=2-cos(hello_html_m74660b14.gif).

1)[1;3] 2)(0;3) 3)(1;3) 4)[-1;3)

3.Укажите наименьшее число из области значений функции у=5tg2x + 2.

1)5 2)0 3)7 4)2

4.Какое из следующих чисел входит в множество значений функции у=0,5sin x/3 - 2?

1)-1 2)-2,7 3)-2,3 4)-3

5.Укажите функцию, множеством значений которой является отрезок [-17;-13].

1)y=5sinx-8 2)Y=-COSX+15 3)y=2cosx-15 4)y=3sinx+10

6.Функция у=f(x) задана графиком на промежутке (-π; hello_html_3e938cb2.gif ] . укажите множество значений аргумента, при которых она принимает неотрицательные значения.

hello_html_m4b11ae11.png

  1. [-hello_html_50661fa5.gif; hello_html_50661fa5.gif] 2) [-hello_html_50661fa5.gif; hello_html_50661fa5.gif] U {hello_html_3e938cb2.gif} 3)(hello_html_1efd9a82.gif; hello_html_3e938cb2.gif ) 4){-hello_html_50661fa5.gif} U[hello_html_50661fa5.gif; hello_html_m1f0e08cb.gif



Приложение 20.

1.График функции у=If(x)I получается из графика функции у= f(x) следующим образом: часть графика у=f(x), лежащая над осью Ох (где f(x)≥0), сохраняется, часть графика, лежащая под осью Ох (где f(x)<0), отображается симметрично относительно оси Ох.

hello_html_42d37b0a.png

2.График функции у=f(IxI), получается из графика функции у=f(x) следующим образом: при х≥0 график функции у=f(x) сохраняется, при х<0 полученная часть графика отображается симметрично относительно оси Оу.

hello_html_m2732d6e8.png






Рецензия

на программу элективного курса по математике «Функция в ЕГЭ» (10 класс).


Рецензируемая программа состоит из пояснительной записки, требований к математической подготовке учащихся, содержания обучения и богатого дидактического материала.

Данный курс является источником, который расширяет и углубляет базовый компонент, обеспечивает интеграцию необходимой информации для формирования математического мышления.

Данный курс рассчитан на 68 часов.

Каждое занятие состоит из трех частей: объяснение учителя, объяснение учащихся, тестирование. Основные формы организации учебных занятий: лекция, практические работы, творческие задания.

Разнообразный дидактический материал дает возможность отбирать дополнительные материалы для учащихся разной степени подготовки.

Предлагаемый курс систематизирует все знания о функции, которые содержатся в алгебре 7-10 класса. Знания о функциях и навыки работы с их графиками необходимы каждому ученику, желающему хорошо сдать ЕГЭ, а также являются хорошим подспорьем для успешных выступлений на олимпиадах.

Материал программы построен с учетом использования активных методов обучения, а рациональное распределение разделов программы позволит получить качественные знания и достичь запланированных результатов.

Курс ориентирован не только на учащихся обладающих достаточной математической подготовкой, но и на тех учащихся, которые желают овладеть дополнительными знаниями по данной теме, хотя бы для успешной сдачи экзаменов.

Данная программа может быть использована в учебном процессе.


Рецензия обсуждена и утверждена на заседании ШМО учителей математики и информатики.

Протокол №1 от 01.09.2015 г.

32



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 30.12.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров220
Номер материала ДВ-298807
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх