Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Физика / Рабочие программы / Рабочая программа 10-11 класс 2015 год

Рабочая программа 10-11 класс 2015 год


  • Физика

Поделитесь материалом с коллегами:

Пояснительная записка

Рабочая программа для 10-11 классов составлена в соответствии с утвержденным в 2004 г. федеральным компонентом государственного стандарта среднего общего образования по физике, авторской программой В.С. Данюшенкова, О.В. Коршуновой, опубликованной в сборнике «Программы общеобразовательных учрежедений.Физика.10-11 классы. 2-е издание. Москва. Просвещение.2009 г. Авторы: П.Г. Саенко, В.С.Данюшенков, О.В.Коршунова, Н.В.Шаронова, Е.П.Левитан, О.Ф.Кабардин, В.А.Орлов.

Изучение физики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • освоение знаний о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;

  • овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний;

  • развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации, в том числе средств современных информационных технологий; формирование умений оценивать достоверность естественнонаучной информации;

  • воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;

  • использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни.

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения.

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире. Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления.

Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Изучение курса физики в 10-11 классах построено основе физических теорий следующим образом: механика, молекулярная физика, электродинамика, квантовая физика и элементы астрофизики.

При изучении классической механики большое внимание уделяется принципу относительности Галилея, его развитию в работах А. Эйнштейна, решения прямой и обратной задач механики, использования всех трех законов сохранения в механике: импульса, момента импульса и энергии;

При изучении молекулярном физики учащиеся получают представления о различии между динамическими и статистическими закономерностями, понятиях вероятности события и вероятности состояния, о флуктуации, распределении как способе задания состояния системы;

При изучении электродинамики ядром становятся качественные формулировки уравнения Максвелла -Лоренца, рассматривается относительность электрического и магнитного полей;

При изучении квантовой теории особое внимание: обращается на экспериментальное доказательство существования фотонов: фотоэффект, рассматриваются идеи, квантования, корпускулярно-волновой дуализм.


Место предмета в учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 136 часов для обязательного изучения физики в 10-11 классах. В том числе в 10 и 11 классах по 68 учебных часов из расчета 2 учебных часа в неделю.


Содержание учебного предмета

(курсивом указаны темы профильного уровня)

1. Введение. Основные особенности физического метода исследования

      Физика как наука и основа естествознания. Экспериментальный характер физики. Физические величины и их измерение. Связи между физическими величинами. Научный метод познания окружающего мира: эксперимент — гипотеза — модель — (выводы-следствия с учетом границ модели) — критериальный эксперимент. Физическая теория. Приближенный характер физических законов. Моделирование явлений и объектов природы. Роль математики в физике. Научное мировоззрение. Понятие о физической картине мира.

2. Механика

      Классическая механика как фундаментальная физическая теория. Границы ее применимости.
      
Кинематика. Механическое движение. Материальная точка. Относительность механического движения. Система отсчета. Координаты. Пространство и время в классической механике. Радиус-вектор. Вектор перемещения. Скорость. Ускорение. Прямолинейное движение с постоянным ускорением. Свободное падение тел. Движение тела по окружности. Угловая скорость. Центростремительное ускорение.
      
Кинематика твердого тела. Поступательное движение. Вращательное движение твердого тела. Угловая и линейная скорости вращения.
      
Динамика. Основное утверждение механики. Первый закон Ньютона. Инерциальные системы отсчета. Сила. Связь между силой и ускорением. Второй закон Ньютона. Масса. Принцип суперпозиции сил. Третий закон Ньютона. Принцип относительности Галилея.
      
Силы в природе. Сила тяготения. Закон всемирного тяготения. Первая космическая скорость. Сила тяжести и вес. Невесомость. Сила упругости. Закон Гука. Силы трения.
      
Законы сохранения в механике. Импульс. Закон сохранения импульса. Реактивное движение. Работа силы. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии.
      Использование законов механики для объяснения движения небесных тел и для развития космических исследований.
      
