Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа к учебнику А. Г. Мордкович, П. В. Семёнов. Алгебра и начала математического анализа. 11 класс. (профильный уровень)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа к учебнику А. Г. Мордкович, П. В. Семёнов. Алгебра и начала математического анализа. 11 класс. (профильный уровень)

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Рабочая программа алгебра 11 класс.doc

библиотека
материалов

Муниципальное автономное учреждение

Богандинская средняя общеобразовательная школа № 1



Рассмотрено на заседании МО учителей – предметников

__________________руководитель МО

протокола ______

«___»____________ 2015г.


СОГЛАСОВАНО

Заместитель директора по УВР

________________

«___» ________________ 2015г.


УТВЕРЖДАЮ

Директор школы

________________

«___»______________ 2015г.





РАБОЧАЯ ПРОГРАММА



Предмет

Алгебра и начала анализа.

Учебный год

2015-2016 учебный год

Класс

11 класс (общеобразовательная группа)

Количество часов в год

136 часов

Количество часов в неделю

4 часа











Учитель: Деменская Татьяна Александровна




Пояснительная записка


Настоящая рабочая программа по алгебре и началам анализа для средней общеобразовательной школы 10 класса составлена на основе:

1. Федерального компонента государственного стандартного образования, утвержденного приказом Минобразования России от 5 марта 2004 года № 1089 «Об утверждении федерального компонента государственных стандартов начального общего, основного и среднего (полного) общего образования»;

2. Примерных программ среднего (полного) общего образования (письмо Департамента государственной политики и образования Министерства образования и науки Российской Федерации от 07.06.2005 г. № 03-1263);

3. Приказа Министерства образования и науки Российской Федерации от 31.03.2014 №253 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию на 2014-2015 учебный год»;

4. Учебного плана МАОУ Богандинской СОШ № 1, утвержденного 28.05.2014г. приказом №124/ОД директором И. С. Масловой и принятого педагогическим советом от 22.05.2014г. протокол №11.

5. Программы, выбранные общеобразовательным учреждением. Программы. Математика. 5-6 классы, Алгебра 7-9 классы. Алгебра и начала математического анализа. 10-11 классы. Авт.- сост. И. И. Зубарева, А. Г. Мордкович. – 2-е изд.,испр. И доп. – М. : Мнемозина, 2011.

Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развевает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

Изучение алгебры позволяет формировать умения и навыки умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.

Цели обучения математики

  • Овладение системой математических знаний и умений, необходимыми для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • Интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Общая характеристика учебного предмета, курса

Математическое образование в средней школе складывается из следующих содержательных компонентов (точные названия блоков): алгебра и начала анализа; геометрия. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Описание места учебного предмета, курса в учебном плане

Базисный учебный (образовательный) план на изучение алгебры и начал анализа в 11(профильной группе) классе основной школы отводит 4 часа в неделю, 136 часа в течение всего учебного года.

Требования к уровню подготовки выпускников

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

В результате изучения математики ученик должен

знать/понимать1

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;



Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;

Элементы логики, комбинаторики,
статистики и теории вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.

Обязательный минимум содержания основных образовательных программ

Многочлены. Многочлены от одной и нескольких переменных. Теорема Безу. Схема Горнера. Симметричные и однородные многочлены. Уравнения высших степеней.

Степени и корни. Степенные функции. Понятие корня n-ой степени из действительного числа. Функции y=√х, их свойства и графики. Свойства корня n-ой степени. Преобразование выражений, содержащих радикалы. Обобщение понятий о показателе степени. Степенные функции, их свойства и графики. Дифференцирование и интегрирование. Извлечение корней n-ой степени из комплексных чисел.

Показательная и логарифмическая функция. Показательная функция, её свойства и график. Показательные уравнения и неравенства. Понятие логарифма. Логарифмическая функция, её свойства и график. Свойства логарифмов. Логарифмические уравнения и неравенства. Дифференцирование показательной и логарифмической функций.

Интеграл. Первообразная и неопределённый интеграл. Определённый интеграл, его вычисление и свойства. Вычисление площадей плоских фигур. Примеры применения интеграла в физике.

Элементы комбинаторики, статистики и теории вероятностей

Вероятность и геометрия. Независимые повторения испытаний с двумя исходами. Статистические методы обработки информации. Гауссова кривая. Закон больших чисел.

Уравнения и неравенства. Системы уравнений и неравенств

Равносильность уравнений. Общие методы решения уравнений. Уравнения с модулями. Иррациональные уравнения. Доказательство неравенств. Решение рациональных неравенств с одной переменной. Неравенства с модулями. Иррациональные неравенства. Уравнения и неравенства с двумя переменными. Диофантовы уравнения. Системы уравнений. Уравнения и неравенства с параметрами.







Тематическое планирование с определением основных видов деятельности обучающихся

п/п

Тема

Количество часов

Характеристика основных видов деятельности ученика (на уровне учебных действий)

1

Повторение материала 10 класса


4

Выполнять вычисления и преобразование тригонометрических выражений. Использовать свойства тригонометрических функций при преобразовании выражений и решении тригонометрических уравнений различных видов. Вычислять производные элементарных функций. Исследовать функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и рациональных функций с использованием аппарата математического анализа. Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

2

Многочлены

  1. Многочлены от одной переменной

  2. Многочлены от нескольких переменных

  3. Уравнения высших степеней

Контрольная работа № 1


10

3

3

3

1

Определить понятие многочлена от одной и нескольких переменных. Выполнять преобразование многочленов. Применять теорему Безу, схему Горнера. Симметричные и однородные многочлены. Решать уравнения высших степеней.


3

Степени и корни. Степенные функции

  1. Понятие корня n-ой степени из действительного числа

  2. Функция корень n-ой степени, их свойства и графики

  3. Свойства корня n-ой степени

  4. Преобразование выражений, содержащих радикалы

Контрольная работа №2

  1. Понятие степени с любым рациональным показателем

  2. Степенные функции, их свойства и графики

  3. Извлечение корней из комплексных чисел

Контрольная работа №3


24

2


3

3

4

2

3


4

2

1


Знать понятие корня n-ой степени из действительного числа. Функции y=√х, их свойства и графики. Выполнять преобразований выражений используя свойства корня n-ой степени. Преобразование выражений, содержащих радикалы. Обобщение понятий о показателе степени. Степенные функции, их свойства и графики. Выполнять дифференцирование и интегрирование, извлечение корней n-ой степени из комплексных чисел.


4

Показательная и логарифмическая функция

  1. Показательная функция, её свойства и график

  2. Показательные уравнения

  3. Показательные неравенства

  4. Понятие логарифма

  5. Логарифмическая функция, её свойства и график

Контрольная работа № 4

  1. Свойства логарифмов

  2. Логарифмические уравнения

  3. Логарифмические неравенства

  4. Дифференцирование показательной и логарифмической функции

Контрольная работа № 5

31

3

3

2

2

3

2

4

4

3

3

2

Знать определение показательной функции, её свойства и график. Решать показательные уравнения и неравенства. Знать понятие логарифма. Логарифмическая функция, её свойства и график. Свойства логарифмов. Решать логарифмические уравнения и неравенства. Выполнять дифференцирование показательной и логарифмической функций.

5

Первообразная и интеграл

  1. Первообразная и неопределённый интеграл

  2. Определённый интеграл

Контрольная работа № 6

9

3

5

1

Вычислять первообразную и неопределённый интеграл. Определённый интеграл, его вычисление и свойства. Вычисление площадей плоских фигур. Примеры применения интеграла в физике.

7

Элементы теории вероятностей и математической статистики

  1. Вероятность и геометрия

  2. Независимые повторения испытаний с двумя исходами

  3. Статистические методы обработки информации

  4. Гауссова кривая. Закон больших чисел

9


2

3


2

2

Вероятность и геометрия. Независимые повторения испытаний с двумя исходами. Статистические методы обработки информации. Гауссова кривая. Закон больших чисел.


8

Уравнения и неравенства. Системы уравнений и неравенств

  1. Равносильность уравнений

  2. Общие методы решения уравнений

  3. Равносильность неравенств

  4. Уравнения и неравенства с модулями

Контрольная работа №7

  1. Уравнения и неравенства со знаком радикала

  2. Уравнения и неравенства с двумя переменными

  3. Доказательство неравенств

  4. Системы уравнений

Контрольная работа №8

  1. Задачи с параметрами

33

4

3

3

3

2

3


2

3

4

2

4

Применять равносильность уравнений. Рассмотреть общие методы решения уравнений. Решать уравнения с модулями, иррациональные уравнения. Доказывать неравенства. Решать рациональные неравенства с одной переменной, неравенства с модулями, иррациональные неравенства. Решать уравнения и неравенства с двумя переменными, диофантовы уравнения, системы уравнений. Решать уравнения и неравенства с параметрами.

9

Обобщающее повторение

14



В программе на обобщающее повторение рекомендуется 16 часов, но два часа из запланированных по программе выделены для проведения Районной оценки качества знаний учащихся (РОКЗ).





Учебно-методический комплекс

Программа

Класс

Учебник

Пособие для учителя

Пособие для учащихся

Контрольно-измерительные материалы

Программы. Математика. 5-6 классы, Алгебра 7-9 классы. Алгебра и начала математического анализа. 10-11 классы. Авт.- сост. И. И. Зубарева, А. Г. Мордкович. – 2-е изд.,испр. И доп. – М. : Мнемозина, 2011.




11

А. Г. Мордкович, П. В. Семёнов. Алгебра и начала математического анализа. 11 класс. Учебник для учащихся общеобразовательных организаций (базовый и углубленный уровни) в 2-х частях.М.:Мне6мозина. 2014г.

Алгебра и начала математического анализа. 11 класс (профильный уровень): методическое пособие для учителя/ А. Г. Мордкович, П. В. Семёнов. – М.: Мнемозина, 2010.

1. 3000 задач с ответами по математике. Разработано МИОО для использования в образовательных учреждениях Российской Федерации в качестве сборника для подготовки к ЕГЭ по математике под редакцией А. Л. Семёнова, И. В. Ященко.


2. Рабочие тетради по подготовке к ЕГЭ под редакцией А. Л. Семёнова, И. В. Ященко.

1. Алгебра и начала математического анализа. 11 класс. Контрольные работы для учащихся общеобразовательных учреждений (профильный уровень) / В. И. Глизбург; под ред. А. Г. Мордковича. – 3-е изд., стер.- М.:Мнемозина, 2013.

2. Зив Б. Г., Гольдич В. А. Дидактические материалы по алгебре для 10-11 классов. – СПб.: «Петроглиф», 2012.

3. Александрова Л. А. Математика: алгебра и начала математического анализа. 11 класс: самостоятельные работы для учащихся общеобразовательных организаций (базовый и углубленный уровни) / Л. А. Александрова; под ред. А. Г. Мордковича.- 2-е изд., стер. – М.:Мнемозина,2015.



Электронные образовательные ресурсы


п/п

Название электронного образовательного ресурса

Вид электронного образовательного ресурса

Издательство (для электронных образовательных ресурсов на твердых носителях)

Ресурсы сети Интернет

1

Для подготовки к ЕГЭ



http://www.ege.edu.ru

2

Контрольные измерительные материалы КИМ (ЕГЭ) по учебным предметам




http://www.fipi.ru/view/sections/92/docs/


3

Методические письма ФИПИ.




http://www.fipi.ru/view/sections/208/docs


4

Единая коллекция цифровых образовательных ресурсов



http://school-collection.edu.ru

5

Сайт Федерального института педагогических измерений



http://www.fipi.ru

6

Открытый класс. Сетевые образовательные сообщества.



http://www.openclass.ru

7

Решу ЕГЭ



http://reshuege.ru/

8

Сайт учителя математики Ларина



http://alexlarin.net/

9

Система СтатГрад Московского института открытого образования



http://ege 2013.mioo.ru

10

Новые возможности для усвоения математики. Математика 5-11 класс. Практикум.

CD-ROM

«Дрофа»


11

Практикум. Вероятность и статистика. 5-11 класс.

CD-ROM

«Дрофа»


12

Открытый банк заданий по математике



http://mathege.ru/or/ege/Main



РЕКОМЕНДАЦИИ ПО ОЦЕНКЕ ЗНАНИЙ И УМЕНИЙ УЧАЩИХСЯ ПО МАТЕМАТИКЕ

Опираясь на эти рекомендации, учитель оценивает знания и умения учащихся с учетом их индивидуальных особенностей.

1. Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.

2. Основными формами проверки знаний и умений учащихся по математике являются письменная контрольная работа и устный опрос.

При оценке письменных и устных ответов учитель в первую очередь учитывает показанные учащимися знания и умения. Оценка зависит также от наличия и характера погрешностей, допущенных учащимися.

3. Среди погрешностей выделяются ошибки и недочеты. Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.

К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, не считающихся в про грамме основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения; неаккуратная запись; небрежное выполнение чертежа.

Граница между ошибками и недочетами является в некоторой степени условной. При одних обстоятельствах допущенная учащимися погрешность может рассматриваться учителем как ошибка, в другое время и при других обстоятельствах — как недочет.

4. Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты я обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно за писано решение.

5. Оценка ответа учащегося при устном и письменном опросе проводится по пятибалльной системе, т. е. за ответ выставляется одна из отметок: 1 (плохо), 2 (неудовлетворительно), 3(удовлетворительно), 4 (хорошо), 5 (отлично).

6. Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельству ют о высоком математическом развитии учащегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им заданий.

Критерии ошибок:

К грубым ошибкам относятся ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять; незнание приемов решения задач, рассматриваемых в учебниках, а также вычислительные ошибки, если они не являются опиской;

К негрубым ошибкам относятся: потеря корня или сохранение в ответе постороннего корня; отбрасывание без объяснений одного из них и равнозначные им;

К недочетам относятся: нерациональное решение, описки, недостаточность или отсутствие пояснений, обоснований в решениях

Оценка устных ответов учащихся по математике

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотрен ном программой и учебником,

изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при от работке умений и навыков;

отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворяет в основ ном требованиям на оценку «5», но при этом имеет один из недо статков:

в изложении допущены небольшие пробелы, не исказившие ма тематическое содержание ответа;

допущены один – два недочета при освещении основного содержа ния ответа, исправленные по замечанию учителя;

допущены ошибка или более двух недочетов при освещении вто ростепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

Отметка «3» ставится в следующих случаях:

неполно или непоследовательно раскрыто содержание материа ла, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»);

имелись затруднения или допущены ошибки в определении понятий, использовании математической терминологии, чертежах, вы кладках, исправленные после нескольких наводящих вопросов учителя;

ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

не раскрыто основное содержание учебного материала;

обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.

Оценка письменных контрольных работ учащихся по математике

Отметка «5» ставится, если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробе лов и ошибок;

в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

Отметка «4» ставится, если:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущена одна ошибка или два-три недочета в выкладках, ри сунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

Отметка «3» ставится, если:

допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере

Отметка «1» ставится, если:

работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.


1 Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 26.08.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров441
Номер материала ДA-016865
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх