Инфоурок Математика Другие методич. материалыРАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ ДЛЯ УЧАЩИХСЯ 11 КЛАССА «ЗАМЕЧАТЕЛЬНЫЕ НЕРАВЕНСТВА, ИХ ОБОСНОВАНИЕ И ПРИМЕНЕНИЕ»

Рабочая программа учебного курса по математике

Файл будет скачан в форматах:

  • pdf
  • docx
7433
63
02.09.2024
«Инфоурок»

Материал разработан автором:

Глухова Вера Викторовна

учитель

Об авторе

Категория/ученая степень: Высшая категория
Место работы: МБОУ "Боярская СОШ"
Преподавание математики в 7-11 классах, подготовка к ОГЭ и ЕГЭ, факультативные занятия. Использование на уроках ИКТ и в течение нескольких лет технологии "ИСУД" - учета и развития индивидуального стиля учебной деятельности учащихся. Участие в различных педагогичеких конкурсах, конференциях.Стаж работы 36 лет.Высшая категория.
Подробнее об авторе
Программа учебного курса по математике: "Математика: Путешествие в мир чисел и форм" для 7-8 классов. Разработана на 2 года (68 часов). В программе имеется актуальность, цели, задачи и тематическое планирование с содержанием, результаты обучения.

Краткое описание методической разработки

Программа учебного курса по математике: "Математика: Путешествие в мир чисел и форм" для 7-8 классов. Разработана на 2 года (68 часов). В программе имеется актуальность, цели, задачи и тематическое планирование с содержанием, результаты обучения.

РАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ ДЛЯ УЧАЩИХСЯ 11 КЛАССА «ЗАМЕЧАТЕЛЬНЫЕ НЕРАВЕНСТВА, ИХ ОБОСНОВАНИЕ И ПРИМЕНЕНИЕ»

Скачать материал

МАОУ «Средняя общеобразовательная школа №12 с углубленным изучением отдельных предметов» города Губкин Белгородской области

 

«Согласовано»

Руководитель ШМО МАОУ «СОШ №12 с УИОП»

___________/Фёдорова Т. А./

 

Протокол №  5  от

«  20  »     июня         2014г.

 

«Согласовано»

Заместитель директора школы по НМР МАОУ «СОШ №12 с УИОП»

____________/Лазарева О.Н./

 

«  26  »   августа    2014г.

 

«Утверждаю»

Директор МАОУ «СОШ №12 с УИОП»

_____________/Псарёва Л.В./

 

Приказ №   145    от

«  01  »   сентября     2014г.

 

 

 

 

 

 

РАБОЧАЯ ПРОГРАММА 

 

ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ

ДЛЯ УЧАЩИХСЯ

 

 11  КЛАССА

 

 

«ЗАМЕЧАТЕЛЬНЫЕ НЕРАВЕНСТВА,

 ИХ ОБОСНОВАНИЕ И ПРИМЕНЕНИЕ»

 

 

учитель: Зуева Татьяна Николаевна

 

 

 

 

 

.

 

 

 

 

 

                                

 

 

                                         2014- 2015 учебный год

                                                Пояснительная записка

Данная программа составлена на основе авторской программы Гомонова С.А. Элективные курсы по математике. Образовательная область «Математика». Министерство образовании РФ.

Предлагаемый курс предусматривает намеченные, но совершенно не проработанные в основном курсе школьной математике, вопросы. Он дополняет базовую программу по математике, позволяя учащимся пройти путь от способов доказательств несложных числовых неравенств,  до обоснования «замечательных» неравенств Коши – Буняковского, Чебышева и др.

            Неравенства играют фундаментальную роль в большинстве разделов современной математики, без них не может обойтись ни физика, ни математическая статистика, ни экономика.

Данный курс имеет прикладное и общеобразовательное значение, способствует развитию логического мышления учащихся, использует межпредметные связи.

Материал предлагаемого курса даст возможность показать учащимся как красоту и совершенство, так и сложность и изощренность математических методов, порожденных не только алгеброй и математическим анализом, но и геометрией, и даже физикой.

Материал курса делится на два блока. В первом блоке излагаются наиболее распространенные приемы сравнения действительных чисел и установления истинности неравенств с переменной, а второй блок дает учащимся представление о применении неравенств при решении оптимизационных задач. Работа учащихся по этой программе предполагает их выход либо на первый уровень – ознакомление с основными методами и приемами получения и применения замечательных неравенств, либо на второй уровень, предполагающий усиление самостоятельной работы (в том числе и с дополнительными источниками) под руководством учителя, решение более сложных задач. Таким образом, материал может применяться для различных групп учащихся.

Программа рассчитана на 34 часа. При проведении занятий на первое место должны выйти такие организационные формы работы, как дискуссия («Какое доказательство лучше», «Многообразие метода подстановки» и т. д.), выступления с докладами (в частности, с отчетными докладами по результатам индивидуального домашнего задания, по результатам написания рефератов и др) или содокладами, дополняющими выступление учителя или ученика. Возможны и разные формы индивидуальной или групповой деятельности учащихся, например отчетные доклады по результатам самостоятельных «поисков» изучаемых вопросов на страницах сайтов в Интернете, книг, журналов.

Формой итогового контроля в зависимости от уровня усвоения изучаемого материала от уровня усвоения изучаемого материала может стать: решение учеником индивидуального домашнего задания, требовавшего проведения небольшого самостоятельного математического исследования; написание реферата на предложенные учителем темы.

Цель курса: изучение избранных классов неравенств с переменными и научное обоснование ( в той степени строгости, которая соответствует уровню школьной математики) методов их получения, а так же выход на приложения изученного теоретического материала.

Задачи курса:

- рассмотреть примеры на установление истинности числовых неравенств, встречающихся на экзаменах

- познакомить с основными методами решения задач на установление истинности неравенств с переменными;

- рассмотреть метод математической индукции и его применение к доказательству неравенств;

- рассмотреть неравенство Коши для произвольного числа переменных и неравенство Коши – Буняковского и их применение к решению задач;

- дать представление о математике как общекультурной ценности на примерах применения неравенства в математической статистике, экономике, задач на оптимизацию;

- развивать навыки организации умственного труда и самообразования.

 

 

 

 

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Требования к уровню подготовки учащихся.

 

В результате изучения курса учащиеся должны знать:

- понятие «больше», «меньше», «не больше», «не меньше» для действительных чисел и их свойства;

- основные методы сравнения двух чисел: «по определению», сравнение их отношений с единицей, сравнение их степеней, сравнение их с промежуточным числом, метод использования «замечательных неравенств»;

- основные методы установления истинности неравенств с переменными: метод анализа, метод синтеза, метод «от противного», метод использования тождеств, метод подстановки (введение новых переменных), метод оценивания (усиление и ослабления);

- схему применения метода математической индукции;

- неравенство Коши для произвольного числа переменных;

- соотношение Коши- Буняковского;

-средние арифметическое, геометрическое, гармоническое и квадратическое двух положительных чисел, их геометрическое интерпретация.

В результате изучения курса учащиеся должны уметь:

- применять основные методы сравнения двух чисел;

-применять основные способы доказательства истинности неравенств с переменными;

- применять метод математической индукции для доказательства неравенств;

- применять неравенство Коши - Буняковского при n = 2 и n = 3;

-применять замечательные неравенства для нахождения наибольшего и наименьшего значений функций, решения несложных задач на оптимизацию.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Календарно - тематическое планирование

 

№ п/п

Наименование разделов и тем

Кол-во часов

Формы учебной деятельности

Примерная дата

Часть I .

Замечательные неравенства

 

1

Числовые неравенства и их свойства. Основные методы установления истинности числовых неравенств.

 

3

 

Самостоятельная работа с литературой, работа в группах, сообщения о выполнении инд. заданий.

 

2

Неравенства с переменными. Основные методы решения задач на установление истинности неравенств с переменными. Частные случаи неравенства Коши.

 

 

3

Лекция учителя, работа в парах (группах) по отработке основных методов, сообщения в защиту одного из вариантов обоснования конкретного неравенства с переменной, доклады по работе над рефератами или инд. домашними заданиями.

 

 

3

Метод математической индукции и его применение к доказательству неравенств. Неравенство Коши для произвольного числа переменных.

 

4

Анализ математического текста (с применением мультимедиа), разбор и анализ решений, дискуссия «Какое из доказательств лучше и почему?» (различные доказательства неравенства Коши).

 

4

Неравенство Коши – Буняковского и его применение к решению задач.

 

 

Неравенства подсказывают методы их обоснования.

2

 

 

 

1

Лекция учителя, разбор и анализ решений, доклады о применении неравенства Коши - Буняковского при решении уравнений; при нахождении наибольшего и наименьшего

 значений функций; при доказательстве неравенств.

 

Часть II .

Средние величины, их свойства и применение

 

5

Средние арифметическое, геометрическое, гармоническое и квадратическое и соотношения между ними.

 

 

3

Самостоятельная работа с литературой, работа в группах, дискуссия по теме: «Сохранится ли соотношение между средними величинами, если входящие в них переменные будут принимать произвольные действительные значения?»

 

6

Применение неравенств.

  • Геометрические интерпретации, круговые неравенства
  • Неравенство Чебышева
  • Неравенство Иенсона (выпуклые фигуры и функции)
  • Исследование функции на выпуклость и вогнутость средствами математического анализа
  • Неравенства Коши-Гельдера и Минковского
  • Неравенства в математической статистике и экономике. Задачи на оптимизацию.

4

 

2

2

 

3

 

 

 

       2

 

2

 

 

2

Поисковая деятельность, сообщения о решении задач на оптимизацию, работа над рефератами.

 

 

Итоговый контроль по курсу

1

По выбору учителя.

 

 

Итого

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание курса

 

Часть I. Замечательные неравенства.

Тема I. Числовые неравенства и их свойства. Основные методы установления истинности числовых неравенств.

            Понятие положительного, отрицательного числа, число нуль. Основные законы сложения и умножения действительных чисел. Свойства суммы и произведения положительных чисел. Понятие «больше», его геометрическая интерпретация. Понятие «меньше», « не больше» и  «не меньше» для действительных чисел и их свойства. Числовые неравенства. Сравнение двух чисел по «определению», путем сравнения их отношения с единицей, путем сравнения их степеней, путем сравнения их с промежуточными числами, метод введения вспомогательной функции.

Тема II. Неравенства с переменными. Основные методы решения задач на установление истинности неравенств с переменными. Частные случаи неравенство Коши.

            Неравенства с переменными. Неравенство – следствие, равносильное неравенство. Методы установления истинности неравенств с переменными: метод анализа, метод синтеза, метод «от противного», метод подстановки, метод оценивания ( усиление или ослабление), метод использования тождества.

Тема III. Метод математической индукции и его применение к доказательству неравенств. Неравенство Коши для произвольного числа переменных.

            Индукция вообще и в математике в частности. Схема применения метода математической индукции. Некоторые модификации метода математической индукции, примеры. Неравенство Коши для произвольного числа переменных.

Тема IV. Неравенство Коши - Буняковского и его применение к решению задач.

            Теорема, устанавливающая соотношение Коши – Буняковского, геометрическая интерпретация этого неравенства. Векторный вариант  его записи для n = 2.

 

Часть II. Средние величины, их свойства и применение.

Тема V. Средние величины: в школьном курсе математике, физике. Средние арифметическое, геометрическое, гармоническое и квадратическое и соотношения между ними в случае двух и более параметров. Геометрическая интерпретация. Четыре средние линии трапеции.

Тема VI. Применение неравенств.

            Неравенства  в финансовой математике. Задачи на оптимизацию. Поиск наибольших и наименьших значений функций с помощью замечательных неравенств.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Литература для учащихся.

 

  1. Гомонов С.А. Замечательные неравенства: способы получения и примеры применения. М.: Дрофа, 2005.
  2.  Алфутова Н.Б., Устинов А.В. Алгебра и теория чисел. Сборник задач для математических школ. М.: МЦНМО, 2002.
  3. Литвиненко В.Н., Мордкович А.Г. Практикум по решению математических задач. М.: Просвещение, 1984.
  4. Дорофеев Г.В. и др. Пособие по математике для поступающих в вузы. М.: Наука, 1976.
  5. Математика: Большой справочник для школьников. М.: Дрофа, 1998.

 

Литература для учителя.

 

  1. Седракян Н.М., Авоян А.М. Неравенства. Методы доказательства. М.: Физматлит, 2002.
  2. Петров В.А.. Прикладные задачи на уроках математике. Смоленск: Изд-во СГПУ, 2001.
  3. Монахов В.М. и др. Методы оптимизации. Применение математических методов в экономике: Пособие для учителей. М.: Просвещение, 1978.

 Статьи журнала «Математика в школе».

 

  1. Петров В.А. Элементы финансовой математики на уроке. № 8, 2002.
  2. Вороной А.Н. Пять способов доказательства одного неравенства. № 4, 2000
  3. Ярский. А.С. Как научить доказывать неравенства. № 1, 1997
  4. Курляндчик Л.Д. Неравенство Коши. № 5, 1987.
  5. Гальперин И.М., Габович И.Г. Использование векторного неравенства Коши- Буняковского при решении задач по алгебре. № 2, 1991.
  6. Далингер В.А. Как сделать теорему о среднем арифметическом и средним геометрическом средством познания. № 9, 2003
  7. Фирстова Н.И. Решение некоторых видов уравнений при помощи неравенств. № 1, 2002
  8. Дорофеев Г.В. и др. Геометрические доказательства теоремы о средних: Курс по выбору «Избранные вопросы математики». № 10, 2003

 Статьи в приложении к газете «Первое сентября». «Математика»

 

  1. Клостер Г. Метод математической индукции. № 23, 2003
  2. Винокуровы Е. и Н. Экономика в задачах. № 34, 1998
  3. Башарин Г.П. Элементы финансовой математики. № 16, 1996
  4. Антонова Н, Солодовников С. Неравенство Коши о средних арифметическом и геометрическом. № 20, 1999.                          

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "РАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ ДЛЯ УЧАЩИХСЯ 11 КЛАССА «ЗАМЕЧАТЕЛЬНЫЕ НЕРАВЕНСТВА, ИХ ОБОСНОВАНИЕ И ПРИМЕНЕНИЕ»"
Смотреть ещё 6 034 курса

Методические разработки к Вашему уроку:

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

Данная программа составлена на основе авторской программы Гомонова С.А. Элективные курсы по математике. Образовательная область «Математика». Министерство образовании РФ.

Предлагаемый курс предусматривает намеченные, но совершенно не проработанные в основном курсе школьной математике, вопросы. Он дополняет базовую программу по математике, позволяя учащимся пройти путь от способов доказательств несложных числовых неравенств,  до обоснования «замечательных» неравенств Коши – Буняковского, Чебышева и др.

            Неравенства играют фундаментальную роль в большинстве разделов современной математики, без них не может обойтись ни физика, ни математическая статистика, ни экономика.

Данный курс имеет прикладное и общеобразовательное значение, способствует развитию логического мышления учащихся, использует межпредметные связи.

 

Материал предлагаемого курса даст возможность показать учащимся как красоту и совершенство, так и сложность и изощренность математических методов, порожденных не только алгеброй и математическим анализом, но и геометрией, и даже физикой.

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

7 363 861 материал в базе

Скачать материал

Другие материалы

Презентация по математике на тему "Степени" 10 класс
  • Учебник: «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.
  • Тема: § 33. Понятие корня п-й степени из действительного числа
  • 07.10.2020
  • 903
  • 9
«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.
  • 06.10.2020
  • 995
  • 25
«Математика (в 2 частях)», Моро М.И., Волкова С.И., Степанова С.В.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Скачать материал
    • 02.01.2015 397
    • DOCX 82 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Зуева Татьяна Николаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Зуева Татьяна Николаевна
    Зуева Татьяна Николаевна

    учитель

    • На сайте: 10 лет
    • Подписчики: 0
    • Всего просмотров: 7434
    • Всего материалов: 8

    Об авторе

    Окончила школу в 1989 году поступила и закончила Кустанайский государственный университет по специальности учитель математики, информатики и вычислительной техники.Работаю учителем с 1994 года. Замужем, имею двоих детей.Моя работа мне очень нравится. Второй год принимаю активное участие в конкурсе инфоурока.

Оформите подписку «Инфоурок.Маркетплейс»

Вам будут доступны для скачивания все 349 109 материалов из нашего маркетплейса.

Мини-курс

Самоценность и внутренний критик: как найти баланс

6 ч.

699 руб.
Подать заявку О курсе

Мини-курс

Философские основы и ключевые концепции педагогики XVII-XX веков

4 ч.

699 руб.
Подать заявку О курсе

Мини-курс

Современные подходы к профориентационной работе в образовательных учреждениях

3 ч.

699 руб.
Подать заявку О курсе
Смотреть ещё 6 034 курса