Статика. Момент силы. Условия равновесия твердого тела.
      Фронтальные лабораторные работы
      1. Движение тела по окружности под действием сил упругости и тяжести.
      2. Изучение закона сохранения механической энергии.



3. Молекулярная физика. Термодинамика

      Основы молекулярной физики. Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства. Размеры и масса молекул. Количество вещества. Моль. Постоянная Авогадро. Броуновское движение. Силы взаимодействия молекул. Строение газообразных, жидких и твердых тел. Тепловое движение молекул. Модель идеального газа. Границы применимости модели. Основное уравнение молекулярно-кинетической теории газа.
      
Температура. Энергия теплового движения молекул. Тепловое равновесие. Определение температуры. Абсолютная температура. Температура — мера средней кинетической энергии молекул. Измерение скоростей движения молекул газа.
      
Уравнение состояния идеального газа. Уравнение Менделеева — Клапейрона. Газовые законы.
      
Термодинамика. Внутренняя энергия. Работа в термодинамике. Количество теплоты. Теплоемкость. Первый закон термодинамики. Изопроцессы. Изотермы Ван-дер-Ваальса. Адиабатный процесс. Второй закон термодинамики: статистическое истолкование необратимости процессов в природе. Порядок и хаос. Тепловые двигатели: двигатель внутреннего сгорания, дизель. Холодильник: устройство и принцип действия. КПД двигателей. Проблемы энергетики и охраны окружающей среды.
      
Взаимное превращение жидкостей и газов. Твердые тела. Модель строения жидкостей. Испарение и кипение. Насыщенный пар. Влажность воздуха. Кристаллические и аморфные тела. Модели строения твердых тел. Плавление и отвердевание. Уравнение теплового баланса.
      Фронтальные лабораторные работы
      3. Опытная проверка закона Гей-Люссака.
      4. 
Опытная проверка закона Бойля — Мариотта.
      5. 
Измерение модуля упругости резины.

4. Электродинамика

      Электростатика. Электрический заряд и элементарные частицы. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Проводники в электростатическом поле. Диэлектрики в электрическом поле. Поляризация диэлектриков. Потенциальность электростатического поля. Потенциал и разность потенциалов. Электроемкость. Конденсаторы. Энергия электрического поля конденсатора.
      
Постоянный электрический ток. Сила тока. Закон Ома для участка цепи. Сопротивление. Электрические цепи. Последовательное и параллельное соединения проводников. Работа и мощность тока. Электродвижущая сила. Закон Ома для полной цепи.
      
Электрический ток в различных средах. Электрический ток в металлах. Зависимость сопротивления от температуры. Сверхпроводимость. Полупроводники. Собственная и примесная проводимости полупроводников, рп-переход. Полупроводниковый диод. Транзистор. Электрический ток в жидкостях. Электрический ток в вакууме. Электрический ток в газах. Плазма.
      
Магнитное поле. Взаимодействие токов. Магнитное поле. Индукция магнитного поля. Сила Ампера. Сила Лоренца. Магнитные свойства вещества.
      
Электромагнитная индукция. Открытие электромагнитной индукции. Правило Ленца. Электроизмерительные приборы. Магнитный поток. Закон электромагнитной индукции. Вихревое электрическое поле. Самоиндукция. Индуктивность. Энергия магнитного поля. Магнитные свойства вещества. Электромагнитное поле.
      
Фронтальные лабораторные работы
      6. Изучение последовательного и параллельного соединений проводников.
      7. Измерение ЭДС и внутреннего сопротивления источника тока.
      8. 
Определение заряда электрона.
      9. Наблюдение действия магнитного поля на ток.
      10. Изучение явления электромагнитной индукции.


5. Колебания и волны

      Механические колебания. Свободные колебания. Математический маятник. Гармонические колебания. Амплитуда, период, частота и фаза колебаний. Вынужденные колебания. Резонанс. Автоколебания.
      
Электрические колебания. Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Вынужденные колебания. Переменный электрический ток. Активное сопротивление, емкость и индуктивность в цепи переменного тока. Мощность в цепи переменного тока. Резонанс в электрической цепи.
      
Производство, передача и потребление электрической энергии. Генерирование энергии. Трансформатор. Передача электрической энергии.
      
Механические волны. Продольные и поперечные волны. Длина волны. Скорость распространения волны. Звуковые волны. Интерференция волн. Принцип Гюйгенса. Дифракция волн.
      
Электромагнитные волны. Излучение электромагнитных волн. Свойства электромагнитных волн. Принцип радиосвязи. Телевидение.
      
Фронтальная лабораторная работа
      11. Определение ускорения свободного падения с помощью маятника.

6. Оптика

      Световые лучи. Закон преломления света. Полное внутреннее отражение. Призма. Формула тонкой линзы. Получение изображения с помощью линзы. Оптические приборы. Их разрешающая способность. Светоэлектромагнитные волны. Скорость света и методы ее измерения. Дисперсия света. Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн.
      
Фронтальные лабораторные работы
      12. Измерение показателя преломления стекла.
      13. Определение оптической силы и фокусного расстояния собирающей линзы.
      14. Измерение длины световой волны.
      15. Наблюдение интерференции и дифракции света.
      16. Наблюдение сплошного и линейчатого спектров.

7. Основы специальной теории относительности

      Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы и энергии.

8. Квантовая физика

      Световые кванты. Тепловое излучение. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Опыты Лебедева и Вавилова.
      
Атомная физика. Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. Соотношение неопределенностей Гейзенберга. Корпускулярно-волновой дуализм. Дифракция электронов. Лазеры.
      
Физика атомного ядра. Методы регистрации элементарных частиц. Радиоактивные превращения. Закон радиоактивного распада и его статистический характер. Протонно-нейтронная модель строения атомного ядра. Дефект масс и энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Физика элементарных частиц. Статистический характер процессов в микромире. Античастицы.
      
Фронтальная лабораторная работа
      17. Изучение треков заряженных частиц.

9. Строение и эволюция Вселенной

      Строение Солнечной системы. Система Земля—Луна. Солнце — ближайшая к нам звезда. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца, звезд, галактик. Применимость законов физики для объяснения природы космических объектов.



10. Значение физики для понимания мира и развития производительных сил

      Единая физическая картина мира. Фундаментальные взаимодействия. Физика и научно-техническая революция. Физика и культура.
      
Фронтальная лабораторная работа
      18. 
Моделирование траекторий космических аппаратов с помощью компьютера.


Тематическое планирование

Раздел, темы

Количество часов

Примерная

или

авторская

программа

Рабочая

программа

по классам

10 кл

11 кл

1

Введение. Основные особенности физического метода исследования.

1

1

-

2

Механика.

Кинематика.

Кинематика твёрдого тела.

Динамика.

Силы в природе.

Законы сохранения в механике.

22

22

--

3

Молекулярная физика. Электродинамика.

Основы молекулярной физики.

Температура. Энергия теплового движения молекул.

Уравнение состояния идеального газа.

Термодинамика.

Взаимное превращение жидкостей в газы. Твёрдые тела.

21

21

--

4

Электродинамика

Электростатика.

Постоянный электрический ток.

Электрический ток в различных средах.

Магнитное поле.

Электромагнитная индукция.

32

24

10

5

Колебания и волны

Механические колебания.

Электрические колебания.

Производство, передача и потребление электрической энергии.

Электромагнитные волны.

10

-

10

6

Оптика

10

-

10

7

Основы специальной теории относительности

3

-

3

8

Квантовая физики

Световые кванты.

Атомная физика.

Физика атомного ядра.

13

-

13

9

Строение и эволюция Вселенной

10

-

10

10

Значение физики для понимания мира и развития производительных сил

1

-

1

11

Обобщающее повторение

13

-

11


Всего

136

68

68



Автор
Дата добавления 05.11.2015
Раздел Физика
Подраздел Рабочие программы
Просмотров133
Номер материала ДВ-126382
Получить свидетельство о публикации


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх