Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по алгебре 9 кл

Рабочая программа по алгебре 9 кл



  • Математика

Документы в архиве:

Название документа РП.docx

Поделитесь материалом с коллегами:

Муниципальное общеобразовательное автономное учреждение «Средняя общеобразовательная школа №56 имени Хана В.Д. с углубленным изучением русского языка, обществознания и права»






СОГЛАСОВАНО

ПРИНЯТО

УТВЕРЖДЕНО

Протокол заседания ШМО

Протокол педагогического

Директор школы

___ от «__»_____ 201__г.

совета

__________ Солодовникова И.Н.

________/_______________/

___ от «___» _____201__г

Приказ №______ от «__» ___201_ г.













Рабочая программа курса

«Алгебра»

9 класс

на 2015 – 2016 учебный год








Составитель программы

Васильева Н. В.

Квалификация 1

Педагогический стаж 13












  1. Пояснительная записка

Рабочая программа разрабатывается на основе следующих документов:

- федеральный закон от 29.12.2012 года № 273 – ФЗ «Об образовании в Российской Федерации»;

- федеральный компонент государственных образовательных стандартов начального, общего, основного общего и среднего (полного) общего образования, утверждённого приказом МО РФ № 1089 от 05.03.2004 года «Об утверждении федерального компонента государственных образовательных стандартов начального, общего, основного общего и среднего (полного) общего образования» (с изменениями, внесёнными приказами МО и науки РФ от 03.06.2008 г. № 164, от 31.08. 2009 г. № 320, от 19.10.2009 г. № 427, от 24.01.2012 г. № 39);

- примерная программа ООО по математике;

- положение «О рабочей программе по учебному предмету, курсу в МОАУ «Средняя общеобразовательная школа № 56 имени Хана В.Д. с углубленным изучением русского языка, обществознания и права».

Изучение алгебры в 9 классе направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.




Задачи курса:

  • повторить и закрепить знания, умения и навыки, полученные в 5-8 классах: вычислительные навыки, умения решать линейные уравнения и неравенства, их системы, умения строить графики функций;

  • научить решать уравнения, неравенства и их системы разными способами;

  • изучить свойства и графики элементарных функций;

  • ознакомить со степенной функцией, функцией корня 3-ей степени;

  • изучить арифметическую и геометрическую прогрессии, научить решать задачи с прогрессиями;

  • ознакомить с элементами теории вероятностей, комбинаторики и статистики;

  • развивать вычислительные и формально-оперативные алгебраические умения до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, информатика);

  • качественно подготовиться к выпускным экзаменам.


  1. Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса, учащиеся получают возможность:

  • развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.



Примерная программа по алгебре в 9 классе рассчитана на 105 ч (из расчёта 3ч в неделю). Данная рабочая программа в соответствии с календарным учебным графиком школы разработана на 34 учебные недели и рассчитана на 102 ч за счёт резерва учебного времени.













  1. Описание места учебного предмета, курса в учебном плане

Класс

Кол-во часов в неделю

Кол –во учебных недель

Всего часов за учебный год

9

3

34

102



  1. Содержание учебного предмета, курса

Уравнения и неравенства (39)

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-линейных неравенств. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств. Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом.

Уравнение с двумя переменными; решение уравнения с двумя переменными. Система уравнений; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.

Числовые последовательности (18)

Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Сложные проценты.

Числовые функции (28)

Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций. Степенные функции с натуральным показателем, их графики. Графики функций: корень кубический.

Координаты (2)

Уравнение прямой. Уравнение окружности с центром в начале координат и в любой заданной точке.

Элементы логики, комбинаторики, статистики и теории вероятностей (15)

Множества и комбинаторика. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий.

Вероятность.

Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.

Резерв (18)

Уравнения и неравенства (10)

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-линейных неравенств. Примеры решения дробно-линейных неравенств. Переход от словесной формулировки соотношений между величинами к алгебраической. Примеры решения уравнений в целых числах. Уравнение с двумя переменными. Система уравнений; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Решение текстовых задач алгебраическим способом.

Числовые функции (3)

Возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции. Чтение графиков функций. Использование графиков функций для решения уравнений и систем.

Числовые последовательности (2)

Числовые последовательности. Понятие числовой последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Сложные проценты.

Элементы логики, комбинаторики, статистики и теории вероятностей (3)

Частота события, вероятность.



  1. Требования к уровню подготовки выпускников



В результате изучения алгебры ученик должен знать/понимать <*>:

<*> Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.


- существо понятия математического доказательства; примеры доказательств;

- существо понятия алгоритма; примеры алгоритмов;

- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

- как потребности практики привели математическую науку к необходимости расширения понятия числа;

- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.



Арифметика


Уметь:

- выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

- переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты – в виде дроби и дробь – в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

- выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

- округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

- пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

- решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;

- устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

- интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.


Алгебра


Уметь:

- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

- решать линейные и квадратные неравенства с одной переменной и их системы;

- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;

- изображать числа точками на координатной прямой;

- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

- находить значения функции, заданной формулой, таблицей, графиком, по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

- описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

- моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

- интерпретации графиков реальных зависимостей между величинами.



Элементы логики, комбинаторики, статистики и теории вероятностей


Уметь:

- проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

- извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и трафики;

- решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

- вычислять средние значения результатов измерений;

- находить частоту события, используя собственные наблюдения и готовые статистические данные;

- находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- выстраивания аргументации при доказательстве (в форме монолога и диалога);

- распознавания логически некорректных рассуждений;

- записи математических утверждений, доказательств;

- анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

- решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

- решения учебных и практических задач, требующих систематического перебора вариантов;

- сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

- понимания статистических утверждений.






  1. Тематическое планирование

Раздел примерной программы

Элементы минимального содержания образования (в соответствии с ФК ГОС)

Количество часов с учётом резерва (Х+Х)

Количество часов на контрольные (лабораторные, практические, творческие) работы

Уравнения и неравенства

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-линейных неравенств. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств. Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом.

Уравнение с двумя переменными; решение уравнения с двумя переменными. Система уравнений; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.

29 + 10

2

Числовые последовательности

Понятие числовой последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Сложные проценты.

16 + 2

1

Числовые функции

Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций. Степенные функции с натуральным показателем, их графики. Графики функций: корень кубический.

25 + 3

2

Координаты

Уравнение прямой. Уравнение окружности с центром в начале координат и в любой заданной точке.

2

0

Элементы логики, комбинаторики, статистики и теории вероятностей

Множества и комбинаторика. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий.

Вероятность.

Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.


12 + 3

1



  1. Учебно – методическое и материально – техническое обеспечение

Учебники:

1. Алгебра 9 класс. Учебник / А.Г. Мордкович, Т.Н. Мишустина, Москва: Мнемозина, 2012

2. Алгебра 9 класс. Задачник / А.Г. Мордкович, Т.Н. Мишустина, Москва: Мнемозина, 2012

Учебные и справочные пособия:

1. События. Вероятности. Статистическая обработка данных. 7-9 / А.Г. Мордкович, П.В.Семёнов, М. Мнемозина. 2007

2. Алгебра 7-9. Тесты. / А.Г. Мордкович, Е.Е. Тульчинская, М. Мнемозина. 2007

3. Алгебра 9 кл. Контрольные работы / Александрова Л.А.; под ред. А.Г. Мордковича. – М.: Мнемозина, 2008

4. Контрольные работы. Алгебра 9 класс / Ю.П. Дудницын. Под ред. А.Г. Мордковича, М: Мнемозина, 2007

5. Алгебра 9 кл. Самостоятельные работы / Александрова Л.А.; под ред. А.Г. Мордковича. – 5-е изд., пер. и доп. – М.: Мнемозина, 2008

Учебно-методическая литература:

1. Методическое пособие для учителя. Алгебра 7-9 класс А.Г.Мордкович, М. «Мнемозина», 2007

2. Алгебра.9 класс. Поурочные планы (по учебнику А.Г. Мордковича) / авт.-сост. Е.А. Ким.- Волгоград: Учитель, 2006

3. Алгебра. 9 класс. Поурочные планы по учебнику А.Г. Мордковича/авт.-сост. Т.Л. Афанасьева, Л.А.Тапилина. – Волгоград: Учитель, 2008

Интернет ресурсы:

http://teacher.fio.ru








Автор
Дата добавления 09.11.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров167
Номер материала ДВ-138631
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх