1738509
столько раз учителя, ученики и родители
посетили официальный сайт проекта «Инфоурок»
за прошедшие 24 часа
Добавить материал и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Инфоурок Алгебра Рабочие программыРабочая программа по алгебре для 9 класса

Рабочая программа по алгебре для 9 класса

Проверен экспертом
библиотека
материалов





hello_html_m57c3c38.jpg





1. Планируемые результаты:

Личностные:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей.

Метапредметные:

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;



Предметные :

  • овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

В основе данной рабочей программы лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.

Предлагаемая учебная программа позволяет обеспечить формирование, как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

  1. сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

  2. сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  3. сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

  4. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  5. представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

  6. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  7. креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;

  8. умение контролировать процесс и результат учебной математической деятельности;

  9. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

метапредметные:

  1. умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  2. умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

  3. умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  4. осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родо-видовых связей;

  5. умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  6. умение создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;

  7. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

  8. сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ- компетентности);

  9. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  10. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  11. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  12. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  13. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  14. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  15. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  16. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  17. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

Предметными результатами изучения алгебры в 9 классе являются следующие умения:

Квадратичная функция:

  1. строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной;

  2. выполнять простейшие преобразования графиков функций;

  3. находить область определения и область значений функции, промежутки знакопостоянства, промежутки возрастания и убывания функций, наибольшее и наименьшее значения, точки пересечения графика квадратичной функции с осями координат, нули функции;

  4. находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу;

  5. решать квадратные уравнения, определять знаки корней;

  6. выполнять разложение квадратного трехчлена на множители;

  7. решать квадратное неравенство методом интервалов.

Уравнения и неравенства с одной переменной:

  1. решать целые уравнения методом введения новой переменной; разложением на множители и графическим способом;

  2. решать системы двух уравнений с двумя переменными графическим способом.

  1. Уравнения и неравенства с двумя переменными:

  1. решать уравнения с двумя переменными способом подстановки и сложения;

  2. решать задачи на совместную работу, на движение и другие составлением систем уравнений.

  1. Прогрессии:

  1. понимать значения терминов «член последовательности», «номер члена последовательности»;

  2. находить разность арифметической прогрессии, сумму n первых членов арифметической прогрессии и любой член арифметической прогрессии;

  3. вычислять любой член геометрической прогрессии по формуле, знать свойства членов геометрической прогрессии, находить сумму n первых членов геометрической прогрессии;

  4. выявлять, какая последовательность является арифметической (геометрической), если да, то находить d (q);

5) применять различные способы

задания

арифметической

и

геометрической прогрессий при

решении

задач (особенно

при

решении «жизненных» — компетентностных задач);

Степень с рациональным показателем:

  1. строить график функции у = хn, знать свойства степенной функции с натуральным показателем, уметь решать уравнения хn = а при четных и нечетных значениях n;

  2. выполнять простейшие преобразования и вычисления выражений, содержащих корни, применяя определение и изученные свойства арифметического корня n-й степени;

  3. выполнять простейшие преобразования выражений, содержащих степени с дробным показателем, используя при этом изученные свойства степеней с рациональным показателем.

  1. Элементы статистики и теории вероятностей:

  1. решать комбинаторные задачи на нахождение числа объектов или комбинаций путем перебора возможных вариантов, а также с использованием правила умножения;

  2. находить вероятности случайных событий в простейших случаях.

Темы проектной работы и виды деятельности учащихся, направленные на достижение результата отражены в таблице ниже.



















2.. Содержание курса

Глава 1. Свойства функций. Квадратичная функция (22 часа)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов. Четная и нечетная функция. Функция у = хn. Определение корня n-й степени. Вычисление корней n -й степени.

Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с0 ах2 + bх + с где а0. Ввести понятие корня n -й степени.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида ах2 + bх + с0 ах2 + bх + с где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида , . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Глава 2. Уравнения и неравенства с одной переменной (14 часов)

Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.

Цель: систематизировать и обобщить сведения о решении целых с одной переменной, Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Глава 3. Уравнения и неравенства с двумя переменными (17 часов)

Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения. Учащиеся должны уметь решать системы двух уравнений с двумя переменными, указанные в содержании. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат. Решать системы неравенств с двумя переменными.

Глава 4. Прогрессии (15 часов)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

Глава 5. Элементы комбинаторики и теории вероятностей (13 часов)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

6. Повторение(21 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.















































3. Тематическое планирование



Номер параграфа

Содержание материала

Количество часов

Глава I. Свойства функций. Квадратичная функция


22

1

2

3

4

5

6

Функции и их свойства.

Квадратный трехчлен.

Контрольная работа № 1

Квадратичная функция и ее график.

Степенная функция. Корень п-й степени.

Контрольная работа № 2









3

5

4

1

8

3

1

Глава II. Уравнения и неравенства с одной переменной.

14

7

8

9

Уравнения с одной переменной.

Неравенства с одной переменной.

Контрольная работа № 3


8

5

1

Глава III. Уравнения и неравенства с двумя переменными.

17

10

11

12

Уравнения с двумя переменными и их системы.

Неравенства с двумя переменными и их системы.

Контрольная работа № 4


10

6

1

Глава IV. Арифметическая и геометрическая прогрессии.

15

13

14

15

16

Арифметическая прогрессия.

Контрольная работа № 5

Геометрическая прогрессия. Контрольная работа № 6

7

1

6

1


Глава V. Элементы комбинаторики и теории вероятностей.

13

17

18

Элементы комбинаторики.

Начальные сведения из теории вероятностей. Контрольная работа № 5

9

3

1

Итоговое повторение

21

Повторение по темам курса

Итоговая контрольная работа

Итоговый урок




19

1

1





















Курс профессиональной переподготовки
Учитель математики
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Краткое описание документа:

Рабочая программа по алгебре для 9 класса по учебнику Макарычева ,соответствует ФГОС, рассчитана на 102 часа в год и на 3 часа в неделю. Программа включает три раздела: планируемые результаты,содержание курса, тематическое планирование.

Планируемые результаты включают личностные,предметные и метапредметные результаты.

Общая информация
К учебнику: АлгебраМакарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. / Под ред. Теляковского С.А.

Номер материала: ДБ-818771

Вам будут интересны эти курсы:

Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Маркетинг: теория и методика обучения в образовательной организации»
Курс профессиональной переподготовки «Клиническая психология: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Логистика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Экономика: инструменты контроллинга»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс повышения квалификации «Мировая экономика и международные экономические отношения»
Курс профессиональной переподготовки «Организация системы менеджмента транспортных услуг в туризме»
Курс профессиональной переподготовки «Методика организации, руководства и координации музейной деятельности»
Курс профессиональной переподготовки «Техническая диагностика и контроль технического состояния автотранспортных средств»
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.