Инфоурок / Математика / Рабочие программы / Рабочая программа 6 класс

Рабочая программа 6 класс

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов


Пояснительная записка.

Рабочая программа линии УМК «Математика — Сферы» (6 классы) разработана на базе Федерального государственного стандарта общего образования, Требований к результатам освоения основной образовательной программы основного общего образования, Фундаментального ядра содержания образования, Примерной программы основного общего образования, а так же «Рабочие программы. Предметная линия учебников «Сферы». 5-6 классы; пособие для учителей общеобразовательных учреждений / Л.В. Кузнецова С.С. Минаева и др. —М.: Просвещение, 2013». В рабочей программе учтены идеи и положения концепции духовно-нравственного развития и воспитания личности гражданина России, Программы развития и формирования универсальных учебных действий, которые обеспечивают формирование российской гражданской идентичности, овладения ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития учащихся, и коммуникативных качеств личности.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы.

Приоритетными целями обучения математики в 6 классе являются:

  • продолжение формирования центральных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования школьников;

  • подведение учащихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, пониманию математики как части общей культуры человечества;

  • развитие интеллектуальных и творческих способностей учащихся, познавательной активности, критичности мышления, интереса к изучению математики;

  • формирование умения извлекать информацию, новое знание, работать с учебным математическим текстом.

Данные цели достигаются через интеграцию курса математики с междисциплинарными учебными программами – «Формирование универсальных учебных действий», «Формирование ИКТ- компетентности обучающихся», «Основы учебно-исследовательской и проектной деятельности» и «Основы смыслового чтения и работа с текстом»

Изучение учебного предмета «Математика» направлено на решение следующих задач:

  • формирование вычислительной культуры и практических навыков вычислений;

  • формирование универсальных учебных действий, ИКТ-компетентности, основ учебно-исследовательской и проектной деятельности, умений работы с текстом;

  • овладение формально-оперативным алгебраическим аппаратом и умением применять его к решению математических и нематематических задач; изучение свойств и графиков элементарных функций, использование функционально-графических представлений для описания и анализа реальных зависимостей;

  • ознакомление с основными способами представления и анализа статистических данных, со статистическими закономерностями в реальном мире, приобретение элементарных вероятностных представлений;

  • освоение основных фактов и методов планиметрии, формирование пространственных представлений;

  • интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценного функционирования в обществе;

  • развитие логического мышления и речевых умений: умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический);

  • формирование представлений об идеях и методах математики как научной теории, о месте математики в системе наук, о математике как форме описания и методе познания действительности;

  • развитие представлений о математике как части общечеловеческой культуры, воспитание понимания значимости математики для общественного прогресса.



Изучение математики должно обеспечить:

1)в направлении личностного развития:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей;

2) вметапредметномнаправлении:

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

  • развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач смежных дисциплин с использованием при необходимости справочных материалов, компьютера, пользоваться оценкой и прикидкой при практических расчетах;

3) впредметномнаправлении:

  • овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности;

  • понимание роли информационных процессов в современном мире;

  • развитие умений работать с учебным математическим текстом, точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить логические обоснования, доказательства математических утверждений;

  • формирование систематических знаний о плоских фигурах и их свойствах, представлений о пространственных телах;

  • формирование представлений о статистических закономерностях в реальном мире, о простейших вероятностных моделях;

  • развитие умений извлекать информацию, представленную в таблицах, на диаграммах, графиках и анализировать ее.


Место математики в учебном плане основной школы

В соответствии с учебным планом основного общего образования в курсе математики выделяются два этапа — 5-6 классы и 7—9 классы, у каждого из которых свои самостоятельные функции. В 5—6 классах изучается интегрированный предмет «Математика», в 7-9 классах — два предмета «Алгебра» и «Геометрия». Курс 5-6 классов, с одной стороны, является непосредственным продолжением курса математики начальной школы, систематизирует, обобщает и развивает полученные там знания, с другой стороны, позволяет учащимся адаптироваться к новому уровню изучения предмета, создает необходимую основу, на которой будут базироваться систематические курсы 7-9 классов. На изучение математики в основной школе отводится 5 часов в неделю в течение всех лет обучения. Таким образом, на курс «Математика» в 6 классах всего отводится 170 уроков.


Вклад математики в достижение целей основного общего образования

Математическое образование играет роль в практической и духовной жизни общества.

  • Практическая сторона связана с формированием способов деятельности

  • Духовная – с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения – от простейших, усваиваемых в непосредственном опыте до достаточно сложных, необходимых для развития научных и технологических идей. Каждому человеку в своей жизни приходится выполнять расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять алгоритмы и др.

В школе математика служит опорным предметом для изучения смежных дисциплин. Всё больше специальностей, где необходим высокий уровень образования, связанный с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.).

В процессе школьной математической деятельности происходит овладение такими мыслительными операциями как индукция, дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирование вскрывают механизм логических построений, вырабатывают умение формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умения действовать по заданному алгоритму и конструировать новые. В ходже решения задач – основной учебной деятельности на уроках математики – развиваются творческая и прикладная стороны мышления.

Обучение математике даёт возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, отличие математического метода от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

История развития математического знания даёт возможность пополнить запас историко-научных знаний школьников. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, входит в интеллектуальный багаж каждого культурного человека.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идей симметрии.

Ценностные ориентиры содержания учебного предмета

Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Организация учебного процесса

При организации учебного процесса необходимо обращать внимание на такую психологическую особенность возраста 5- 6-ти классников, как избирательность внимания. Дети легко откликаются на необычные, захватывающие уроки и внеклассные дела, но быстрая переключаемость внимания не даёт им возможности сосредоточиться долго на одном и том же деле. Однако если учитель будет создавать нестандартные ситуации, ребята будут заниматься с удовольствием и длительное время.

Дети в этом возрасте склонны к спорам и возражениям, особенностью их мышления является его критичность. У ребят появляется своё мнение, которое они стараются демонстрировать как можно чаще, заявляя о себе.

Этот возраст благоприятен для творческого развития. Учащимся нравится решать проблемные ситуации, находить сходства и различия, определять причину и следствие, самому решать проблему, участвовать в дискуссии, отстаивать и доказывать сваю правоту.

С учетом уровневой специфики 6 класса выстроено тематическое планирование: система учебных занятий (уроков), спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты), что представлено далее. Планируется в преподаваниипредметаиспользованиеследующихпедагогическихтехнологий:

  • Технологии личностноо риентированного обучения;

  • Технологии полного усвоения;

  • технологии обучения на основе решения задач;

  • технологии обучения на основе схематичных и знаковых моделей;

  • технологии проблемного обучения

  • здоровьесберегающие технологии.

  • активные и интерактивные методы обучения;

  • технология развития критического мышления через чтение и письмо;

  • метод проектов;

  • технология уровневой дифференциации;

  • информационно-коммуникационныетехнологии;

  • игровыетехнологии;

  • исследовательскаятехнологияобучения;

В течение года возможны коррективы рабочей программы, связанные с объективными причинами.


Реализация рабочей программы обеспечивает освоение общеучебныхумений и компетенций в рамках информационно-коммуникативной деятельности:

  • создание условий для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки, ясно, точно и грамотно выражать свои мысли в устной и письменной речи;

  • формирование умения использовать различные языки математики, свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства, интегрирования в личный опыт новой, в том числе самостоятельно полученной, информации;

  • создание условий для плодотворного участия в работе в группе; развития умения самостоятельно и мотивированно организовывать свою деятельность, использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

На уроках учащиеся могут более уверенно овладеть монологической и диалогической речью, умением вступать в речевое общение, участвовать в диалоге (понимать точку зрения собеседника, признавать право на иное мнение), приводить примеры, подбирать аргументы, перефразировать мысль (объяснять иными словами), формулировать выводы. Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации, включая энциклопедии, словари, интернет-ресурсы и другие базы данных, в соответствии с коммуникативной задачей, сферой и ситуацией общения осознанно выбирать выразительные средства языка и знаковые системы (текст, таблица, схема, аудиовизуальный ряд и др.).

Акцентированное внимание к продуктивным формам учебной деятельности предполагает актуализацию информационной компетентности учащихся: формирование простейших навыков работы с источниками, материалами.

Большую значимость образования сохраняет информационно-коммуникативная деятельность учащихся, в рамках которой развиваются умения и навыки поиска нужной информации по заданной теме в источниках различного типа, извлечения необходимой информации из источников, созданных в различных знаковых системах (текст, таблица, график, диаграмма, аудиовизуальный ряд и др.), перевода информации из одной знаковой системы в другую (из текста в таблицу, из аудиовизуального ряда в текст идр.), выбора знаковых систем адекватно познавательной и коммуникативной ситуации, отделения основной информации от второстепенной, критического оценивания достоверности полученной информации, передачи содержания информации адекватно поставленной цели (сжато, полно, выборочно). Учащиеся должны уметь развернуто обосновывать суждения, давать определения, приводить доказательства (в том числе от противного), объяснять изученные положения на самостоятельно подобранных конкретных примерах, владеть основными видами публичных выступлений (высказывания, монолог, дискуссия, полемика), следовать этическим нормам и правилам ведения диалога, диспута. Предполагается уверенное использование учащимися мультимедийных ресурсов и компьютерных технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.

Стандарт ориентирован на воспитание школьника-гражданина и патриота России, развитие духовно-нравственного мира школьника, его национального самосознания. Эти положения нашли отражение в содержании уроков. В процессе обучения должно быть сформировано умение формулировать свои мировоззренческие взгляды и на этой основе — воспитание гражданственности и патриотизма.

Рабочая программа предусматривает следующие варианты дидактико-технологического обеспечения учебного процесса:

наглядные пособия для курса математики,

модели геометрических тел,

таблицы,

чертёжные принадлежности и инструменты;

для информационно-компьютерной поддержки учебного процесса используются: компьютер, сканер, интерактивная доска, презентации, проекты учащихся и учителей;

программно-педагогические средства, а также рабочая программа, справочная литература, учебники, разноуровневые тесты, тексты самостоятельных и контрольных работ, задания для проектной деятельности.





Общая характеристика курса математики

в 6 классе

Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. В данной программе курс 6 класса представлен как арифметико-геометрический с включением элементов алгебры. Кроме того, к нему отнесено начало изучения вероятно-статистической линии, а также элементов раздела «Логика и множества», возможность чего предусмотрена Примерной программой по математике для 5-9 классов.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения математики и смежных предметов, способствует развитию логического мышления учащихся, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. При изучении арифметики формирование теоретических знаний сочетается с развитием вычислительной культуры, которая актуальна и при наличии вычислительной техники, в частности, с обучением простейшим приёмам прикидки и оценки результатов вычислений. Развитие понятия о числе связано с изучением рациональных чисел: натуральных чисел, обыкновенных и десятичных дробей, положительных и отрицательных чисел. Параллельно на доступном для учащихся данного возраста уровне в курсе представлена научная идея – расширение понятия числа.

В задачи изучения раздела «Геометрия» входит развитие геометрических представлений учащихся, образного мышления, пространственного воображения, изобразительных умений. Этот этап изучения геометрии осуществляется на наглядно-практическом уровне, при этом большая роль отводится опыту, эксперименту. Учащиеся знакомятся с геометрическими фигурами и базовыми конфигурациями, овладевают некоторыми приёмами построения, открывают их свойства, применяют эти свойства при решении задач конструктивного и вычислительного характера.

Изучение раздела «Алгебра» в основной школе предполагает, прежде всего, овладение формальным аппарата буквенного исчисления. Этот материал более высокого, нежели арифметика уровня абстракции. Его изучение решает целый ряд задач методологического, мировоззренческого, личностного характера, но и в то же время требует определённого уровня интеллектуального развития. Поэтому в курсе 6 класса представлены только начальные, базовые алгебраические понятия, и они играют роль своего рода мостика между арифметикой и алгеброй, назначение которого можно образно описать так: от чисел к буквам.

Изучение раздела «Вероятность и статистика» вносит существенный вклад в осознание учащимися прикладного и практического значения математики. В задачи его изучения входит формирование умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятный характер многих реальных зависимостей, оценивать вероятность наступления события. Для курса 6 класса выделены следующие вопросы: формирование умений работать с информацией, представленной в форме таблиц и диаграмм, первоначальных знаний о приёмах сбора представления информации, первое знакомство с комбинаторикой, решение комбинаторных задач.

Введение в курс элементарных теоретико-множественных понятий и соответствующей символики способствует обогащению математического языка школьников, формированию умения точно и сжато формулировать математические предложения, помогает обобщению и систематизации знаний.


















Содержание курса математики 6 класса

п/п

Наименование разделов

тем

Всего

часов

Количество

к/р (к/д)

соч.

изл.

с/р

п/р

Проектная деятельность


Повторениекурса

Математики5класс

5

1






1

Дроби и проценты

20

1



1



2

Прямыенаплоскостиив

пространстве

5

1




1


3

Десятичные дроби

9

1






4

Действия с десятичными

дробями

29

1



2



5

Окружность

7




1



6

Отношения и проценты

17

1






7

Выражения,формулы,

уравнения

17

1



1



8

Симметрия

8





1+1

1

9

Целые числа

13

1






10

Рациональные числа

17

1



1



11

Многоугольники и

многогранники

8





1

1

12

Множества.Комбинаторика

8




1




Повторение

7

1(ит)







Итого

170

10



7

4

2





  1. Дроби и проценты (20 ч)

Повторение: понятие дроби, основное свойство дроби, сравнение и упорядочивание дробей, правила выполнения арифметических действий с дробями. Преобразование выражений с помощью основного свойства дроби. Решение основных задач на дроби.

Понятие процента. Нахождение процента от величины.

Столбчатые диаграммы: чтение и построение. Круговые диаграммы.

Основные цели - систематизировать знания об обыкновенных дробях, закрепить и развить навыки действий с обыкновенными дробями, познакомить учащихся с понятием процента, а также развить умение работать с диаграммами.



  1. Прямые на плоскости и в пространстве (5 ч)

Пересекающиеся прямые. Вертикальные углы, их свойство. Параллельные прямые. Построение параллельных и перпендикулярных прямых. Примеры параллельных и перпендикулярных прямых в окружающем мире.

Расстояние между двумя точками, от точки до прямой, между двумя параллельными прямыми, от точки до плоскости.

Основные цели - создать у учащихся зрительные образы всех основных конфигураций, связанных с взаимным расположением двух прямых на плоскости и в пространстве, сформировать навыки построения параллельных и перпендикулярных прямых, научить находить расстояние от точки до прямой, между двумя параллельными прямыми.



  1. Десятичные дроби (9 ч)

Десятичная запись дробей. Представление обыкновенной дроби в виде десятичной и десятичной в виде обыкновенной; критерий обратимости обыкновенной дроби в десятичную. Изображение десятичных дробей точками на координатной прямой. Сравнение десятичных дробей. Десятичные дроби и метрическая система мер.

Основные цели - ввести понятие десятичной дроби, выработать навыки чтения записи десятичных дробей, их сравнения; сформировать умения переходить от десятичной дроби к обыкновенной, выполнять обратные преобразования.



  1. Действия с десятичными дробями (29 ч)

Сложение и вычитание десятичных дробей. Умножение и деление десятичной дроби на 10. Умножение и деление десятичных дробей. Округление десятичных дробей. Приближенное частное. Выполнение действий с обыкновенными и десятичными дробями.

Основная цель - сформировать навыки действий с десятичными дробями, а также навыки округления десятичных дробей.





  1. Окружность (7 ч)

Взаимное расположение прямой и окружности, двух окружностей. Касательная к окружности и ее построение. Построение треугольника по трем сторонам. Неравенство треугольника. Круглые тела.

Основные цели - создать у учащихся зрительные образы основных конфигураций, связанных с взаимным расположением прямой и окружности, двух окружностей на плоскости; научить строить треугольник по трем сторонам, сформировать представление о круглых телах (шар, конус, цилиндр).



  1. Отношения и проценты (17 ч)

Отношение чисел и величин. Масштаб. Деление в данном отношении.

Выражение процентов десятичными дробями; решение задач на проценты. Выражение отношения величин в процентах.

Основные цели - познакомить с понятием "отношение" и сформировать навыки использования соответствующей терминологии; развить навыки вычисления с процентами.



  1. Выражения, формулы, уравнения (17 ч)

Применение букв для записи математических выражений и предложений. Буквенные выражения и числовые подстановки. Формулы. Формулы периметра треугольника, периметра и площади прямоугольника, объема параллелепипеда. Формулы длины окружности и площади круга.

Уравнение. Корень уравнения. Составление уравнения по условию текстовой задачи.

Основные цели - сформировать первоначальные представления о языке математики, описать с помощью формул некоторые известные учащимся зависимости, познакомить с формулами длины окружности и площади круга.



  1. Симметрия (8 ч)

Осевая симметрия. Ось симметрии фигуры. Центральная симметрия. Построение фигуры, симметричной данной относительно прямой и относительно точки. Симметрия в окружающем мире.

Основные цели - познакомить учащихся с основными видами симметрии на плоскости; научить строить фигуру, симметричную данной фигуре относительно прямой, а также точку, симметричную данной относительно точки; дать представление о симметрии в окружающем мире.



  1. Целые числа (13 ч)

Числа, противоположные натуральным. "Ряд" целых чисел. Изображение целых чисел точками на координатной прямой. Сравнение целых чисел. Сложение и вычитание целых чисел; выполнимость операции вычитания. Умножение и деление целых чисел; правила знаков.

Основные цели - мотивировать введение отрицательных чисел; сформировать умение сравнивать целые числа с опорой на координатную прямую, а также выполнять действия с целыми числами.



  1. Рациональные числа (17 ч)

Отрицательные дробные числа. Понятие рационального числа. Изображение чисел точками на координатной прямой. Противоположные числа. Модуль числа, геометрическая интерпретация модуля. Сравнение рациональных чисел. Арифметические действия с рациональными числами, свойства арифметических действий.

Примеры использования координат в реальной практике. Прямоугольная система координат на плоскости. Координаты точки на плоскости, абсцисса и ордината. Построение точек и фигур на координатной плоскости.

Основные цели - выработать навыки действий с положительными и отрицательными числами; сформировать представление о декартовой системе координат на плоскости.



  1. Многоугольники и многогранники (8 ч)

Сумма углов треугольника. Параллелограмм и его свойства, построение параллелограмма. Правильные многоугольники. Площади, равновеликие и равносоставленные фигуры. Призма.

Основные цели - развить знания о многоугольниках; развить представление о площадях, познакомить со свойством аддитивности площади, с идеей перекраивания фигуры с целью определения ее площади; сформировать представление о призме; обобщить приобретенные геометрические знания и умения и научить применять их при изучении новых фигур и их свойств.



  1. Множества. Комбинаторика. (8 ч)

Понятие множества. Примеры конечных и бесконечных множеств. Подмножества. Основные числовые множества и соотношения между ними. Разбиение множества. Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью кругов Эйлера.

Решение комбинаторных задач перебором всех возможных вариантов.

Случайное событие. Достоверное и невозможное события. Сравнение шансов событий.

Основные цели - познакомить с простейшими теоретико-множественными понятиями, а также сформировать первоначальные навыки использования теоретико-множественного языка; развить навыки решения комбинаторных задач путем перебора всех возможных вариантов.

















ХАРАКТЕРИСТИКА ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ПО МАТЕМАТИКЕ В6КЛАССЕ


Разделкурса

Содержание учебного раздела

Планируемые результаты освоения учебного предмета

Предметныезнания

Предметные умения

Универсальные учебные действия

1Дроби и

проценты

Основное свойство дроби.

Сравнение,правилавыполненияарифметическихдействий,основноесвойстводроби.Решениеосновныхзадачнадроби.Понятиепроцента.Нахождениепроцентаотвеличинытолбчатыеикруговыедиаграммы.

Систематизация знаний

Об обыкновенных дробях. Знакомство с понятием процент.

Развитие навыков действий с

Обыкновенными дробями. Развитие умения работать с диаграммами.

- личностные: умениея сно,точно,

Грамотно излагать свои мысли в устнойи письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию,приводить примеры и контрпримеры;критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации; креативность мышления,

Инициатива, находчивость, активность при решении математических задач; умение контролировать процесс и результат учебной математической деятельности; способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;


- познавательные: самостоятельно выделять и формулировать познавательную цель;

2) использовать общие приёмы решения задач;

3) применять правила и пользоваться инструкциями освоенными закономерностями;

4)осуществлять смысловое чтение;

5оздавать, применять и преобразовывать знаково-символические средства, модели схемы для решения задач;

2 Прямые на

Плоскости и в пространстве.

Пересекающиеся прямые.

Построение перпендикулярных и параллельных прямых. Вертикальные углы. Расстояния между двумя точками. От точки до прямой, между двумя параллельными прямыми, от точки до плоскости.

Создание у учащихся

Зрительных образов всех конфигураций, связанных со взаимным расположением двух прямых на плоскости и в пространстве.

Формирование навыков

Построения параллельных и перпендикулярных прямых. Умение находить расстояние от точки до прямой, между двумя параллельными прямыми.

3 Десятичныедроби

Представление обыкновенной дроби в виде десятичной и

наоборот; критерий обратимости обыкновенной дроби в дес.дробь. Сравнение дес.дробей. Десятичные дроби и метрическая система мер.

Введение понятия дес.дроби.

Выработать навыки чтения и записи дес.дробей, их

сравнения. Сформировать умения переходить от обыкновенной дроби к дес.и наоборот.

4 Действия с

десятичнымидробями

Сложение и вычитание,

Умножение и деление. дес.дробей, умножение и деление дес.дроби на степень10. Округлениедес.дробей.

Систематизация правил

Действий с десятичными дробями.

Сформировать навыки

Действий с дес.дробями; навыки округления дес.дробей.


5 Окружность

Взаимное расположение

Прямой и окружности, двух окружностей. Касательная к окружности и ее построение. Построение треугольника по трем сторонам. Круглые тела.

Создание у учащихся

Зрительных образов основных конфигураций, связанных с взаимным расположением прямой и окружности, двух окружностей на

плоскости

Сформировать умения строить

Треугольник по трем сторонам. Сформировать представления о круглых телах.

6)самостоятельно ставить цели, выбирать

И создавать алгоритмы для решения учебных математических проблем;

7)понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;

8)понимать и использовать

Математические средства наглядностиисунки,чертежи,схемыидр.)для иллюстрации, интерпретации, аргументации;

9)находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной избыточной, точной и вероятностной информации;

- коммуникативные: организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;

2)взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

3)прогнозировать возникновение конфликтов при наличии разных точек зрения;

4)разрешать конфликты на основе учёта интересов и позиций всех участников;

5)координировать и принимать различные позиции во взаимодействии;

6ргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.

- регулятивные:формулироватьи

6 Отношения и

проценты

Отношения чисел и величин.

Масштаб. Деление в данном отношении. Выражение процентов дес.дробями, решение задач на проценты.

Введение понятия

«отношение».

Сформировать навыки

Использования терминологии; развивать навыки вычисления с процентами.

7 Выражения,

Формулы и уравнения

Буквенные выражения и

Числовые подстановки. Формулы периметра треугольника,прямоугольника,площади,объемапрямоугольника,Формулы длины окружности и площадь круга. Уравнение и его корень. Составление уравнения по условию задачи.

Первоначальные

Представления о языке математики, знакомство с формуламидлиныокружностииплощадикруга.

Сформироватьнавыки

Описыватьспомощьюформулнекоторыеизвестныеучащимсязависимости.

имметрия

Осевая и центральная

симметрия. Построение фигур, симметричных относительно прямой и точки. Симметрия в окружающем мире.

Знакомство с основными

Видами симметрии на плоскости. Представление осимметрии в окружающем мире.

Сформировать навыки

Построения симметричныхфигур.

9Целыечисла

Ряд целых чисел.Координатная

прямаяравнениецелыхчисел.Сложениеивычитание,умножениеиделениечисел.Правилознаков.

Мотивировка введения

Отрицательныхчисел.

Сформироватьумение

сравниватьцелыечисласопоройнакоординатнуюпрямуюыполнятьдействиясцелымичислами.

10

Рациональные

Понятиерациональногочисла.

Модульчисла.Арифметические

Знакомство с

геометрической

Выработатьнавыкидействий

Срациональнымичислами.


числа

Действия с рациональными

числами.

Интерпретациеймодуля.

Свойстваарифметическихдействий.

Сформировать умения

Работать с декартовой системойкоординат.

Удерживать учебную задачу;

2)выбирать действия в соответствии с поставленной задачей и условиями её реализации;

3)планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и

Познавательных задач;

4)предвидеть уровень усвоения знаний,

Его временных характеристик;

5оставлять план и последовательность действий;

6)осуществлять контроль по образцу и вносить необходимые коррективы;

7декватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

8личать способ действия и его результат с заданным эталоном с целью

Обнаружения отклонений и отличий от эталона;

11многоугольники

И многогранники

Сумма углов треугольника. Параллелограмм. Правильные

многоугольники. Площади и равновеликие фигуры. Призма.

Развиватьзнанияомногоугольниках,

Представленияоплощадях

Обобщить приобретенные геометрические знания и

Умения и научить применять их при изучении новых фигур и их свойств

12Множества.

Комбинаторика.

Понятие множества. Основные

Числовые множества и соотношения между ними. Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью кругов Эйлера. Решение комбинаторных задач перебором всех возможных вариантов.

Познакомить с

Простейшими теоретико-множественными понятиями.

Сформировать

Первоначальные навыки использования теоретико-множественного языка. Развить навыки решения комбинаторных задач путем перебора всех возможных вариантов.


















УТВЕРЖДАЮ: СОГЛАСОВАНО: РАССМОТРЕНО

Директор СОШ № Зам. директора по УВР на заседании м/о

Протокол № ___ от

«____» ___________ г. « ____» ____________ г. «____» ___________ г.



КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

уроков математики 2015/2016 учебного года

Классы: 6

Учитель: Зуева О.А.

Количество часов в неделю - 5; на год - 170;

Плановых контрольных уроков 10;


Планирование составлено на основе приказа Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897 «Федеральный государственный образовательный стандарт основного общего образования.


Учебник Математика. Арифметика. Геометрия. 6 класс : учебник для учащихся общеобразовательных учреждений / Е.А. Бунимович, Л.В. Кузнецова ; Рос.акад. наук, Рос. акад. образования. — М.: Просвещение, 2010.


Дополнительная литература Математика. Арифметика. Геометрия. Задачник 6 класс : пособие для учащихся общеобразовательных учреждений / Е.А. Бунимович, Л.В. Кузнецова ; Рос.акад. наук, Рос. акад. образования. — М.: Просвещение, 2014..; Математика. Арифметика. Геометрия. Тетрадь-тренажер. 6 класс : пособие для учащихся общеобразовательных учреждений / Е.А. Бунимович, Л.В. Кузнецова и др.; Рос.акад. наук, Рос. акад. образования. — М.: Просвещение, 2014. .;Математика. Арифметика. Геометрия. Тетрадь-экзаменатор. 6 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2014 г.; Математика. Арифметика. Геометрия. Электронное приложение к учебнику, 6 класс/ Е.А. Бунимович, Л.В. Кузнецова ; Рос.акад. наук, Рос. акад. образования. — М.: Просвещение, 2014.



Тематическое планирование составила

_______________________________________________

подпись Расшифровка подписи



урока

Тема урока

Обязательный минимум основных общеобразовательных программ

Основное содержание потемам

Цели и задачи

Ресурсы

Дата







План

факт

  1. Повторение 5 часов

1

1.1.Повторение.

Измерение величин





01.09.2015

01.09.2015

2

1.2.Повторение.

Делимость натуральных чисел





02.09.2015

02.09.2015

3

1.3.Повторение.

Обыкновенные дроби





03.09.2015

03.09.2015

4

1.4.Повторение. Решение

Арифметических задач





04.09.2015

04.09.2015

5

1.5.Повторение





07.09.2015

07.09.2015

2.Дроби и проценты 20 часов

6

2.1 Что мы знаем о

дробях

Обыкновенныедроби. Основное свойство дроби. Сравнение обыкновенных дробей

Дробь, числитель и знаменатель дроби. Основное свойство дроби. Приведение дроби к новому знаменателю. Сокращение дробей.

Моделировать в графической и предметной форме обыкновенные дроби (в том числе с помощью компьютера). Преобразовывать,сравниватьи упорядочиватьобыкновенные дроби. Соотноситьдробныечислас точками координатнойпрямой. Проводить несложные исследования, связанные с

Ресурсы уроков. Учебник: теория, с. 8, 9, упр. № 1–14, исследование

15; Тетрадь-тренажёр

08.09.2015

08.09.2015

7

2.2 Что мы знаем о

дробях

09.09.2015

09.09.2015

8

2.3 Вычисления с

дробями

Арифметические действия собыкновенными дробями

Правила действий с дробями: сложение, вычитание, умножение, деление дробей. Задачи на совместную работу.

«Многоэтажные» дроби.


Выполнять вычисления с дробями. Использовать дробную черту как знак деления при записи нового вида дробного выражения(«многоэтаж-ная» дробь).Применять различные способы вычисления значений таких выражений, выполнять преобразование «многоэтажных» дробей. Решать задачи на совместную работу. Анализировать числовые закономерности, связанные с арифметическими действиями

Учебник: теория, с. 12,13,упр.№16–33;Тетрадь-тре-нажёр: № 1–3; 39; исследование

40, 41; Задачник: №16–67

10.09.2015

10.09.2015

9

2.4 Вычисления с

дробями

11.09.2015

11.09.2015

10

2.5 Вычисления с

дробями

14.09.2015

14.09.2015

11

2.6 Вычисления с

дробями

15.09.2015

15.09.2015

12

2.7 Вычисления с

дробями

Нахождение части от целого и целого по ег очасти

Нахождениечастиот числа.Нахождение числа по его части. Какую часть одночисло составляет отдругого.


Решать основные задачи на дроби, применять разные способы нахождения части числа и числа по его части. Решать текстовые задачи на дроби, в том числе задачи с практическим контекстом; анализировать и осмысливать текст задачи; моделировать условие с помощью схем и рисунков; строить логическую цепочку рассуждений;

. Учебник: теория, с. 16,17,упр.№34–48; Тетрадь-тренажёр: №4;Задачник: №68–101

16.09.2015

16.09.2015

13

2.8 Основные задачи на

дроби

17.09.2015

17.09.2015

14

2.9Основные задачи на

дроби

18.09.2015

18.09.2015

15

2.10 Основные задачи на

дроби

21.09.2015

21.09.2015

16

2.11Основные задачи на дроби

22.09.2015

22.09.2015

17

2.12 Что такое процент

Проценты; нахождение процентов от величины

Понятие процента. Решение задач на нахождение процента от величины, наувеличение величины нанесколько процентов.

Объяснять, что такое процент, использовать и понимать стандартные обороты речи со словом «процент». Выражать проценты в дробях и дробив процентах. Моделировать понятие процента в графической форме. Решать задачи на нахождение нескольких процентов величины ,на увеличение(уменьшение) величины на несколько процентов. Применять понятие процента в практических ситуациях. Решать некоторые классические задачи, связанные с понятием процента: анализировать текст задачи

Учебник: теория, с. 20,21,упр.№55–68;Тетрадь-тренажёр: № 14–17, 34–38, 42; Задач- ник: №76–139

23.09.2015

23.09.2015

18

2.13 Что такое процент

24.09.2015

24.09.2015

19

2.14 Что такое процент

25.09.2015

25.09.2015

20

2.15 Что такое процент

28.09.2015

28.09.2015

21

2.16 Что такое процент

29.09.2015

29.09.2015

22

2.17 Столбчатые и

Круговые диаграммы

Представление данных в видетаблиц, диаграмм

Особенности представления данных на столбчатых и круговых диаграммах. Чтение диаграмм. Построение диаграмм.


Объяснять, в каких случаях для представления информации используются столбчатые диаграммы, и в каких—круговые. Извлекать и интерпретировать информацию из готовых диаграмм, выполнять несложные вычисления по данным , представленным на диаграмме. Строить в несложных случаях столбчатые и круговые диаграммы по данным, представ ленным в табличной форме.

Учебник: теория, с. 24, 25, упр. № 69–74, исследование

— № 75; Тетрадь-тренажёр: № 18–21;

43

30.09.2015

30.09.2015

23

2.18 Столбчатые и

Круговые диаграммы

01.10.2015


24

2.19 Подготовка к к/р



Выполнять вычисления с дробями. Преобразовывать, сравнивать и упорядочивать обыкновенные дроби. Соотносить дробные числа с точками координатной прямой. Решать текстовые задачи на дроби и проценты. Исследовать числовые закономерности

Учебник:«Подведём итоги»,с. 28;Тетрадь-тренажёр: «Выполняем тест»,с. 22;Тетрадь-экзаменатор: Проверочные работы № 1, № 2, с. 4–9;

02.10.2015


25

2.20 Контрольная

Работа №1 по теме:

«Дроби и проценты»



05.10.2015


3 Прямые на плоскости и в пространстве (5ч)

26

3.1Пересекающиеся прямые

Взаимное расположение двух прямых. Пересекающиеся прямые. Перпендикулярные прямые. Вертикальные углы

Вертикальные углы. Перпендикулярные прямые. Смежные углы.


Распознавать случаи взаимного расположения двух прямых. Распознавать вертикальные и смежные углы. Находить углы, образованные двумя пересекающимися прямыми. Изображать две пересекающиеся прямые, строить прямую, перпендикулярную данной

Учебник: теория, с.30,31,упр.№76–84, исследование

—№85; Тетрадь-тренажёр: №44–46,


06.10.2015


27

3.2Параллельные

прямые

07.10.2015


28

3.3 Параллельные

прямые, пересекающиеся прямые

Взаимное расположение двух прямых. Параллельные прямые

Параллельность.

Прямые в пространстве.


Распознавать случаи взаимного расположения двух прямых на плоскости и в пространстве, распознавать в многоугольниках параллельные стороны. Изображать две параллельные прямые

Учебник: теория, с. 34,35,упр.№86–89,№91–98,ис-следование— № 90; №47–49, 54–57, 62

08.10.2015


29

3.4 Расстояние.

Подготовка к к/р



Распознавать случаи взаимного расположения двух прямых, распознавать в многоугольниках параллельные и перпендикулярные стороны. Изображать две пересекающиеся прямые, строить прямую, перпендикулярную данной, параллельную данной. Измерятьрасстояниемежду двумяточками,от точкидопрямой, между двумя

Ресурсы урока. Учебник:«Подведём итоги»,с. 42;Тетрадь-тренажёр: «Выполняем тест»,с. 32;Тетрадь-экзаменатор: Проверочные работы №1,№2,с.90–92

09.10.2015


30

3.5 Контрольная

работа

2 по темеПрямые на плоскости и в пространстве»

12.10.2015



31

4.1Какие дроби

Называют десятичными

Десятичныедроби. Представление десятичной дроби в виде обыкновенной.

Десятичная запись дробей. Переход от десятичной дроби кобыкновенной инаоборот.

Записыватьи читатьдесятичные дроби. Представлять десятичную дробь в виде суммы разрядных слагаемых. Моделироватьдесятичные дроби рисунками

Учебник: теория с. 44–47,упр.№112–127;Тетрадь-тре-нажёр:№66–81;Задачник: №140–170

13.10.2015


32

4.2Какие дроби

Называют десятичными

14.10.2015


33

4.3Какие дроби

Называют десятичными

15.10.2015


34

4.4 Перевод

Обыкновенной дроби в десятичную

Представление обыкновеннойдробив видедесятичной

Признак обратимости обыкновенной дроби в десятичную. Десятичные представления некоторых обыкновенных дробей. Выражение величин дробями.

Формулировать признак обратимости обыкновенной дроби в десятичную, применять его для распознавания дробей, для которых возможна (или невозможна) десятичная запись. Представлятьобыкновенные дроби в виде десятичных


16.10.2015


35

4.5 Перевод

Обыкновенной дроби в десятичную

19.10.2015


36

4.6 Сравнение

Десятичных дробей

Сравнение десятичных дробей

Равные десятичные дроби. Сравнение и упорядочиваниедесятичныхдробей. Сравнение обыкновенной дроби и десятичной.


Распознаватьравные десятичные дроби. Объяснять на примерах приём сравнения десятичных дробей. Сравниватьи упорядочивать


20.10.2015


37

4.равнение

Десятичных дробей


21.10.2015


38

4.8Подготовка к к/р



Записыватьи читатьдесятичные дроби. Изображать десятичные дроби точками на координатной прямой. Представлять обыкновенные дроби в виде десятичных дробей и десятичные в виде обыкновенных. Сравнивать и упорядочивать десятичные дроби. Использовать эквивалентные представления дробных чисел при их сравнении ,при вычислениях .Выражать одни единицы измерения величины в других единицах

Учебник:«Подведём итоги»,с. 58;Тетрадь-тренажёр: «Выполняем тест»,с. 44;Тетрадь-экзаменатор: Проверочные работы №1,№2, с.16–21




39

4.9 Контрольная работа

3 по теме:

«Десятичные дроби»



22.10.2015


5 Действия с десятичными дробями(29ч)

40

5.1 Сложение и

Вычитание десятичных дробей

Арифметические действия с десятичнымидробями. Решение текстовыхзадач арифметическим способом

Сложениедесятичныхдробей. Вычитание десятичныхдробей.Действияс обыкновеннымии десятичнымидробями. Решение задач.

Конструировать алгоритмы сложения и вычитания десятичных дробей; иллюстрировать их примерами. Вычислять суммы и разности десятичных дробей которых являются обыкновенная дробь и десятичная ,обсуждая при этом, какая форма представления чисел возможна и целесообразна. Выполнять оценку и прикидку суммы десятичных дробей.

Учебник: теория с. 60,61,упр.№161–179;Тетрадь-тренажёр:№ 95, 101–104,122,исследование № 120, 121; Задачник:

201–220, 223–231, исследование

221.

23.10.2015


41

5.2 Сложение и

Вычитание десятичных дробей

26.10.2015


42

5.3 Сложение и

Вычитание десятичных дробей

27.10.2015


43

5.4 Сложение и

Вычитание десятичных дробей

28.10.2015


44

5.5 Сложение и

Вычитание десятичных дробей

29.10.2015


45

5.6 Умножение и деление

Десятичной дроби на

10,100,1000

Арифметические действия сдесятичными дробями

Умножение десятичной дроби на единицу с нулями. Деление десятичной дроби на единицу с нулями. Переход от одних единиц измерения к другим.


Исследовать закономерность в изменении и положения запятой в десятичной дроби приумножении и делении еёна10,100,00т.д. Формулировать правила умножения и деления десятичной дроби на10,100, 1000 и т.д.Применять умножение и деление десятичной дроби на степень числа


Учебник: теория с.64,65,упр.№ 180–197;Тетрадь-тре-нажёр:№ 94,96,105,106,116;Задач- ник:№232–255

30.10.2015


46

5.7Умножение и деление

Десятичной дроби на

10,100,1000

09.11.2015


47

5.8 Умножение и деление

Десятичной дроби на

10,100,1000

10.11.2015


48

5.9 Умножение

Десятичных дробей

Арифметические действия с десятичными дробями. Решение текстовых задач арифметическим способом

Умножение десятичной дробина десятичную. Умножение десятичной дроби на натуральное число. Возведение десятичной дроби в квадрат и в куб, умножение десятичной дроби

Конструировать алгоритмы умножения десятичной дроби на десятичную дробь, на натуральное число, иллюстрировать примерами соответствующие правила. Вычислять произведение десятичных дробей, дроби и обыкновенной, выбирая подходящую форму записи дробных чисел. Вычислять квадрат и куб десятичной дроби. Вычислять значения числовых выражений, содержащих действия сложения, вычитания и умножения десятичных дробей.

Учебник: теория с. 68,69,упр. № 198–217;Тетрадь-тренажёр: №93,97,107–109, 110,111,

123; Задачник: 256–296

11.11.2015


49

5.10 Умножение

Десятичных дробей

12.11.2015


50

5.11 Умножение

Десятичных дробей

13.11.2015


51

5.12 Умножение

Десятичных дробей

16.11.2015


52

5.13 Умножение

Десятичных дробей

17.11.2015


53

5.14 Умножение

Десятичных дробей

18.11.2015


54

5.15 Деление десятичных

дробей

Арифметические действия с десятичными дробями. Решение текстовых задач арифметическим способом

Случай, когда частное выражается десятичной дробью (деление десятичной дроби на натуральное число, на деся тичную дробь). Вычисление частного десятичных дробей в общем случае. Разные действия с десятичными дробями. Решение задач надвижение.


Обсуждать принципиальное отличие действия деления от других действийс десятичнымидробями. Осваивать алгоритмы вычислений в случаях, когда частное выражается десятичной дробью. Сопоставлять различные способы представления обыкновенной дроби в виде десятичной. Вычислять частное от деления на десятичную дробь в общем случае. Решать текстовые задачи

Учебник: теория с. 72–75,упр.№218–257;Тетрадь-тренажёр: № 112–115,

19.11.2015


55

5.16 Деление десятичных

дробей

20.11.2015


56

5.17 Деление десятичных

дробей

23.11.2015


57

5.18 Деление десятичных

дробей

24.11.2015


58

5.19 Деление десятичных

дробей

25.11.2015


59

5.20 Деление десятичных

дробей

26.11.2015


60

5.21 Деление десятичных

дробей

27.11.2015


61

5.22 Деление десятичных

дробей

30.11.2015


62

5.23 Округление

Десятичных дробей

Округление натуральных чисел и десятичных дробей. Прикидка и оценка результата вычислений

Что значит округлить десятичную дробь. Правилоокруглениядесятичных дробей. Приближённое частное.


Округлять десятичные дроби «по смыслу»,выбирая лучшее из приближений с недостатком и с избытком. Формулировать правило округления десятичных дробей, применять его на практике. Объяснять, чем отличается округление десятичных дробей от округления натуральных чисел. Вычислять приближённые частные, выраженные десятичными дробями, в том числе, при решении задач практического характера.

Учебник: теория с.80,

81,упр.№ 258–268,270–272,

01.12.2015


63

5.24 Округление

Десятичных дробей

02.12.2015


64

5.25 Округление

Десятичных дробей

03.12.2015


65

5.26 Округление

Десятичных дробей

04.12.2015


66

5.27 Все действия с

Десятичными дробями



Формулировать правила действий с десятичными дробями. Вычислять значения числовых выражений, содержащих дроби; применять свойств арифметических действий для рационализации вычислений. Исследовать числовые закономерности

Учебник:«Подведём итоги»,с. 84;Тетрадь-тренажёр: «,с. 56,57;Тетрадь-экзаменатор:Проверочные работы№1,№2, с.22–27;

07.12.2015


67

5.28 Подготовка к к/р



08.12.2015


68

5.29 Контрольная

Работа 4 по теме:

«Действия с десятичными дробями»



09.12.2015


6 Окружность ( 7ч)

69

6.1 Прямая и окружность

Взаимное расположение прямой и окружности. Касательная к окружности

Взаимное расположение прямой и окружности. Построение

Распознавать различные случаи взаимного расположения прямой и окружности, изображать их с помощью чертёжных инструментов.

285;Тетрадь-тренажер: №126,130,

131,исследование —№128,136

10.12.2015


70

6.2Две окружности на плоскости

Взаимное расположение двух окружностей.

Две окружности. Построение точки, равноудаленной отконцов отрезка.

Распознавать различные случаи взаимного расположения двух окружностей, изображать их с помощью чертежных инструментов и от руки. Строить точку, равноудалённую от концов отрезка. Исследовать свойства взаимного расположения прямой и окружности, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование.

теория, с. 90, 91, упр. № 286–296, исследование — № 297; Тетрадь-тренажёр:

127,129,132,135,137–140

11.12.2015


71

6.3Две окружности на плоскости

14.12.2015


72

6.4 Построение

треугольника

Изображение геометрических фигур. Построение треугольника по трём сторонам. Неравенство треугольника

Построение треугольника по трем сторонам. Неравенство треугольника.


Распознавать различные случаи взаимного расположения прямой и окружности, двух окружностей, изображать их с помощью чертёжных инструментов и от руки. Строить треугольник по трем сторонам, описывать построение.

Учебник: теория, с. 94,95,упр.№298–305,307–309, исследование— № 306;Тетрадь-тре-нажёр:№ 133,134,141,142,исследо- вание— №143

15.12.2015


73

6.5 Построение треугольника

16.12.2015


74

6.6 Круглые тела

Наглядные представления о пространственных фигурах. Шар,сфера,конус, цилиндр. Изображение пространственных фигур

Цилиндр, конус, шар. Сечения.


Распознавать цилиндр,конус, шар, изображать их от руки,моделировать, используя бумагу, пластилин, проволоку и др.


17.12.2015


75

6.7Проверочная работа По теме:

«Окружность»




Тетрадь-экзамена-тор: Проверочные работы № 1, № 2, с. 28–31;

18.12.2015


7 Отношения и проценты (17ч)

76

7.1 Что такое отношение

Отношение. Решение текстовых задач арифметическим способом

Отношение двух чисел. Деление в

данномотношении.Решениезадач на деление вданном отношении.


Объяснять, что показывает отношение двух чисел, использовать и понимать стандартные обороты речи со словом«отношение».Состав