Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по алгебре 7 класс

Рабочая программа по алгебре 7 класс


  • Математика

Поделитесь материалом с коллегами:

Пояснительная записка

Для обучения в 7-11 классах выбрана содержательная линия А.Г.Мордковича, рассчитанная на 5 лет. В седьмом классе реализуется первый год обучения.

Рабочая программа по алгебре для учащихся 7 класса представлена в соответствии с ФГОС примерной программы по алгебре для основного общего образования и авторской программы, разработанной А.Г. Мордковичем.

Изучение алгебры в 7 классе направлено на достижение целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

Планирование составлено на основе Программы. Математика. 5-6 кл. Алгебра. 7-9 кл. Алгебра и начала математического анализа. 10-11 кл./авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2010. – 63 с.

Учебник А.Г.Мордкович. Алгебра-7.Часть 1.Учебник. Часть2.Задачник. – М.: Мнемозина, 2014

Задачи:

Обучения: овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования; интеллектуальное развитие; получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации.

Развития: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей; математической речи; сенсорной сферы; двигательной моторики; внимания; памяти; навыков само и взаимопроверки.

Воспитания: культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса; волевых качеств; коммуникабельности; ответственности.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. В ходе освоения содержания курса учащиеся получают возможность:

  • сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • развить логическое мышление и речь — умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В ходе преподавания алгебры в 7 классах, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В программе используются педагогические технологии: технологии на основе активизации и интенсификации деятельности учащихся (игровые технологии); технологии на основе активизации и интенсификации деятельности учащихся (системы развивающего обучения с направленностью на развитие творческих качеств личности); технологии на основе эффективности управления и организации учебного процесса (технология уровневой дифференциации обучения на основе обязательных результатов).

Методы:

  • методы организации и осуществления учебно-познавательной деятельности: словесный (диалог, рассказ и др.); наглядный (опорные схемы, слайды и др.); практический (упражнения, практические работы, решение задач, моделирование и др.); исследовательский; самостоятельной работы; работы под руководством преподавателя; дидактическая игра;

  • методы стимулирования и мотивации: интереса к учению; долга и ответственности в учении;

  • методы контроля и самоконтроля в обучении: фронтальная устная проверка, индивидуальный устный опрос, письменный контроль (контрольные и практические работы, тестирование, письменный зачет, тесты).

Формы текущего и итогового контроля: самостоятельная работа, тестирование, теоретические диктанты, контрольные работы.


В настоящей программе за основу принят вариант тематического планирования учебного материала, согласно которому на изучение алгебры отводится 3 часа в неделю, всего 102 часа.


Требования к уровню подготовки учащихся

Математический язык. Математическая модель

Знать:

  • понятие числового выражения;

  • понятие алгебраического выражения, переменная, значения числового выражения, значения выражения с переменными;

  • допустимые значения переменных;

- термины: «математический язык», «математическая модель»;

- понятие о трех этапах математического моделирования.

Уметь:

  • выполнять арифметические операции с обыкновенными и десятичными дробями, с положительными и отрицательными числами;

  • находить числовые значения арифметических и алгебраических выражений;

- решать линейные уравнения;

- составлять математические модели реальных ситуаций (простейшие случаи);

- описывать реальные ситуации, соответствующие заданной математической моделью;

- реализовывать три этапа математического моделирования в простейших ситуациях.

Линейная функция

Знать:

  • понятия координатной прямой и плоскости, координат точек на прямой и плоскости;

  • понятия линейного уравнения с двумя переменными и его решения;

  • понятия линейной функции и ее углового коэффициента, прямой пропорциональности;

  • описание словами алгоритмов построении графиков прямой пропорциональности, линейной функции, линейного уравнения с двумя переменными;

  • характеристики взаимного расположения на координатной плоскости графиков двух линейных функций, заданных аналитически.

Уметь:

  • находить координаты точки в координатной плоскости, строить точку по координатам;

  • строить графики уравнений x = a, y = b, y = kx, y = kx + m, ax + by + c = 0 ;

  • преобразовывать линейное уравнение с двумя переменными к виду линейной функции;

- находить точки пересечения графиков двух линейных уравнений, двух линейных функций;

- находить наибольшее и наименьшее значение линейной функции на заданном числовом промежутке.

Системы двух линейных уравнений с двумя переменными

Знать:

  • понятия системы двух линейных уравнений с двумя переменными и ее решения;

  • описание словами графического метода решения системы, метода подстановки, метода алгебраического сложения.

Уметь:

  • определять, является ли заданная пара чисел решением заданной системы уравнений или нет;

  • решать системы двух линейных уравнений с двумя переменными графическим методом, методом подстановки, методом алгебраического сложения;

- решать задачи, сводящиеся к системам указанного вида.

Степень с натуральным показателем и ее свойства

Знать:

- понятия степени, основания степени, показателя степени;

- определение а п в случае, когда п = 1, икогда п - натуральное число, отличное от 1;

- определение степени с нулевым показателем;

- свойства степеней.

Уметь:

- вычислять а п для любых значений а и любых целых неотрицательных значений п;

- пользоваться таблицей основных степеней;

- использовать свойства степени для вычисления значений арифметических и алгебраических выражений, для упрощения алгебраических выражений.


Одночлены. Арифметические операции над одночленами

Знать:

- понятия одночлена, стандартного вида одночлена, коэффициента одночлена;

- понятия подобных одночленов;

  • термины: «алгоритм», «корректные» и «некорректные» задания;

  • описание словами правила арифметических операций над одночленами.

Уметь:

- приводить одночлен к стандартному виду;

  • складывать и вычитать подобные одночлены, умножать одночлены, возводить одночлены в натуральную степень;

  • представлять заданный одночлен в виде суммы одночленов, в виде степени одночлена;

- делить одночлен на одночлен (в корректных случаях).

Многочлены. Арифметические операции над многочленами

Знать:

- понятия многочлена, стандартного вида многочлена;

- уметь описать словами правила выполнения арифметических операций над многочленами (сложение, вычитание, умножение многочлена на одночлен, и на многочлен);

  • формулы сокращенного умножения и их словесное описание.

Уметь:

  • приводить многочлен к стандартному виду;

- складывать и вычитать многочлены, приводить подобные члены, взаимно уничтожать члены многочлена;

  • умножать многочлен на одночлен и на многочлен;

- применять формулы сокращенного умножения;

- делить многочлен на одночлен;

- решать уравнения, сводящиеся после выполнения арифметических операций над входящими в их состав многочленами, к уравнению вида ax = b;

- решать соответствующие текстовые задачи.


Разложение многочленов на множители

Знать:

  • понятия разложения многочлена на множители, тождества, тождественно равных выражений, тождественного преобразования выражения;

  • описание словами сути метода вынесения общего множителя за скобки, метода группировки;

  • формулы разложения на множители, связанные с формулами сокращенного умножения.

Уметь:

  • использовать для разложения многочлена на множители метод вынесения общего множителя за скобки, метод группировки, формулы сокращенного умножения, метод выдeлeния полного квадрата;

  • использовать разложение на множители для решения уравнений, для рационализации вычислений, для сокращения алгебраических дробей.

Функция y = x2

Знать:

- график функции у = х2;

- описание словами процесса графического решения уравнений и процесс построения графика кусочной функции;

- смысл записи y = f(x).

Уметь:

- вычислять конкретные значения и построение графика функции у = х2;

  • строить графики функций, заданных различными формулами на различных промежутках;

  • графически решать уравнения вида f(x) = g(x), где у = f(x) и y = g(x) - известные функции;

- находить наибольшие и наименьшие значения функции y = x2 на заданном промежутке;

- читать графики;

- решать примеры на функциональную символику.

Содержание тем учебного курса


Математический язык. Математическая модель (15 часов)

Числовые и алгебраические выражения. Первые представления о математическом языке и о математической модели. Линейные уравнения как математические модели реальных ситуаций.

Основная цель – систематизируя и обобщая сведения о преобразованиях выражений и решении линейных уравнений с одной переменной, полученные учащимися в курсе математики 5-6 классов, начать знакомить учащихся с особенностями математического языка и математического моделирования.

Линейная функция (12 часов)

Координатная прямая, виды промежутков на ней. Координатная плоскость. Линейное уравнение с двумя переменными и его график. Линейная функция и ее график. Прямая пропорциональность и ее график. Взаимное расположение графиков линейных функций.

Основная цель – познакомить учащихся с линейным уравнением с двумя переменными и линейной функцией, выработать умение строить их графики, осознать важность использования математических моделей нового вида – графических моделей.

Системы двух линейных уравнений с двумя переменными (10 часов)

Основные понятия, связанные с системами двух линейных уравнений с двумя переменными. Графическое решение систем. Метод подстановки, метод алгебраического сложения. Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (текстовые задачи).

Основная цель – научить школьников решать системы двух линейных уравнений с двумя переменными различными способами и применять системы при решении текстовых задач.

Степень с натуральным показателем и ее свойства (8 часов)

Определение степени с натуральным показателем, таблицы основных степеней, свойства степеней. Степень с нулевым показателем.

Основная цель – выработать умения выполнять действия над степенями с натуральными показателями и познакомить школьников с понятием степени с нулевым показателем.

Одночлены. Арифметические операции над одночленами (9 часов)

Понятие одночлена, стандартный вид одночлена. Сложение и вычитание одночленов, умножение одночленов, возведение одночлена в натуральную степень. Деление одночлена на одночлен.

Основная цель – выработать умение выполнять действия над одночленами.

Многочлены. Арифметические операции над многочленами (18 часов)

Понятие многочлена, стандартный вид многочлена. Сложение и вычитание многочленов. Умножение многочлена на одночлен, умножение многочлена на многочлен. Формулы сокращенного умножения (ФСУ). Деление многочлена на одночлен.

Основная цель – выработать умение выполнять действия над многочленами.

Разложение многочленов на множители (22 часов)

Понятие о разложении многочлена на множители. Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью ФСУ. Комбинирование различных приемов. Понятия тождества. Первые представления об алгебраических дробях; сокращение алгебраических дробей.

Основная цель – выработать умение выполнять разложение многочленов на множители различными способами и убедить учащихся в практической пользе этих преобразований.

Функция y=x2 (6 часов)

Функция y=x2 , ее свойства и график. Графическое решение уравнений. Разъяснение смысла записи y=f(x). Функциональная символика.

Основная цель – показать учащимся, что, кроме линейных функций, встречаются и другие функции; сформировать навыки работы с графическими моделями.

Итоговое повторение (6 часов)

Количество часов: всего 102 час; в неделю 3 час.

Плановых контрольных уроков: 9 .



КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ алгебра 7 класс

Раздел 1. Повторение курса 6 класса (4 ч)

Модуль 1

Цели ученика:

- повторение действий с обыкновенными дробями, десятичными дробями, положительными и отрицательными числами;

-обобщение и систематизация сведений о преобразованиях буквенных выражений и решении уравнений, полученных в курсах математики 5-6 классов

Цели педагога:

-создание условий для актуализации арифметических навыков учащихся: действий с обыкновенными дробями, десятичными дробями, положительными и отрицательными числами;

-создание условий для обобщения и систематизации сведений о преобразованиях буквенных выражений и решении уравнений, полученных учащимися в курсах математики 5-6 классов

Универсальные учебные действия (УУД): регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки; потайные: строить речевое высказывание в устной и письменной форме; коммуникативные: контролировать действия партнера.

п/п

Тема и тип урока

Самостоятельная работа

Планируемые предметные результаты

Вид педагогической деятельности. Дидактическая модель педагогического процесса

Ведущая деятельность на уроке

Формы организации и взаимодействия на уроке

Форма контроля

Дата

по плану

по факту

1

Обыкновенные дроби. Десятичные дроби (урок обобщения и систематизации знаний)

Разноуровневые задания

Знание:

-основных понятий темы: обыкновенная дробь, десятичная дробь; алгоритмов сравнения, сложения, вычитания, умножения, деления дробей (ре- продуктивно-алгоритмическое)',

- приемов рационального выполнения вычислений с дробями (продуктивно-комбинаторное).

Умение

решать задачи с использованием 2-3 алгоритмов.

Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Репродуктивная

Учебно- познавательная

\

Фронтальная, индивидуальная

Разноуровневые задания

[7Г



2

Положительные и отрицательные числа (урок обобщения и систематизации знаний)

Разноуровневые задания

Знание:

  • основных понятий темы: положительное число, отрицательное число, модуль, противоположные числа; алгоритмов сравнения, сложения, вычитания, умножения, деления положительных и отрицательных чисел (ре- продуктивно-ачгоритмическое);

  • приемов рационального выполнения вычислений с положительными и отрицательными числами (продуктивно-комбинаторное).

Компетентностно-

ориентированная.

Репродуктивная

Учебно- познавательная

Фронтальная, индивидуальная

Разноуровневые задания [7], [9]



3

Преобразование выражений (урок обобщения и систематизации знаний)

Разноуровневые задания

Знание:

-законов арифметических действий: переместительного, сочетательного, распределительного; способов преобразования алгебраических выражений (репродуктивно-алгоритмическое)',

-приемов рационального выполнения преобразования выражений (про- дуктивно-комбинаторное).

Умение:

-решать задачи с использованием 2-3 алгоритмов (репродуктивно-дея- тельностное)',

-использовать приемы рационального решения задач (продуктивно-дея- тельностное).

Приобретенная компетентность: предметная

Ком пете нтностно- ориентированная. Частично- поисковая

Учебно- познава- тельная, рефлексивная

Индивидуальная, групповая

Проблемные задания [8]



4

Решение уравнений

(урок обобщения и систематизации знаний)

Разноуровневые задания

Знание:

  • основных понятий темы: уравнение, корень уравнения; алгоритма решения линейного уравнения (репродуктивно-алгоритмическое)',

  • приемов рационального решения линейных уравнений (продуктивно- комбинаторное).

Умение:

-решать задачи с использованием 2-3 алгоритмов;

-использовать приемы рационального решения задач.

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Учебно- познава- тельная, рефлексивная

Индивидуальная, групповая

Проблемные задания [8]



Раздел 2. Математический язык. Математическая модель (11 ч)

Модуль 1. Числовые алгебраические выражения

Цели ученика:

-освоение понятия «алгебраическое выражение», приобретение умения находить значение алгебраического выражения при указанных значениях переменных

Пели педагога:

-создание условий для того, чтобы учащиеся освоили понятие алгебраического выражения как составной части математического языка;

- организация познавательной деятельности с целью выработки и освоения учащимися основных способов предметных действий с новым понятием

Универсальные учебные действия (УУД): регулятивные: планировать и контролировать способ решения; познавательные: ориентироваться на разнообразие способов решения задач; коммуникативные: контролировать действия партнера.


5

Числовые выражения (комбинированный урок)

§ 1.

1.42, 1.43

Знание:

-содержания основных понятий: числовое выражение, значение числового выражения; алгоритма нахождения значения числового выражения (ре- продуктивно-алгоритмическое);

-приемов нахождения значения числового выражения рациональным способом (продуктивно-комбинаторное).

Умение: решать задачи по алгоритму (репродуктивно-деятельностное).

Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Репродуктивная

Учебно- познавательная

Фронтальная, индивидуальная

Тест [4]



6

Алгебраические выражения (комбинированны it урок)

§ 1,

1.25, 1.35

Знание:

-основных понятий: алгебраическое выражение, значение алгебраического выражения; алгоритма нахождения значения алгебраического выражения при указанных значениях переменных (репродуктивно- алгоритмическое)',

- приемов упрощения алг ебраических выражений (продуктивно- комбинаторное).

Умение: решать задачи с использованием 2-3 алгоритмов (репродуктив- но-деятельностное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Учебно- познавательная

Фронтальная, индивидуальная

Проблемные задания

[8], [91



7

Алгебраические выражения (урок применения и совершенствования знаний)

§ 1, № 1.41

Знание:

-основных понятий: алгебраическое выражение, значение алгебраического выражения; алгоритма нахождения значения алгебраического выражения при указанных значениях переменных (репродуктивно- алгоритм и ч еское);

- приемов упрощения алгебраических выражений (продуктивно- комбинаторное).

Умение: решать комбинированные задачи с применением более чем 3 алгоритмов, использовать приемы рационального решения задач (продук- тивно-деятельностное). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Учебно-

\

познавательная

Фронтальная, парная

Проблемные задания

[8], [91




Модуль 2. Математический язык. Математическая модель

Цели ученика:

- развитие понятий «математический язык», «математическая модель», «линейное уравнение с одной переменной», «координатная прямая»;

- овладение умением определять вид математической модели;

- совершенствование умения использовать метод математического моделирования для решения текстовых задач, решать линейные уравнения, выполнять построения на координатной прямой;

- освоение понятия «числовой промежуток», умения использовать геометрическую, аналитическую и словесную формы представления числовых промежутков

Цели педагога:

  • создание условий для того, чтобы учащиеся расширили свои представления о математическом языке, математических моделях, математическом моделировании;

  • создание условий для формирования у учащихся представлений о линейном уравнении, координатной прямой как о видах математических моделей;

организация познавательной деятельности с целью совершенствования навыков решения текстовых задач методом математического моделирования

Универсальные учебные действия (УУД): регулятивные: различать способ и результат действия; познавательные: владеть общим приемом решения задач; коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов. Внеурочная деятельность: поиск информации с использованием интернет-ресурсов: http://edu.secna.ru/main

8

Что такое математический язык (комбинированный урок)

§2, №2.18, 2.19, 2.20

Знание:

-составных элементов математического языка (репродуктивно-алгоритмическое)',

- правил чтения информации, записанной на языке математических символов (продуктивно-комбинаторное).

Умение: решать задачи по алгоритму (репродуктивно-деятельностное). Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Репродуктивная

Учебно- познавательная

Фронтальная, индивидуальная

Математический диктант

[3]



9

Что такое математический язык (урок применения и совершенствования знаний)

§2, №2.21

Знание:

  • составных элементов математического языка (репродуктивно-алгорит- мическое);

  • правил чтения информации, записанной на языке математических символов (продуктивно-комбинаторное).

Умение: приводить примеры для иллюстрации изученных положений, переводить информацию из одной знаковой системы в другую (продук- тивно-деятельностное). Приобретенная компетентность: ключевая

Компетентностно- ориентированная. Частично- поисковая

Учебно- познавательная

Индивидуальная, парная

Тест [4]



10

Что такое ма

§3,

Знание:

Ком петентностно-

Учебно-

Фрон

Про




тематическая

3.8,

- содержания понятия «математическая модель», видов математических

ориентированная.

познава

тальная,

блем




модель (ком

3.10

м одел ей (репродукт йен о- алгоритм и ческое);

Частично-поис-

тельная

индиви

ные за




бинированный


-этапов реализации метода математического моделирования (продук-

ковая


дуальная

дания




урок)


т ивно-комбинаторное);

- приемов составления задачи по данной математической модели (продукт ивно-креат ивное).

Умение: решать задачи с использованием 2-3 алгоритмов (репродуктив- но-деятельностное).

Приобретенная компетентность: предметная




[8], [9]



11

Что такое ма

Твор

Знание:

Компетентностно-

Учебно-

Группо

Про




тематическая

ческое

- содержания понятия «математическая модель», видов математических

ориентированная.

познава

вая

блем




модель (урок

зада

моделей (репродуктивно-алгоритмическое);

Поисковая

тельная,


ные за




применения

ние:

-этапов реализации метода математического моделирования (продук


рефлек


дания




и совершен

3.31,

тивно-комбинаторное)',


сивная


[9]




ствования

3.32

- приемов составления задачи по данной математической модели (про-








знаний)


дуктивно-креативное).

Умение: участвовать в совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диачогический). Приобретенная компетентность: целостная







12

Линейное

§4,

Знание:

Ком петентностно-

Учебно-

Фрон

Про




уравнение

4.20,

-содержания понятия «линейное уравнение с одной переменной»; алго

ориентированная.

познава

тальная,

блем




с одной пере

4.23

ритма решения линейного уравнения (репродуктивно-алгоритмическое)',

Частично-поис

тельная

индиви

ные за




менной (ком


- приемов составления математической модели реальной ситуации в виде

ковая


дуальная

дания




бинированный


линейного уравнения (продуктивно-комбинаторное)',




[8]




урок)


- приемов составления задачи по данной математической модели (про








дуктивно-креативное).

Умение: решать задачи с использованием 2-3 алгоритмов (репродуктив- но-деят ельностное).

Приобретенная компетентность: предметная







13

Координатная

Домаш

Знание:

Компетентностно-

Учебно-

Фрон

Презен




прямая (урок

няя кон

-содержания понятия «координатная прямая» (репродуктивно-алгорит-

ориентированная.

познава

тальная,

тация




обобщения

троль

мическое)',

Репродуктивная

тельная

парная

«Коор




и системати

ная ра

- приема нахождения расстояния между точками на координатной прямой




динат




зации знаний)

бота (вари

по формуле АВ = \а - b| (продуктивно-комбинаторное).

Умение:




ная

прямая»






- решать задачи с использованием 2-3 алгоритмов (репродуктивно-дея-









тельностное),







14

Координатная прямая (урок применения и совершенствования знаний)

Домашняя контрольная работа (вариант 2

- применять полученные знания в новой ситуации; использовать приемы рационального решения задач; переводить информацию из одной знаковой системы в другую (продуктивно-деятельностное).

Приобретенная компетентность: предметная

Ком петентностно- ориентированная. Частично-поис- ковая

Учебно- познавательная

Фронтальная, парная

Таблица «Числовые промежутки»



15

Контрольная работа № 1 (урок контроля и оценки знаний)

«Математический язык. Математическая модель»

Самоконтроль знаний: тесты по теме

Знание:

- основных понятий темы (репродуктивно-алгоритмическое);

- приемов рационального выполнения задач темы, приемов решения задач повышенного уровня сложности (продуктивно-комбинаторное).

Умение:

- решать задачи по алгоритму (репродуктивно-деятеяьностное);

- решать комбинированные задачи с использованием более чем 3 алгоритмов; применять полученные знания в новой ситуации: использовать приемы рационального решения задач (продуктивно-деятельностное).

Приобретенная компетентность: предметная

Ком петентностно- ориентированная. Частично- поисковая

Рефлексивная

Индивидуальная

Контрольные задания [б]. Тесты [4]



Раздел 3. Линейная функция (12 ч)

Модуль 1. Координатная плоскость

Цели ученика:

  • развитие понятия «координатная плоскость»;

  • овладение умением строить прямую, удовлетворяющую уравнению с одной переменной

Цель педагога:

- создание условий для того, чтобы систематизировать и углубить представления учащихся о координатной плоскости

Унивсрсальные учебные действия (УУД): регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок: познавательные: владеть общим приемом решения задач; коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов.

Внеурочнам деятельность: учебный проект «Координаты в жизни человека».

16

Координатная плоскость

(урок обобщения и систематизации знаний)

§6, №6.21, 6.23

Знание:

- содержания понятия «координатная плоскость»; алгоритма построения точки по известным координатам, алгоритма определения координат данной точки, алгоритма построения прямой, удовлетворяющей линейному уравнению с одной переменной (репродуктивно-алгоритмическое)',

Традиционно- педагогическая. Объяснительно- иллюстративная

Учебно- познавательная

Фронтальная

Плакат «Прямоугольная система координат»






- особенностей координат точки, лежащей в том или ином месте координатной плоскости (на координатной оси, внутри координатного угла) (продуктивно-комбинаторное).

Умение: решать задачи (репродуктивно-деятельностное). Приобретенная компетентность: предметная







17

Координатная плоскость (урок применения и совершенствования знаний)

Творческое задание: придумать и описать рисунок по координатам

Знание:

- содержания понятия «координатная плоскость»; алгоритма построения точки по известным координатам, алгоритма определения координат данной точки, алгоритма построения прямой, удовлетворяющей линейному уравнению с одной переменной (репродуктивно-ачгоритмчческое)',

- особенностей координат точки, лежащей в том или ином месте координатной плоскости (на координатной оси, внутри координатного угла) (продуктивно-комбинаторное).

Умение: применять полученные знания в новой ситуации; переводить информацию из одной знаковой системы в другую (продуктивно- деятельностное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Учебно- познава- тельная

Фронтальная, индивидуальная

Проблемные задания

[8], [9]



Модуль 2. Линейная функция и ее график

Цели ученика:

  • освоение понятий «линейное уравнение с двумя переменными», «линейная функция», «прямая пропорциональность»;

  • овладение умениями находить решения линейного уравнения с двумя переменными. преобразовывать линейное уравнения с двумя переменными к виду линейной функции;

  • овладение умениями строить график линейной функции, в частности прямой пропорциональности, читать график линейной функции, определять по формуле особенности расположения графика на координатной плоскости

Цели педагога:

  • создание условий для того, чтобы учащиеся освоили основные понятия модуля в системе;

организация познавательной деятельности с целью выработки и освоения учащимися основных способов предметных действий с новыми понятиями;

  • создание условий для формирования умений учащихся переводить аналитическую информацию на язык графиков;

создание условий для развития графической культуры учащихся

Универсальные учебные действия (УУД): регулятивные: учитывать правило в планировании и контроле способа решения, различать способ и результат действия; познавательные: ориентироваться на разнообразие способов решения задач; коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве, контролировать действия партнера.

Внеурочная деятельность: поиск информации с использованием интернет-ресурсов: http://www.uic.ssu.samara ru/~nauka; учебный проект «Графики в жизни человека».

18

Линейное уравнение с двумя переменными

(урок изучения нового материала)

§7,

7.13, 7.23

Знание:

- содержания понятия «линейное уравнение с двумя переменными»; алгоритма нахождения корней линейного уравнения с двумя переменными

(репродуктивн о - алгоритмическое);

- приемов составления математической модели реальной ситуации в виде линейного уравнения с двумя переменными (продуктивно- комбинаторное). Умение решать задачи по алгоритму (репродуктивно-деятельностное). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Проблемное изложение

Учебно- познавательная

Фронтальная, парная

Проблемные задания [9]



19

Линейное уравнение с двумя переменными и его график (урок выработки способов предметных действий)

§7,

7.17, 7.19

Знание:

  • содержания понятия «график линейного уравнения с двумя переменными»; алгоритма построения графика (репродуктивно-алгоритмическое)\

  • графического и алгебраического способов нахождения точки пересечения двух прямых (продуктивно-комбинаторное).

Умение создавать алгоритмы деятельности, переводить информацию из одной знаковой системы в другую (продуктивно-деятельностное). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Проблемное изложение

Учебно- познавательная

Фронтальная, индивидуальная

Проблемные задания [8]



20

Линейное уравнение с двумя переменными и его график (урок применения и совершенствования знаний)

§7,

7.33, 7.35

Знание:

  • содержания понятия «график линейного уравнения с двумя переменными»; алгоритма построения графика (репродуктивно-алгоритмическое)',

  • графического и алгебраического способов нахождения точки пересечения двух прямых (продуктивно-комбинаторное).

Умение решать комбинированные задачи с использованием более чем 3 алгоритмов, применять полученные знания в новой ситуации; переводить информацию из одной знаковой системы в другую (продуктивно- деятельностное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Учебно- познавательная

Фронтальная, индивидуальная

Разноуровневые задания на карточках

[9]



21

Линейная функция (комбинированный урок)

§8, №8.11, 8.14

Знание:

-содержания понятия «линейная функция»; алгоритма преобразования линейного уравнения с двумя переменными к виду линейной функции

(репродуктивно-алгоритмическое).

Умение решать задачи по алгоритму (репродуктивно-деятельностное). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Проблемное изложение

Учебно- познава- тельная

Фронтальная, парная

Тест [4]



22

Линейная

функция и ее

график (урок

выработки

способов

предметных

действий)

§8,

8.32, 8.62

Знание:

-содержания понятия «график линейной функции», алгоритма построения графика (репродуктивно-алгоритмическое)',

- приемов чтения графика (продуктивно-комбинаторное)',

- приемов решения уравнений и неравенств с помощью графиков (продукт ивно-креат ивное).

Умение создавать алгоритмы деятельности, переводить информацию из одной знаковой системы в другую (продуктивно-деятельностное).

Приобретенная компетентность: предметная, ключевая

Компетентностно- ориентированная. Проблемное изложение

Учебно- познавательная

Фронтальная, парная

Математический диктант [3]



23

Прямая пропорциональность и ее график (комбинированный урок)

§9, № 9.9, 9.13

Знание:

-содержания понятий: прямая пропорциональность, возрастающая/убывающая функция; алгоритма построения графика прямой пропорциональности (репродуктивно-алгоритмическое);

  • способа задания формулой данного графика прямой пропорциональности (продуктивно-комбинаторное)',

  • особенностей расположения графика линейной функции в зависимости от знаков ко)ффициентов к и т (продуктивно-креативное).

Умение создавать алгоритмы деятельности, переводить информацию из одной знаковой системы в другую (продуктивно-деятельностное). Приобретенная компетентность: предметная, ключевая

Компетентностно-

ориентированная.

Поисковая

Учебно- познавательная

Фронтальная, индивидуальная

Проблемные задания [8]



24

Прямая пропорциональность и ее график (урок применения и совершенствования знаний)

§8,

8.32, 8.62

Знание:

-содержания понятий: прямая пропорциональность, возрастающая/убывающая функция; алгоритма построения графика прямой пропорциональности (репродуктивно-алгоритмическое)',

  • способа задания формулой данного графика прямой пропорциональности (продуктивно-комбинаторное)',

  • особенностей расположения графика линейной функции в зависимости от знаков коэффициентов к и т (продуктивно-креативное).

Умение владеть навыками совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диалогический). Приобретенная компетентность: ключевая

Компетентностно-

ориентированная.

Поисковая

Учебно- познава- тельная, рефлексивная

Групповая

Тест [4]



Модуль 3. Взаимное расположение графиков линейных функции

Цели ученика:

-овладение умением определять по формуле взаимное расположение графиков линейных функций

Цель педагога:

- создание условий для того, чтобы учащиеся выработали и освоили способы предметных действий по определению взаимного расположения графиков линейных функций


Универсальные учебные действия (УУД): регулятивные: осуществлять итоговый и пошаговый контроль по результату; познавательные: строить речевое высказывание в устной и письменной форме; коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве.

25

Взаимное расположение графиков линейных функций (комбинированный урок)

§ 10, 10.2, 10.4

Знание:

- видов взаимного расположения графиков линейных функций, способов определения взаимного расположения графиков линейных функций по их формулам (репродуктивно-алгоритмическое)\

- способа задания формулой данного графика прямой пропорциональности (продуктивно-комбинаторное)',

- особенностей расположения графика линейной функции в зависимости от знаков коэффициентов к и т (продуктивно-креативное).

Умение проводить исследование несложных ситуаций, делать обобщения, описывать и представлять результаты работы (креативно-преобразовательный). Приобретенная компетентность: целостная

Компетентностно-

ориентированная.

Поисковая

Учебно- познава- тельная

Фронтальная, индивидуальная

Таблица «Взаимное расположение графиков линейных функций»



26

Взаимное расположение графиков линейных функций (урок обобщения и систематизации знаний)

Домашняя контрольная работа

Знание:

- видов взаимного расположения графиков линейных функций, способов определения взаимного расположения графиков линейных функций по их формулам (репродуктивно-алгоритмическое);

способа задания формулой данного графика прямой пропорциональности (продуктивно-комбинаторное);

особенностей расположения графика линейной функции в зависимости от знаков коэффициентов к и т (продуктивно-креативное). Умение владеть навыками совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диалогический).

Приобретенная компетентность: ключевая

Компетентностно-

ориентированная.

Поисковая

Учебно- познавательная, рефлексивная

Групповая

Тест [4]. Проблемные задания [7], [9]












27

Контрольная работа № 2 (урок контроля и оценки знаний) «Линейная функция и ее график»


Самоконтроль знаний: тесты по теме

Знание:

  • основных понятий темы (репродуктивно-алгоритмическое)\

  • приемов рационального выполнения задач темы, приемов решения задач повышенного уровня сложности (продуктивно-комбинаторное). Умение:

  • решать задачи по алгоритму (репродуктивно-деятельностное);

- решать комбинированные задачи с использованием более чем 3 алгоритмов; применять полученные знания в новой ситуации; использовать приемы рационального решения задач (продуктивно-деятельностиое). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично-поисковая

Рефлексивная

Индивидуальная

Разноуровневые задания на карточках

[9]




Раздел 4. Системы двух линейных уравнений с двумя переменными (10 ч)

Модуль 1. Методы решения систем уравнений

Цели ученика:

- освоение понятий «система двух линейных уравнений с двумя переменными», «решение системы двух линейных уравнений с двумя переменными»;

- овладение умением определять, является ли пара чисел решением системы;

- овладение умениями решать систему двух линейных уравнений с двумя переменными графическим методом, методом подстановки, методом алгебраического сложения

Цели педагога:

  • создание условий для того, чтобы учащиеся получили целостное представление о системах уравнений с двумя переменными;

  • создание условий для того, чтобы учащиеся получили представление о системе двух линейных уравнений с двумя переменными как о математической модели реальной ситуации;

  • организация познавательной деятельности с целью выработки и освоения предметных действий по решению систем графическим способом;

создание условий для освоения учащимися способов предметных действий по решению систем двух линейных уравнений с двумя переменными

Универсальные учебные действия (У УД): регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки; познавательные: строить речевое высказывание в устной и письменной форме; коммуникативные: контролировать действия партнера.

28

Основные понятия

(комбинированный урок)

§ 11, №11.11, 11.14

Знание:

- содержания понятий: система двух линейных уравнений с двумя переменными, решение системы двух линейных уравнений с двумя переменными; алгоритма графического решения системы (репродуктивно-алгоршпмическое)', -способа распознавания систем, имеющих единственное решение, множество решений, не имеющих решения (продуктивно-комбинаторное). Умение решать задачи по алгоритму (репродуктивно-деятельностное). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Проблемное изложение

Учебно- познавательная

Фронтальная

Проблемные задания [7], [9]. Слайд- лекция «Методы решения си

с тем

уравнений»




29

Метод подстановки

(урок изучения нового материала)

§ 12, № 12.2, 12.4

Знание:

- алгоритма решения системы двух линейных уравнений с двумя переменными методом подстановки (репродуктивно-алгоритмическое)\

- приемов рационального решения систем методом подстановки (продуктивно-комбинаторное).

Умение:

- решать комбинированные задачи с использованием 2-3 и более алгоритмов; использовать приемы рационального решения задач

(продуктивно-деятельностное);

- применять полученные знания в новой ситуации (продуктивно- деятельностное).

Приобретенная компетентность: предметная

Традиционно- педагогическая. Объяснительно- иллюстративная

Учебно- познавательная

Фронтальная, индивидуальная

Слайд- лекция «Методы решения систем уравнений»



30

Метод подстановки (урок применения и совершенствования знаний)

§ 12, № 12.8 12.9

Компетентностно- ориентирован ная. Репродуктивная

Учебно- познавательная

Парная

Разноуровневые задания на карточках [9]



31

Метод подстановки (урок применения и совершенствования знаний)

§ 12, № 12.22- 12.25

Компетентностно- ориентированная. Частично- поисковая

Учебно- познавательная, рефлексивная

Фронтальная, парная

Тест [4]



32

Метод алгебраического сложения (урок изучения нового материала)

§ 13, № 13.6, 13.9

Знание:

  • алгоритма решения системы двух линейных уравнений с двумя переменными методом алгебраического сложения (репр(х)уктивно-а1горитмическое)-,

  • приемов рационального решения систем методом алгебраического сложения (продукт ивно-комбинаторное).

Умение:

  • решать задачи с использованием 2-3 алгоритмов (репродуктивно- деятельностное);

  • решать комбинированные задачи с использованием более чем 3 алгоритмов; применять приемы рационального решения задач (продуктивно- деятельностное).

Приобретенная компетентность: предметная

Традиционно- педагогическая. Объяснительно- иллюстративная

Учебно- познавательная

Фронтальная, индивидуальная

Слайд- лекция «Методы решения систем уравнений»



33

Метод алгебраического сложения (урок применения и совершенствования знаний)

Творческое задание: № 13.14, 13.9.

Компетентностно-

ориентированная.

Репродуктивная






34

Метод алгебраического сложения (урок применения и совершенствования знаний)

Домашняя контрольная работа

Компетентностно-

ориентированная.

Репродуктивная

Учебно- познавательная, рефлексивная

Фронтальная, парная

Математический диктант

[3].

Тест [2]



Цели ученика:

- овладение умением решать залами, используя в качестве математической модели систему двух линейных уравнений с двумя переменными

Цели педагога:

-создание условий для выработки и освоения предметных действий по решению задач с помощью систем двух линейных уравнений с двумя переменными;

подбор заданий, позволяющих формировать у учащихся понимание возможности использования приобретенных знаний и умений в практической деятельности и повседневной жизни

Универсальные учебные действия (УУД): регулятивные: учитывать правило в планировании и контроле способа решения; познавательные: ориентироваться на разнообразие способов решения задач; коммуникативные: контролировать действия партнера,

Внеурочная деятельность: электив «Решение текстовых задач»; учебный проект «Видеозадачи».

35

Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (комбинированный урок)

§ 14, № 14.5, 14.8

Знание:

  • этапов составления системы уравнений по условию задачи (репродук- тивно-алгоритмическое);

  • приемов определения рационального способа решения данной системы уравнений (продуктивно-комбинаторное)',

  • приемов конструирования реальной ситуации по данной математической модели в виде системы уравнений (продуктивно-креативное).

  • Умение владеть навыками совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диалогический).

Приобретенная компетентность: ключевая

Компетентностно-

ориентированная.

Поисковая

Учебно- познавательная

Фронтальная, групповая

Проблемные задания [7], [9]



36

Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (урок обобщения

и систематизации знаний)

Домашняя контрольная работа

Знание:

  • этапов составления системы уравнений по условию задачи (репродук- тивно-алгоритмическое)',

  • приемов определения рационального способа решения данной системы уравнений (продуктивно-комбинаторное)',

  • приемов конструирования реальной ситуации по данной математической модели в виде системы уравнений (продуктивно-креативное).

Умение составлять математическую модель ситуации (креативно-преоб- разовательный).

Приобретенная компетентность: ключевая

Ком петентностно-

ориентированная.

Поисковая

Учебно- познавательная, рефлексивная

Групповая

Разноуровневые задания на карточках [9]




37

Контрольная работа № 3 (урок контроля и оценки знаний)

«Системы двух линейных уравнений с двумя переменными»

Самоконтроль знаний: тесты по теме

Знание:

-основных понятий темы (репродуктивно-алгоритмическое)\

- приемов рационального выполнения задач темы, приемов решения задач повышенного уровня сложности (продуктивно-комбинаторное). Умение:

- решать задачи по алгоритму (репродуктивно-деятельностное)\

- решать комбинированные задачи с использованием более чем 3 алгоритмов; применять полученные знания в новой ситуации; использовать приемы рационального решения задач (продуктивно-деятельностное).

Приобретенная компетентность: ключевая

Компетентностно- ориентированная. Частично- поисковая

Рефлексивная

Индивидуальная

Контрольные задания [б]. Тесты [4]



Раздел 5. Степень с натуральным показателем и ее свойства (8 ч)

Модуль 1. Степень с натуральным показателем

Цели ученика:

-освоение понятия «степень с натуральным показателем»;

-овладение умением находить натуральную степень числа, пользоваться таблицей степеней

Цель педагога:

  • создание условий для обобщения и систематизации сведений о степени с натуральным показателем, полученных учащимися в курсах математики 5-6 классов;

  • создание условий для формирования представлений учащихся о степени как составляющей математического языка;

создание условий для освоения учащимися специальной терминологии: «степень», «основание степени», «квадрат числа», «куб числа»

Универсальные учебные действия (УУД): регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок; познавательные: проводить сравнение и классификацию по заданным критериям; коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве.

38

Что такое степень с натуральным показателем

§ 15, № 15.20- 15.23, 15.29

Знание:

- понятия степени с натуральным показателем, приемов вычисления натуральной степени для различных типов чисел (репродуктивно-апгоритмическое)',

Компетентностно-

ориентированная.

Репродуктивная

Учебно- познавательная

Фронтальная, индивидуальная

Таблица «Степень





(комбинированный урок)


-способа представления числа в виде произведения степеней (продуктивно-комбинаторное)',

Умение решать задачи по алгоритму (репродуктивно-деятельностный). Приобретенная компетентность: предметная




с натуральным показателем»



39

Таблица основных степеней (комбинированный урок)

§ 16, № 16.19, 16.24

Знание

принципов составления правил применения таблицы степеней (репродуктивно-алгоритмическое).

Умение

решать комбинированные задачи с использованием более чем 3 алгоритмов (продуктивно-деятельностное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Проблемное изложение

Учебно- познавательная

Фронтальная, парная

Проблемные задания [6]



40

Свойства степени с натуральным показателем (урок объяснения нового материала)

§ 17, № 17.25, 17.32

Знание:

-свойств степени с натуральным показателем (репродуктивно-алгоритмическое)';

- принципов вывода свойств степени с натуральным показателем (продуктивно-комбинаторное).

Умение

решать задачи по алгоритму (репродуктивно-деятельностный).

Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Репродуктивная

Учебно- познавательная

!*0

Фронтальная, индивидуальная

Таблица «Степень с натуральным показателем»



41

Свойства степени с натуральным показателем (урок применения и совершенствования знаний)

§ 17, № 17.40, 17.42

Знание:

- свойств степени с натуральным показателем (репродуктивно-алгорит- мическое);

- принципов вывода свойств степени с натуральным показателем (про- дуктивно-комбинаторное).

Умение решать комбинированные задачи с использованием более чем 3 алгоритмов (продуктивно-деятельностное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Учебно- познавательная

Фронтальная, парная

Проблемные задания [9]



Модуль 2. Действия над степенями с натуральным показателем

Цели ученика:

  • освоение свойств степени с натуральным показателем;

  • овладение умением использовать свойства степени для преобразования алгебраических выражений

Цели педагога:

  • организация познавательной деятельности по выводу совместно с учащимися свойств степени;

  • создание условий для того, чтобы учащиеся научились применять свойства степени для упрощения алгебраических выражений;

создание условий для введения степени с нулевым показателем как понятия, не противоречащего изученным свойствам степени

Универсальные учебные действия (УУД): регулятивные: учитывать правило в планировании и контроле способа решения; познавательные: ориентироваться на разнообразие способов решения задач; коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве.

42

Умножение и деление степеней с одинаковыми показателями (урок выработки способов предметных действий)

§ 18, № 18.18, 18.19

Знание:

- правил умножения и деления степеней с одинаковыми показателями

(репродукт ивно-алгоритмическое);

- принципов вывода правил умножения и деления степеней с одинаковыми показателями (продуктивно-комбинаторное).

Умение создавать алгоритмы деятельности (продуктивно-деятельност- ный).

Приобретенная компетентность: предметная, ключевая

Ком петент ностно- ориентирован ная. Поисковая

Учебно- познавательная

Групповая

Таблица «Степень с натуральным показателем»



43

Умножение и деление степеней с одинаковыми показателями (урок применения и совершенствования знаний)

§ 18, № 18.20, 18.21. Творческое задание: № 18.24

Знание:

  • правил умножения и деления степеней с одинаковыми показателями

('репродуктивно-алчгоритмическое);

  • принципов вывода правил умножения и деления степеней с одинаковыми показателями (продуктивно-комбинаторное).

Умение владеть навыками совместной деятельности, распределять работу в фуппе, оценивать работу участников группы (личностно-диапогический). Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Поисковая

Учебно- познавательная, рефлексивная

Групповая

Проблемные задания

[7], [9]



44

Степень с нулевым показателем (урок обобщения и систематизации знаний)

Домашняя контрольная работа

Знание:

  • понятия степени с нулевым показателем (репродуктйено-апгоритмиче-

ское)\

  • принципов обоснования равенства а0 = 1 (продуктивно-комбинаторное). Умение решать комбинированные задачи с использованием более чем 3 алгоритмов, применять полученные знания в новой ситуации (продуктивно- деятельностное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Проблемное изложение

Учебно- познавательная

Фронтальная, индивидуальная

Тест [4]



45

Контрольная работа № 4 (урок контроля и оценки знаний) «Степень с натуральным показателем и ее свойства»

Самоконтроль знаний: тесты по теме

Знание:

  • основных понятий темы (репродуктивно-ачгоритмическое)',

  • приемов рационального выполнения задач темы, приемов решения задач повышенного уровня сложности (продуктивно-комбинаторное). Умение:

  • решать задачи по алгоритму (репродуктивно-деятельностное);

Компетентностно- ориентированная. Частично- поисковая

Рефлексивная

Индивидуальная

Разноуровневые контрольные за-




(продуктивно-деятелыюстное). Приобретенная компетентность: предметная




дания Тесты

[4]



Раздел 6. Одночлены. Операции над одночленами (9 ч)

Модуль 1. Понятие одночлена. Сумма одночленов

Цели ученика:

- освоение понятий «одночлен», «коэффициент одночлена», «стандартный вид одночлена», «сумма одночленов»;

- овладение умением приводить одночлен к стандартному виду, выполнять сложение одночленов

Цели педагога:

  • создание условий для формирования представлений учащихся об одночлене и его сумме как элементах математического языка;

создание условий для того, чтобы учащиеся осознали, что стандартный вид одночлена - самая простая и удобная форма его записи

Универсальные учебные действия (УУД): регулятивные: учитывать правило в планировании и контроле способа решения; познавательные: ориентироваться на разнообразие способов решения задач; коммуникативные: контролировать действия партнера.

Внеурочная деятельность: учебный проект «Элементы математического языка».

46

Понятие одночлена. Стандартный вид одночлена (комбинированный урок)

§20,

20.13,

20.15

Знание:

  • понятий: одночлен, стандартный вид одночлена; алгоритма приведения одночлена к стандартному виду (репродуктивно-ачгоритмическое)\

  • приемов составления математической модели ситуации в виде одночлена (продуктивно-комбинаторное).

Умение решать задачи по алгоритму (репродуктивно-деяте1ьностное). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Проблемное изложение

Учебно- познава- тельная

Фронтальная, индивидуальная

Проблемные задания [8]



47

Понятие одночлена. Стандартный вид одночлена (урок применения и совершенствования знаний)

§20, №20.18

Знание:

  • понятий: одночлен, стандартный вид одночлена; алгоритма приведения одночлена к стандартному виду (репродуктивно-алгоритмическое)\

  • приемов составления математической модели ситуации в виде одночлена (продуктивно-комбинаторное).

Умение решать комбинированные задачи с использованием более чем 3 горитмов, приводить для иллюстрации изученных положений самостоятельно подобранные примеры (продуктивно-деятелыюстное). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Учебно- познавательная

Фронтальная, парная

Разноуровневые задания на карточках

[9]



48

Сложение и вычитание одночленов (урок выработки способов предметных действий)

§20, №20.13, 20.16

Знание:

- понятия «подобные одночлены», алгоритма сложения и вычитания одночленов (репродуктивно-алгоритмическое)',

- приемов составления математической модели ситуации в виде суммы или разности одночленов (продуктивно-комбинаторное).

Умение решать задачи по алгоритму (репродуктивно-деятельностное). Приобретенная компетентность: предметная

Ком петентностно-

ориентированная.

Репродуктивная

Учебно- познавательная

Фронтальная, индивидуальная

Слайд- лекция «Операции над одночленами». Тест [4]



49

Сложение и вычитание одночленов (урок применения и совершенствования знаний)

§20, №20.18, 20.22

Знание:

  • понятия «подобные одночлены», алгоритма сложения и вычитания одночленов (репродуктивно-алгоритмическое)',

  • приемов составления математической модели ситуации в виде суммы или разности одночленов (продуктивно-комбинаторное).

Умение решать комбинированные задачи с использованием более чем 3 алгоритмов (продуктивно-деятелыюстное). Приобретенная компетентность: предметная



Компетентностно- ориентированная. Частично- поисковая

Учебно- познавательная

Фронтальная, парная

Проблемные задания

[9]



Модуль 2. Операции над одночленами

Цели ученика:

-освоение способов выполнения сложения, вычитания, умножения, деления одночленов, возведения одночлена в натуральную степень;

-овладение умением применять полученные знания для упрощения выражений, решения уравнений

Цель педагога:

- создание условий для выработки и освоения предметных действий по выполнению основных операций с одночленами

Универсальные учебные действия (УУД): регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки; познавательные: строить речевое высказывание в устной и письменной форме; коммуникативные: контролировать действия партнера.

Внеурочная деятельность: учебный проект «Элементы математического языка».

50

Умножение одночленов. Возведение одночлена в натуральную

степень (урок

выработки

способов

§22, 22.16, 20.18

Знание:

  • алгоритмов умножения одночленов, возведения одночлена в натуральную степень (репродуктивно-алгоритмическое)',

  • приемов упрощения алгебраических выражений с одночленами (продукт ивно-комбинаторное).

Компетентностно-

ориентированная.

Поисковая

Учебно- познавательная

Фронтальная, групповая

Слайд- лекция «Операции над од-




Умение создавать алгоритмы деятельности (продуктивно-деятельностнос).




ночле-




Приобретенная компетентность: предметная




нами»












предметных










действий)









51

Умножение

§22,

Знание:

Компетентностно-

Учебно-

Группо

Про




одночленов.

22.31,

- алгоритмов умножения одночленов, возведения одночлена в натураль

ориентированная.

познава-

вая

блем




Возведение

20.32.

ную степень (репродуктивно-алгоритмическое)\

Поисковая

тельная,


ные за




одночлена

Творче

- приемов упрощения алгебраических выражений с одночленами (про


рефлек


дания




в нату ральную

ское за

дуктивно-комбинаторное).


сивная


17], [9]




степень (урок

дание:

Умение владеть навыками совместной деятельности, распределять работу








применения

22.34

в гpyппe, оценивать работу участников группы (личностно-диаюгический).








и совершен


Приобретенная компетентность: предметная








ствования










знаний)









52

Деление од

§23,

Знание:

Компетентностно-

Учебно-

Фрон

Слайд-




ночлена

23.7,

- алгоритма деления одночленов (репродуктивно-алгоритмическое)\

ориентированная.

познава

тальная,

лекция




на одночлен

23.14

- приемов упрощения алгебраических выражений с одночленами; способа

Поисковая

тельная

группо

«Опе




(урок выра


определения корректности/некорректности задания (продуктивно-ком



вая

рации




ботки спосо


бинаторное).




над од




бов предмет


Умение:




ночле




ных действий)


- создавать алгоритмы деятельности (продуктивно-деятельностное);




нами»



53

Деление од

Домаш

- владеть навыками совместной деятельности, уметь распределять работу

Ком петентностно-

Учебно-

Группо

Тест [4]




ночлена

няя кон

в группе, оценивать работу участников группы (личностно-диаюгиче

ориентированная.

познава

вая





на одночлен

троль

ский).

Поисковая

тельная,






(урок обобще

ная ра

Приобретенная компетентность: предметная, ключевая


рефлек






ния и систе

бота



сивная






матизации










знаний)









54

Контрольная

работа № 5

(урок контроля и оценки знаний) «Одночлены. Операции над одночленами»

Само

Знание:

Ком пете нтностно-

Рефлек

Индиви

Разно




кон

-основных понятий темы (репродуктивно-а!горитмическое)\

ориентированная.

сивная

дуальная

уровне




троль

- приемов рационального выполнения задач темы, приемов решения задач

Частично-



вые




знаний:

повышенного уровня сложности (продуктивно-комбинаторное).

поисковая



кон




тесты по теме

Умение:

- решать задачи по алгоритму (репродуктивно-деятельностный)\




трольные за-






- решать комбинированные задачи с использованием более чем 3 алгоритмов; применять полученные знания в новой ситуации; использовать приемы рационального решения задач (продуктивно-деятельностное).

Приобретенная компетентность: предметная, ключевая




дания

[5], [8].

Тесты

[4]



Раздел 7. Многочлены. Операции над многочленами (18 ч)

Модуль 1. Понятие многочлена. Сложение многочленов

Цели ученика:

- освоение понятий «многочлен», «стандартный вид многочлена», «сумма многочленов»»;

- овладение умением выполнять действия над многочленами (сумма, разность);

- овладение умением приводить многочлен к стандартному виду

Цели педагога:

  • создание условий для формирования представлений учащихся о многочлене как элементе математического языка;

  • организация учебно-познавательной деятельности по овладению умением выполнять действия над многочленами (сумма, разность);

создание условий для того, чтобы учащиеся осознали, что стандартный вид многочлена - самая простая и удобная форма его записи

Универсальные учебные действия (УУД): регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки; познавательные: владеть общим приемом решения задач; коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов.

55

Понятие многочлена. Стандартный вид многочлена (комбинированный урок)

§24,

24.12,

24.18

Знание:

  • понятий: многочлен, стандартный вид многочлена; алгоритма приведения многочлена к стандартному виду (репродуктивно-акоритмическое);

  • приемов составления математической модели ситуации в виде многочлена (продуктивно-комбинаторное).

Умение решать задачи по алгоритму (репродуктивно-деятельностное). Приобретенная компетентность: предметная

Ком петентностно- ориентированная. Проблемное изложение

Учебно- познавательная

Фронтальная, индивидуальная

Проблемные задания [8]



56

Понятие многочлена. Стандартный вид многочлена (урок применения

§24, №24.13, 24.24. Творческое за-

Знание:

  • понятий: многочлен, стандартный вид многочлена; алгоритма приведения многочлена к стандартному виду (репродуктивно-алгоритмическое)\

  • приемов составления математической модели ситуации в виде многочлена (продуктивно-комбинаторное).

Умение: решать комбинированные задачи с использованием более чем 3 алгоритмов, приводить для иллюстрации изученных положений самостоятельно подобранные примеры (продуктивно-деятелыюстное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Учебно- познавательная

Фронтальная, парная

Тест [4]




и совершенствования знаний)

дание: № 22.34




57

Сложение и вычитание многочленов (урок выработки способов предметных действий)

§25,

25.4,

25.5

Знание:

-алгоритма сложения/вычитания многочленов (репродуктивно-алгорит- мическое)\

-приемов составления математической модели ситуации в виде суммы/разности многочленов (продуктивно-комбинаторное).

Умение

решать задачи по алгоритму (репродуктивно-деятечьностное).

Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Репродуктивная

Учебно- познава- тельная

Фронтальная, индивидуальная

Слайд- лекция «Операции

над многочленами»



58

Сложение и вычитание многочленов (урок применения и совершенствования знаний)

§25, №25.11, 25.12. Творческое задание: №25.13

Знание:

  • алгоритма сложения/вычитания многочленов (репродуктивно-аторит- мическое);

  • приемов составления математической модели ситуации в виде суммы/разности многочленов (продуктивно-комбинаторное).

Умение

решать комбинированные задачи с использованием более чем 3 алгоритмов (продуктивно-деятельностное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично-поисковая

Учебно- познавательная

Фронтальная, парная

Проблемные задания

[9]



Модуль 2. Умножение многочленов

Цели ученика:

  • освоение способов выполнения умножения мног очлена на одночлен, многочлена на многочлен;

  • овладение умением выполнять действия над многочленами (умножение);

  • развитие умения применять полученные знания для упрощения выражений, решения уравнений, текстовых задач

Цели педагога:

  • создание условий для выработки и освоения предметных действий по выполнению основных операций с многочленами;

организация учебно-познавательной деятельности по овладению умением выполнять действия над многочленами (умножение)

Универсальные учебные действия (УУД): регулятивные: различать способ и результат действия; познавательные: владеть общим приемом решения задач; коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов.

59

Умножение многочлена на одночлен (урок выработки способов предметных действии)

§26, №26.6, 26.9,

Знание:

- алгоритма умножения многочлена на одночлен (репродуктивно- алгоритмическое);

- приемов упрощения алгебраических выражений с многочленами (про

дуктивно-комбинаторное).

Умение владеть навыками совместной деятельности, распределять работу

в группе, оценивать работу участников группы (личностно- диалогический).

Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Поисковая

Учебно- познавательная,

Групповая

Проблемные за дания

[7],[9]




60

Умножение многочлена на одночлен (урок выработки способов предметных действии)

26.11,

26.16.

Творче

ское задание: №26.17

Знание:

- алгоритма умножения многочлена на одночлен (репродуктивно- алгоритмическое);

- приемов упрощения алгебраических выражений с многочленами (про

дуктивно-комбинаторное).

Умение владеть навыками совместной деятельности, распределять работу

в группе, оценивать работу участников группы (личностно- диалогический).

Приобретенная компетентность: предметная


рефлек

сивная















61

Умножение

многочлена

на многочлен

(урок выра

ботки спосо

бов предмет

ных действий)

§27,

27.5,

27.10,

27.13

Знание:

- алгоритма умножения многочлена на многочлен (репродуктивно-

алгоритмическое)\

- приемов упрощения алгебраических выражений с многочленами (про

дуктивно-комбинаторное).

Умение:

-создавать алгоритмы деятельности (продуктивно-деятельностный); - владеть навыками совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диалогический).

Приобретенная компетентность: предметная, ключевая

Компетентностно-

ориентированная.

Поисковая

Учебно-

познава

тельная

Фрон

тальная,

группо

вая

Слайд-

лекция

«Опе

рации

над

много

членами»



62

Умножение

многочлена

на многочлен

(урок приме

нения и со

вершенство

вания знаний)

§27,

27.14,

27.23

Компетентностно-

ориентированная.

Поисковая

Учебно-

познава-

тельная,

рефлек

сивная

Группо

вая

Разно

уровне

вые за

дания

на кар

точках

[9]



63

Умножение

многочлена

на многочлен

(урок обобще

ния и систе

матизации

знаний)

Домаш

няя кон

троль

ная ра

бота

Знание:

- алгоритмов выполнения основных операций с многочленами (репродук-

тивно-алгоритмическое);

- приемов упрощения алгебраических выражений, решения уравнений

с многочленами, решения текстовых задач (продуктивно-комбинаторное).

Умение

решать комбинированные задачи с использованием более чем

3 алгоритмов, применять полученные знания в новой ситуации, использовать приемы рационального решения задач (продуктивно-деятельностное). Приобретенная компетентность: ключевая

Компетентностно-

ориентированная.

Частично-

поисковая

Учебно-

познава-

тельная

Фрон

тальная,

парная

Про

блем

ные за

дания

[9].

Тест [4]



64

Контрольная

работа № 6

(урок контро

ля и оценки

знаний) «Многочлены. Операции над многочленами»


Само

кон

троль

знаний:

тесты по теме

Знание:

-основных понятий темы (репродуктивно-алгоритмическое)\

- приемов рационального выполнения задач темы, приемов решения задач

повышенного уровня сложности (продуктивно-комбинаторное).

Умение:

- решать задачи по алгоритму (репродуктивно-деятельностное)\

- решать комбинированные задачи с использованием более чем 3 алгоритмов; применять полученные знания в новой ситуации; использовать приемы рационального решения задач (продуктивно-деятельностное).

Приобретенная компетентность: ключевая

Компетентностно-

ориентированная.

Частично-

поисковая

Рефлек

сивная

Индиви

дуальная

Разно

уровне

вые

кон

трольные за-

дания

[5], [9].

Тесты

[4]



Модуль 3. Формулы сокращенного умножения

Цели ученика:

- освоение формул сокращенного умножения;

- овладение умением применять формулы для преобразования алгебраических выражений, решения уравнений;

- развитие умения решать текстовые задачи методом математического моделирования

Цели педагога:

  • создание условий для понимания учениками необходимости применения формул сокращенного умножения;

  • организация познавательной деятельности по выводу формул сокращенного умножения;

создание условий для формирования у учащихся представлений о применении формул сокращенного умножения

Универсальные учебные действия (УУД): регулятивные: учитывать правило в планировании и контроле способа решения; познавательные: осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы; коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве.


65

Формулы сокращенного умножения (урок выработки способов предметных действий)

§28, №28.9, 28.11

Знание:

  • формул квадрата суммы, квадрата разности (Непродуктивно- алгоритмическое)',

  • приемов применения формул для упрощения алгебраических выражений (продуктивно-комбинаторное).

Умение решать задачи по алгоритму (репродуктивно-деятепьностное). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Проблемное изложение

Учебно- познавательная

Фронтальная, индивидуальная

Презентация «Формулы сокращенного умножения».




66

Формулы сокращенного умножения (урок применения и совершенствования знаний)

§28, №28.13, 28.18

Знание:

- формул квадрата суммы, квадрата разности (репродуктивно-алгоритмическое)',

- приемов применения формул для упрощения алгебраических выражений

(продуктивно-комбинаторное).

Умение решать комбинированные задачи с использованием более чем 3 алгоритмов, применять полученные знания в новой ситуации (продуктивно- деятельностное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Учебно- познавательная

Фронтальная, парная

Тест [2]



67

Формулы сокращенного умножения (урок выработки способов предметных действии)

§28, № 28.25, 28.26

Знание:

  • формулы разности квадратов (продуктивно-комбинаторное)',

  • приемов применения формулы для упрощения алгебраических выражений (репродуктивно-алгоритмическое).

Умение решать задачи по алгоритму (репродуктивно-деятельностное). Приобретенная компетентность: предметная

Компетентностно- ориентированная. Проблемное изложение

Учебно- познава- тельная

Фронтальная, индивидуальная

Презентация «Формулы сокращенного умножения»



68

Формулы сокращенного умножения (урок применения и совершенствования знаний)

§28, № 28.30, 28.38

Знание:

  • формулы разности квадратов (репродуктивно-ачгоритмическое)\

  • приемов применения формулы для упрощения алгебраических выражений (продуктивно-комбинаторное).

Умение решать комбинированные задачи с использованием более чем 3 алгоритмов, применять полученные знания в новой ситуации (продуктивно- деятельностное).

Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Поисковая

Учебно- познава- тельная, рефлексивная

Групповая

Проблемные задания

[7], [9]



69

Формулы сокращенного умножения

(комбинированный урок)

§28, № 28.53

Знание:

  • формул суммы и разности кубов (репродуктивно-алгоритмическое)-,

  • приемов применения формул для упрощения алгебраических выражений

(продукт йен о-комбинит орное).

Умение

владеть навыками совместной деятельности, распределять работу в фуппе, оценивать работу участников группы (личностно-диалогиче- ский).

Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Поисковая

Учебно- познава- тельная

Фронтальная, групповая

Презентация «Формулы сокращенного умножения». Тест [4]



Модуль 4. Деление многочлена на одночлен

Цели ученика:

- освоение способа выполнения деления многочлена на одночлен;

- овладение умением выполнять действия над многочленами (деление);

- развитие умения применять полученные знания для упрощения выражений, решения уравнений

Цели педагога:

  • создание условий для выработки и освоения предметных действий по выполнению деления многочлена на одночлен;

организация учебно-познавательной деятельности по овладению умением выполнять действия над многочленами (деление)

Универсальные учебные действия (УУД): регулятивные: учитывать правило в планировании и контроле способа решения; познавательные: ориентироваться на разнообразие способов решения задач; коммуникативные: контролировать действия партнера.


70

Деление многочлена на одночлен (комбинированный урок)

§29, № 29.5, 29.7

Знание:

  • алгоритма деления многочлена на одночлен (репродуктивно-алгорит- мическое);

  • приемов упрощения алгебраических выражений с многочленами (продуктивно-комбинаторное).

Умение создавать алгоритмы деятельности (продуктивно-деятельно- стный).

Приобретенная компетентность: предметная, ключевая

Компетентностно-

ориентированная.

Поисковая

Учебно- познавательная

Фронтальная, групповая

Слайд- лекция «Операции над многочленами»



71

Деление многочлена на одночлен (урок обобщения и систематизации знаний)

Домашняя контрольная работа

Знание:

  • алгоритма деления многочлена на одночлен (репродуктивно-алгорит- мическое);

  • приемов упрощения алгебраических выражений с многочленами (продуктивно-комбинаторное).

Умение владеть навыками совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диалогический). Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Поисковая

Учебно- познава- тельная, рефлексивная

Групповая

Проблемные задания

[71. [9]



72

Контрольная работа №7 (урок контроля и оценки знаний)

«Деление многочлена на одночлен»

Самоконтроль знаний: тесты по теме

Знание:

-основных понятий темы (репродуктивно-алгоритмическое)\

приемов рационального выполнения задач темы, решения задач повышенного уровня сложности (продуктивно-комбинаторное).

Умение

решать задачи по алгоритму (репродуктивно-деятельностное)\ решать комбинированные задачи с использованием более чем 3 алгоритмов; применять полученные знания в новой ситуации: использовать приемы рационального решения задач (продуктивно-деятелъностное).

Приобретенная компетентность: предметная

Компетентностно- ориентированная. Частично- поисковая

Рефлексивная

Индивидуальная

Разноуровневые контрольные задания

[5, [8]. Тесты

И1



Раздел 8. Разложение многочленов на множители (18 ч)

Модуль 1. Вынссенне общего множителя за скобки. Способ группировки

Цели ученика:

- освоение понятия «разложение многочлена на множители» и области его применения;

- овладение умением выполнять разложение на множители путем вынесения общего множителя за скобки, способом группировки;

- овладение умением применять полученные знания для упрощения вычислений, решения уравнений

Цель педагога:

  • создание условий для того, чтобы учащиеся понимали необходимость разложения многочлена на множители;

создание условий для того, чтобы учащиеся освоили основные способы разложения многочлена на множители, научились применять их для упрощения вычислений, решения уравнений

Универсальные учебные действии (УУД): регулятивные: учитывать правило в планировании и контроле способа решения: познавательные: строить речевое высказывание в устной и письменной форме; коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов.

73

Что такое разложение многочлена на множители и зачем оно нужно

(урок объяснения нового материала)

§30, № 30.3, 30.6, 30.12

Знание:

  • области применения разложения многочлена на множители (репродук- тивно-алгоритмическое)\

  • приемов применения данного способа для упрощения вычислений, решения уравнений (продуктивно-комбинаторное).

Умение решать задачи по алгоритму (репродуктивно-деятельностное). Приобретенная компетентность: предметная

Ком петентностно- ориентирован ная. Проблемное изложение

Учебно- познава- тельная

Фронтальная, индивидуальная

Разноуровневые задания на карточках

[9]



74

Вынесение общего множителя за скобки (урок выработки способов предметных действий)

§31,

31.12,

31.17

Знание:

  • алгоритма вынесения общего множителя за скобки (репродуктивно- апгоритмическое);

  • приемов применения данного способа для упрощения вычислений, решения уравнений (продуктивно-комбинаторное).

Умение создавать алгоритмы деятельности, решать комбинированные задачи с использованием более чем 3 алгоритмов, применять полученные знания в новой ситуации; использовать приемы рационального решения задач (продуктивно-деятельностное).

Приобретенная компетентность: предметная

Ком петентностно- ориентированная. Проблемное изложение

Инфор-

мацион-

но-ком-

муника-

ционная

Фронтальная, парная

Слайд- лекция «Разложение многочленов на множители». Проблемные задания [8]



75- 76

Вынесение общего множителя за скобки (урок применения и совершенствования знаний)

§31, №31.22, 31.24. Творческое задание: №31.26

Знание:

  • алгоритма вынесения общего множителя за скобки (репродуктивно- апгоритмическое);

  • приемов применения данного способа для упрощения вычислений, решения уравнений (продуктивно-комбинаторное).

Умение создавать алгоритмы деятельности, решать комбинированные задачи с использованием более чем 3 алгоритмов, применять полученные знания в новой ситуации; использовать приемы рационального решения задач (продуктивно-деятельностное).

Приобретенная компетентность: предметная

Компетснтностно- ориен тированная. Репродуктивная

Учебно- познавательная

Фронтальная, индивидуальная

Математический диктант

[3].

Гест [4]



77

Способ группировки (урок выработки способов предметных действий)

§32, № 32.6, 32.8

Знание:

  1. алгоритма разложения многочлена на множители способом группировки

(репродуктивно-алгоритмическое)',

  1. приемов применения данного способа для упрощения вычислений, решения уравнений (продуктивно-комбинаторное).

Умение создавать алгоритмы деятельности (продуктивно-деятелыюстный); решать задачи с использованием 2-3 алгоритмов (репродуктивно- деятельностное).

Приобретенная компетентность: предметная, ключевая

Компетентностно- ориентирован ная. Проблемное изложение

Инфор- мацион- но-ком- муника- ционная

Фронтальная, индивидуальная

Слайд- лекция «Разложение многочленов на множители». Проблемные задания [8]



78

Способ группировки (урок применения и совершенствования знаний)

§32, № 32.9, 32.15

Компетентностно-

ориентированная.

Поисковая

Учебно- познавательная

Фронтальная, групповая

Проблемные задания [71, [9]



79

Способ группировки (урок применения и совершенствования знаний)

Творческое задание: №32.18

Знание:

  • алгоритма разложения многочлена на множители способом группировки

(репродуктивно-алгоритмическое);

  • приемов применения данного способа для упрощения вычислений, решения уравнений (продуктивно-комбинаторное).

Умение владеть навыками совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диалогический). Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Поисковая

Учебно- познавательная, рефлексивная

Групповая, рефлексивная

Разноуровневые задания на карточках [9]



Модуль 2. Разложение на множители с помощью формул сокращенного умножения

Цели ученика:

  • освоение формул сокращенного умножения;

- овладение умением применять формулы для преобразования алгебраических выражений, решения уравнений;

  • развитие умения решать текстовые задачи методом математического моделирования

Цели педагога:

  • создание условий для понимания учениками необходимости применения формул сокращенного умножения;

  • организация познавательной деятельности по выводу формул сокращенного умножения;

создание условий для формирования у учащихся представлений о применении формул сокращенного умножения

Универсальные учебные действия (УУД): регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки; познавательные: строить речевое высказывание в устной и письменной форме; коммуникативные: контролировать действия партнера.


80-

Разложение

§33,

Знание:

Компетентностно-

Инфор-

Фрон

Презен



81

многочлена

33.5,

- формул разности квадратов, суммы и разности кубов (репродуктивно-

ориентированная.

мацион-

тальная,

тация




на множители

33.8,

алгоритмическое);

Проблемное из

но-ком-

индиви

«Фор




с помощью

33.15;

- приемов применения формул для разложения многочлена на множители

ложение

муника-

дуальная

мулы




формул со

33.9,

(продуктивно-комбинаторное).


ционная.


сокра




кращенного

33.31,

Умение:


Учебно-

щенно




умножения

33.40

- создавать алгоритмы деятельности (продуктивно-деятельностный)',


познава


го ум




(урок выра


- решать задачи с использованием 2-3 алгоритмов (репродуктивно-дея-


тельная


ноже




ботки спосо


тельностное).




ния»




бов предмет


Приобретенная компетентность: предметная, ключевая








ных действий)









82

Разложение

§33,

Знание:

Компетентностно-

Учебно-

Фрон

Про




многочлена

на множители

с помощью фор

мул сокращен

ного умножения

(урок выработ

ки способов

предметных

действий)

33.21,

- формул квадрата суммы, квадрата разности (репродуктивно-алгоритми-

ориентированная.

познава-

тальная,

блем




33.23,

ческое);

Поисковая

тельная

группо

ные за




33.25

- приемов применения формул для разложения многочлена на множители



вая

дания





(продуктивно-комбинаторное').




[8]





Умение создавать алгоритмы деятельности (продуктивно-деятельностное).









Приобретенная компетентность: предметная, ключевая


































83

Разложение

§33,

Знание:

Компетентностно-

Учебно-

Группо

Про




многочлена

33.51,

- формул квадрата суммы, квадрата разности (репродуктивно-алгоритми-

ориентированная.

познава

вая

блем




на множители

33.52

ческое).

Поисковая

тельная,


ные за




с помощью


- приемов применения формул для разложения многочлена на множители


рефлек


дания




формул со


(продуктивно-комбинаторное).


сивная


[7]. [9]




кращенного

умножения

(урок примене-

ним и совершенствования знаний)


Умение владеть навыками совместной деятельности, распределять работу








в группе, оценивать работу участников группы (личностно-диалогический).








Приобретенная компетентность: предметная














84

Разложение многочлена на множители с помощью комбинации различных приемов (урок выработки способов предметных действий)

§34, № 34.9, 34.12

Знание:

  1. способов разложения многочлена на множители, формул сокращенного умножения (репродуктивно-алгоритмическое)',

  2. приемов комбинации различных способов для разложения многочлена на множители (продуктивно-комбинаторное).

Умение создавать алгоритмы деятельности (продуктивно-деятельностное). Приобретенная компетентность: предметная, ключевая

Ком петснтностно- ориентированиая. Проблемное изложение

Инфор-

мацион-

но-ком-

муника-

ционная

Фронтальная

Разноуровневые задания на карточках [8]



Модуль 3. Сокращение алгебраических дробей

Цели ученика:

  • освоение понятий: алгебраическая дробь, тождество;

  • овладение умением выполнять сокращение алгебраических дробей;

  • овладение умением доказывать простейшие тождества

Цели педагога:

  • создание условий для освоения учащимися понятий: алгебраическая дробь, тождество (пропедевтическое понятие);

создание условий для расширения представлений учащихся об области применения разложения многочлена на множители

Универсальные учебные действия (УУД): регулятивные: учитывать правило в планировании и контроле способа решения; познавательные: ориентироваться на разнообразие способов решения задач; коммуникативные: контролировать действия партнера.



Разложение многочлена на множители с помощью комбинации различных приемов (урок применения и совершенствования знаний)

§ 34, № 34.23, 34.25. Творческое задание: № 34.20

Знание:

  • способов разложения многочлена на множители, формул сокращенного умножения (репродуктивно-алгоритмическое)\

  • приемов комбинации различных способов для разложения многочлена на множители (продуктивно-комбинаторное).

Умение:

  • применять полученные знания в новой ситуации;

  • использовать приемы рационального решения задач (продуктивно- деятепьностное).

Приобретенная компетентность: предметная

Компетентностно-

ориентированная.

Репродуктивная

Учебно- познава- тельная

Фронтальная, индивидуальная

Тест [4]



86

Разложение

Домаш-

Знание:


Компетентностно-

Учебно-

Индиви-

Разно-




многочлена

няя кон-

- способов разложения многочлена на множители, формул сокращенного

ориентированная.

познава-

дуальная,

уровне-




на множители

троль-

умножения (репродуктивно-алгоритмическое);


Частично-

тельная

парная

вые за-




с помощью комбинации различных приемов (урок обобщения

и систематизации

знаний)

ная работа

- приемов комбинации различных способов для разложения многочлена на множители (продуктивно-комбинаторное).

Умение:

- применять полученные знания в новой ситуации;

- использовать приемы рационального решения задач (продуктивно-деятелъностное).

поисковая



дания на карточках [9].

Тест [4]





Приобретенная компетентность: предметная








87

Контрольная

Само-

Знание:

- основных понятий темы (репродуктивно-алгоритмическое);

- приемов рационального выполнения задач темы, решения задач повы-

шенного уровня сложности (продуктивно-комбинаторное).

Умение решать комбинированные задачи с использованием более чем 3 алгоритмов, применять полученные знания в новой ситуации (продуктивно-

деятельностное).

Приобретенная компетентность: предметная, ключевая

Компетентностно-

Рефлек-

Индиви-

Кон-

троль-

ные за-

дания

[б]. Тесты

[4]




работа № 8

кон-

ориентированная.

сивная

дуальная




(урок контро-

троль

Частично-






ля и оценки

знаний:

поисковая






знаний) «Разложение многочлена на множители »

тесты по теме






















88

89

Сокращение алгебраических дробей (урок выработки спосо-

бов предмет

ных действий)

§35,

Знание:

- понятия «алгебраическая дробь»; алгоритма сокращения алгебраических

дробей (репродуктивно-алгоритмическое).

Умение:

- решать комбинированные задачи с использованием более чем 3 алго-

ритмов; применять полученные знания в новой ситуации; использовать

приемы рационального решения задач (продуктивио-деятельностное);

- создавать алгоритмы деятельности.

Приобретенная компетентность: предметная, ключевая

Компетентностно-

Инфор-

Фрон-

Разно-

уровне-

вые за-

дания

на кар-

точках

[9].

Тест [4]




35.12,

ориентированная.

мацион-

тальная,




35.15;

Проблемное из-

но-ком-

индиви-




35.34,

ложение

муника-

дуальная




35.39


ционная


































90

Тождества

§36,

Знание:

понятия тождества (репродуктивно-алгоритмическое);

- приемов доказательства тождеств (продуктивно-комбинаторное).

Умение

решать задачи по алгоритму (репродуктивно-деятельностное).

Приобретенная компетентность: предметная

Традиционно-

Учебно-

Фрон-

Разно-

уровне-

вые задания

на карточках [9]








(комбиниро-

36.9,

педагогическая.

познава-

тальная




ванный урок)

36.10

Объяснительно-иллюстративная

тельная












Раздел 9. Функция у = х2 (7 ч)

Цели ученика:

-ознакомление с понятием «квадратичная функция»;

- освоение алгоритма построения графика функции у = х2, алгоритма графического решения уравнений;

- развитие умения читать график функции

Цель педагога:

-создание условий для того, чтобы учащиеся получили общее представление

о построении графика функции по точкам, научились определять простейшие свойства функции по графику;

- создание условий для развития умения учащихся применять графический способ для решения уравнений;

- создание условий для первичного ознакомления учащихся с понятием функции

Универсальные учебные действия (УУД): регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок; познавательные: строить речевое высказывание в устной и письменной форме; коммуникативные: контролировать действия партнера.

Внеурочная деятельность: учебный проект «Зависимости между величинами».

91-92

Функция у = х2 и ее график (комбинированный урок)

§37, №

37.14, 37.15; 37.18

Знание:

- алгоритма построения графика функции^ = х2 (репродуктивно-алгоритмическое);

- приемов чтения графика (продуктивно-комбинаторное);

- приемов решения уравнений и неравенств с помощью графиков, (продуктивно-креативное).

Умение

переводить информацию из одной знаковой системы в другую (продуктивно-деятельностное); проводить исследование несложных ситуаций, обобщать, описывать и представлюсь результаты работы по плану (креативно-преобразовательный).

Приобретенная компетентность: предметная, ключевая

Компетентностно-ориентированная. Проблемное изложение

Инфор-мацион-но-ком-муника-ционная

Фронтальная, групповая

Разноуровневые задания на карточках [9]. Проблемные задания [7],[9])



93-94

Графическое решение уравнений (урок выработки способов предметных действий)

§38, №38.2, 38.5; 38.9. Творческое задание: № 38.8

Знание:

- алгоритма графического решения уравнений (репродуктивно-ачгорит-мическое);

- способа распознавания уравнений, имеющих конечное количество решений, множество решений, не имеющих решения (продуктивно-комбинаторное).

Умение решать комбинированные задачи с использованием более чем 3 алгоритмов, применять полученные знания в новой ситуации, переводить информацию из одной знаковой системы в другую (продуктивно-деятельностное); составлять математическую модель ситуации, проводить исследование несложных ситуаций, обобщать, описывать и представлять результаты работы по плану (креативно-преобразовательный).

Приобретенная компетентность: предметная, целостная

Компетентностно-ориентированная. Частично-поисковая

Учебно-познавательная

Фронтальная, групповая

Проблемные задания [8].

Разноуровневые задания на карточках [9]



95-

Что означает

в математике

запись

У = f(x)

(комбинированный урок)

§39,

39.7,

39.9.

Домаш-

няя контрольная работа

Знание:

- понятия тождества (репродуктивно-алгоритмическое);

- приемов доказательства тождеств (продуктивно-комбинаторное).

Умение решать задачи по алгоритму, решать задачи с использованием

2-3 алгоритмов (репродуктивно-деятельностное). Приобретенная компетентность: предметная

Традиционно-

Учебно-

Фрон-

Тест [4]



96

педагогическая.

познава-

тальная,





Объяснительно-

тельная

индиви-





иллюстративная


дуальная











97

Контрольная

работа № 9

(урок контроля и оценки

знаний) «Функция у = х2 и ее график»

Само-

Знание:


Компетентностно-

Рефлек-

Индиви-

Разно-

уровне-

вые кон-

трольные задания [5], [9]. Тесты Г41




кон-

- основных понятий темы (репродуктивно-алгоритмическое);

ориентированная.

сивная

дуальная




троль знаний:

- приемов рационального выполнения задач темы, решения задач повышенного уровня сложности (продуктивно-комбинаторное).

Частично-поисковая





тесты по теме

Умение решать задачи по алгоритму (репродуктивно-деятельностное); комбинированные задачи с использованием более чем 3 алгоритмов; применять полученные знания в новой ситуации; использовать приемы рационального решения задач (продуктивно-деятельностное)






Раздел 10. Повторение курса 7 класса (8 ч)

Цели ученика:

- Обобщение и систематизация курса алгебры 7 класса;

- подготовка к итоговому контролю

Цели педагога:

- обобщение и систематизация курса алгебры 7 класса;

- создание условий для плодотворного участия каждого ученика в работе группы;

- развитие умения самостоятельно и мотивированно организовывать свою дея-

тельность









Универсальиые учебные действия (УУД): регулятивные: различать способ и результат действия; познавательные: владеть общим приемом решения задач;

коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов.











98

Одночлены

и многочлены

(урок обобще-

ния и систематизации знаний)

Разно-

уровневые за-

дания на карточках

Знание:

- основных понятий темы; алгоритмов основных операций над одночленами и многочленами (репродуктивно-алгоритмическое);

- приемов рационального выполнения действий с одночленами и многочленами (продуктивно-комбинаторное).

Умение решать комбинированные задачи с использованием более чем 3 алгоритмов, использовать приемы рационального решения задач; приводить для иллюстрации изученных положений самостоятельно подобранные примеры (продуктивно-деятельностное). Приобретенная компетентность: предметная

Компетентностно-

ориентированная. Частично-поисковая



Учебно-

познавательная

Фрон-

тальная, индивидуальная



Про-

блемные задания [8], [9]











99

Функции и графики функций (урок обобщения и систематизации знаний)

Разноуровневые задания на карточках

Знание:

- основных понятий темы; алгоритмов построения и чтения графиков (репродуктивно-алгоритмическое) ;

- приемов использования графиков для решения уравнений, систем уравнений, неравенств (продуктивно-комбинаторное).

Умение:

- переводить информацию из одной знаковой системы в другую; приводить для иллюстрации изученных положений самостоятельно подобранные примеры (продуктивно-деятельностное);

- владеть навыками совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диалогический).

Приобретенная компетентность: ключевая

Компетентностно-ориентированная. Частично-поисковая

Учебно-познавательная

Фронтальная, парная

Презентация

«Функции. Графики

функций»



100

Итоговая контрольная работа (урок контроля и оценки знаний) «Одночлены

и многочлены»



Знание:

- основных понятий курса (репродуктивно-алгоритмическое);

- приемов рационального выполнения задач курса, приемов решения задач повышенного уровня сложности (продуктивно-комбинаторное).

Умение: '

- решать задачи по алгоритму (репродуктивно-деятельностное);

- решать комбинированные задачи с использованием более чем 3 алгоритмов; применять полученные знания в новой ситуации; использовать приемы рационального решения задач (продуктивно-деятельностное)

Компетентностно-ориентированная. Частично-поисковая

Рефлексивная

Индивидуальная




101

Математическое моделирование при решении текстовых задач (урок обобщения и систематизации знаний)

Разноуровневые задания на карточках

Знание:

- основных понятий темы (репродуктивно-алгоритмическое);

- метода математического моделирования (продуктивно-комбинаторное);

- приемов составления задачи по данной математической модели (продуктивно-креативное).

Умение:

- составлять математическую модель ситуации (креативно-преобразовательный);

- владеть навыками совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диалогический). Приобретенная компетентность: целостная

Компетентностно-

ориентированная.

Поисковая

Учебно-познавательная, рефлексивная

Групповая

Разноуровневые задания на карточках [9]



102

Математическое моделирование при решении текстовых задач (урок обобщения и систематизации знаний)

Разноуровневые задания на карточках

Знание:

- основных понятий темы (репродуктивно-алгоритмическое);

- метода математического моделирования (продуктивно-комбинаторное);

- приемов составления задачи по данной математической модели (продуктивно-креативное).

Умение:

- составлять математическую модель ситуации (креативно-преобразовательный);

- владеть навыками совместной деятельности, распределять работу в группе, оценивать работу участников группы (личностно-диалогический). Приобретенная компетентность: целостная

Компетентностно-

ориентированная.

Поисковая

Учебно-познавательная, рефлексивная

Групповая

Разноуровневые задания на карточках [9]











































Учебно-методическое обеспечение


  1. Методические и учебные пособия

  • Алгебра. 7 класс. Контрольные работы для учащихся общеобразоват. учрежд./ Л.А.Александрова; под ред. А.Г.Мордковича. – М.: Мнемозина, 2009. – 39 с.

  • Алгебра. Тесты для промежуточной аттестации. 7-8 класс./ Под ред. Ф.Ф.Лысенко. – Ростов-на-Дону: Легион-М, 2009. – 224 с.

  • Мордкович А.Г. Алгебра. 7 класс: методическое пособие для учителя. – М.: Мнемозина, 2008. – 64 с.

  • Мордкович А.Г. Алгебра – 7. Часть 1, учебник. М.: Мнемозина, 2010.

  • Мордкович А.Г., Мишустина Т.Н., Тульчинская Е.Е. Алгебра – 7. Часть 2, задачник. М.: Мнемозина, 2010.

  • Мордкович А.Г., Тульчинская Е.Е. Алгебра. 7-9 классы. Тесты для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2008. – 119 с.

  • Попов М.А. Контрольные и самостоятельные работы по алгебре: 7 класс: к учебнику А.Г.Мордковича и др. «Алгебра. 7 класс».- М.: Издательство «Экзамен», 2009. – 63 с.

  • Программы. Математика. 5-6 кл. Алгебра. 7-9 кл. Алгебра и начала математического анализа. 10-11 кл./авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2011. – 63 с.

  1. Оборудование и приборы

  • Доска с набором приспособлений для крепления таблиц.

  • Комплект инструментов классных: линейка, угольник (300, 600), угольник (450, 450), циркуль.

  • ПК


  1. Дидактический материал

  • Карточки для проведения самостоятельных работ по всем темам курса.

  • Карточки для проведения контрольных работ.

  • Карточки для индивидуального опроса учащихся по всем темам курса.

  • Тесты.


  1. Интернет-ресурсы

http://urokimatematiki.ru

http://intergu.ru/

http://www.openclass.ru/

http://festival.1september.ru/articles/subjects/1

http://www.uchportal.ru/load/23

http://easyen.ru/

http://karmanform.ucoz.ru

http://polyakova.ucoz.ru/

http://le-savchen.ucoz.ru/


Критерии оценивания знаний, умений и навыков обучающихся по математике.

Для оценки достижений учащихся применяется пятибалльная система оценивания.

Нормы оценки:

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

1) работа выполнена полностью;

2) в логических рассуждениях и обосновании решения нет пробелов и ошибок;

3) в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится, если:

1) работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

2)допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

1) допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

1) допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.


2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Итоговая оценка знаний, умений и навыков

1. За учебную четверть и за год знания, умения и навыки учащихся по математике оцениваются одним баллом.

2. Основанием для выставления итоговой оценки знаний служат результаты наблюдений учителя за повседневной работой учеников, устного опроса, текущих и итоговых контрольных работ. Однако последним придается наибольшее значение.

    1. При выставлении итоговой оценки учитывается как уровень теоретических знаний ученика, так и овладение им практическими умениями и навыками. Однако ученику не может быть выставлена положительная итоговая оценка по математике, если все или большинство его текущих обучающих и контрольных работ, а также итоговая контрольная работа оценены как неудовлетворительные, хотя его устные ответы оценивались положительно.



Литература


  1. Алгебра. 7 класс. Контрольные работы для учащихся общеобразоват. учрежд./ Л.А.Александрова; под ред. А.Г.Мордковича. – М.: Мнемозина, 2009. – 39 с.

  2. Алгебра. Тесты для промежуточной аттестации. 7-8 класс./ Под ред. Ф.Ф.Лысенко. – Ростов-на-Дону: Легион-М, 2009. – 224 с.

  3. Мордкович А.Г. Алгебра. 7 класс: методическое пособие для учителя. – М.: Мнемозина, 2008. – 64 с.

  4. Мордкович А.Г. Алгебра – 7. Часть 1, учебник. М.: Мнемозина, 2010.

  5. Мордкович А.Г., Мишустина Т.Н., Тульчинская Е.Е. Алгебра – 7. Часть 2, задачник. М.: Мнемозина, 2010.

  6. Мордкович А.Г., Тульчинская Е.Е. Алгебра. 7-9 классы. Тесты для учащихся общеобразовательных учреждений. – М.: Мнемозина, 2008. – 119 с.

  7. Настольная книга учителя математики: Справочно-методическое пособие/Сост. Л.О.Рослова.– М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004.–429 с.

  8. Попов М.А. Контрольные и самостоятельные работы по алгебре: 7 класс: к учебнику А.Г.Мордковича и др. «Алгебра. 7 класс».- М.: Издательство «Экзамен», 2009. – 63 с.

  9. Программы. Математика. 5-6 кл. Алгебра. 7-9 кл. Алгебра и начала математического анализа. 10-11 кл./авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2011. – 63 с.

  10. «Я иду на урок математики, 7 класс, алгебра», библиотека «Первого сентября», 2001 г.





Автор
Дата добавления 23.10.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров63
Номер материала ДБ-285054
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх