Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по алгебре 9 класс к УМК Макарычева

Рабочая программа по алгебре 9 класс к УМК Макарычева

  • Математика

Поделитесь материалом с коллегами:

Муниципальное автономное общеобразовательное учреждение

«Средняя общеобразовательная школа с.Окунёво»




РАССМОТРЕНО

на методическом

совете школы

протокол № ___

от_____20__ года

СОГЛАСОВАНО

Зам. директора поУР


Н.В.Замякина

__________20__ года

УТВЕРЖДАЮ

Директор школы

Н.П.Кукушкина

______20__ года









Рабочая программа


по алгебре


для 9 класса
















Составитель: учитель математики

и информатики

Попкова Елена Ивановна










2016-2017 учебный год


Пояснительная записка


Рабочая программа составлена на основе Федерального Государственного стандарта, Примерной программы основного общего образования по математике, федерального базисного учебного плана для образовательных учреждений РФ и с использованием рекомендаций авторской программы Ю.Н.Макарычева. (Программа по алгебре, авт. Ю.Н. Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова, в сборнике «Алгебра. Программы общеобразовательных учреждений. 7-9 классы. Составитель Т.А.Бурмистрова, изд. «Просвещение», 2009 г.)

Рабочая программа адресована учащимся 9 класса средней общеобразовательной школы и является логическим продолжением линии освоения математических дисциплин.

В соответствии с федеральным базисным учебным планом для образовательных учреждений РФ на изучение алгебры в 9 классе отводится 102 часа. Рабочая программа предусматривает обучение алгебре в объёме 3 часа в неделю в течение 1 учебного года.

Алгебра как учебный предмет является неотъемлемой составной частью математического образования на всех ступенях образования.

Цель изучения предмета:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Рабочая программа по алгебре реализуется через формирование у учащихся общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций за счёт использования технологий: структурно-логических (системный подход), организация исследования на уроках и внеурочной деятельности, демонстрация отчетов учащихся об исследовании; поиск информации.

Основной формой обучения являются уроки разных типов: уроки усвоения новой учебной информации; уроки формирования практических умений и навыков учащихся; уроки совершенствования и знаний, умений и навыков; уроки обобщения и систематизации знаний, умений и навыков; уроки проверки и оценки знаний, умений и навыков учащихся; помимо этого в программе предусмотрены такие виды учебных занятий как практические работы, игры, тренинги, уроки контроля и др.

В рабочей программе предусмотрены варианты изучения материала, как в коллективных, так и в индивидуально-групповых формах.

Для получения объективной информации о достигнутых учащимися результатах учебной деятельности и степени их соответствия требованиям образовательных стандартов; установления причин повышения или снижения уровня достижений учащихся с целью последующей коррекции образовательного процесса предусмотрен следующий инструментарий:

  • мониторинг учебных достижений в рамках уровневой дифференциации;

  • использование разнообразных форм контроля (предварительный, текущий, тематический, итоговый контроль): контрольная работа, самостоятельная проверочная работа, тестирование, диктант, письменные домашние задания, анализ результатов выполнения диагностических заданий учебного пособия. Для текущего тематического контроля и оценки знаний в системе уроков предусмотрены контрольные работы. Курс завершают уроки, позволяющие обобщить и систематизировать знания, а также применить умения, приобретенные при изучении математики;

  • разнообразные способы организации оценочной деятельности учителя и учащихся.

Для повышения уровня полученных знаний и приобретения практических умений и навыков программой предусматривается выполнение самостоятельных работ. Они ориентируют учащихся на активное познание изучаемого материала и развитие вычислительных умений.

Представленные в рабочей программе самостоятельные работы являются фрагментами уроков, не требующими для их проведения дополнительных учебных часов.

В результате изучения алгебры в 9 классе ученик должен

знать/понимать:

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =, у=, у=ах2+bх+с, у= ах2+n у= а(х - m) 2 ), строить их графики.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.

Элементы логики, комбинаторики, статистики и теории вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.

Рабочая программа по алгебре реализуется через формирование у учащихся образовательных компетентностей: ценностно-смысловых, общекультурных учебно-познавательных, информационных, коммуникативных, социально-трудовых, компетенции личностного самосовершенствования.

Учебно-тематический план

Наименование

разделов и тем

Количество

часов

В том числе:

Самостоятельные работы

Контрольные работы

Квадратичная функция

26


1

Функции и их графики.

1



Область определения и область значений функции.

2

1


Свойства функций.

2

1


Квадратный трехчлен и его корни.

2

1


Разложение квадратного трехчлена на множители.

2

1


Анализ контрольной работы.

Функция и её свойства.

3

2


Графики функций hello_html_3ca99df6.gifhello_html_f35a62c.gif и y = a(xm)2hello_html_m384525c5.gif.

2

1


Построение графика квадратичной функции.

1



Решение неравенств второй степени.

3

2


Метод интервалов.

4

2


Применение

метода интервалов к исследованию функции

1



Обобщающий урок по теме: «Квадратичная функция»

2

1


Уравнения и системы уравнений

18


1

Целое уравнение и его корни.

3

2


Уравнения, приводимые к квадратным.

4

2


Графический способ решения систем уравнений.

3

1


Решение систем уравнений второй степени.

4

2


Решение задач с помощью систем уравнений второй степени.

2

1


Обобщение темы: «Уравнения и системы уравнений»

1



Прогрессии

18


2

Последовательности.

2

1


Арифметическая прогрессия. Формула n-го члена арифметической прогрессии.

4

2


Формула суммы n первых членов арифметической прогрессии.

4

2


Геометрическая прогрессия. Формула n-го члена геометрической прогрессии.

4

2


Формула суммы n первых членов геометрической прогрессии.

2

2


Степенная функция. Корень n -й степени.

8



Четные и нечетные функции.

1



Функция y = xnhello_html_m7f7c988d.gif.

1

1


Определение корня

n-й степени.

1

1


Свойства арифметического корня n-й степени.

4

2


Определение степени с дробным показателем.

1



Элементы статистики и теории вероятностей

15


1

Примеры комбинаторных задач.

2

1


Перестановки

2

1


Размещения

2

1


Сочетания

3

1


Вероятность случайного события.

2

1


Сложение и умножение вероятностей.

2

1


Итоговое повторение курса алгебры 9 класса

17


1

Общее количество часов

102

39

6


1 четверть

2 четверть

3 четверть

4 четверть

год

количество теории

24

21

25

26

96

количество часов практики

1

1

2

2

6

из них:






количество контрольных работ

1

1

2

2

6


Содержание тематического плана


1. Свойства функций. Квадратичная функция (26 часов)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с > 0 ах2 + bх + с < 0, где а0.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида , . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

2. Уравнения и неравенства с одной переменной (18 часов)

Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.

Цель: систематизировать и обобщить сведения о решении целых с одной переменной, Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

3. Прогрессии (18 часов)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

4. Степенная функция. Корень n -й степени (9 часов)

Четная и нечетная функция. Функция у = хn. Определение корня n-й степени. Вычисление корней n -й степени.

Цель: ввести понятие корня n -й степени.

В данной теме продолжается изучение свойств функций: вводятся понятия четной и нечетной функции, рассматриваются свойства степенной функции с натуральным показателем. Изучение корней ограничивается введением понятия корня n-й степени и выполнением несложных заданий на вычисление корней n-й степени, в частности кубических корней.

Свойства корней n-й степени, понятие степени с рациональным показателем и ее свойства не изучаются. Этот материал будет рассмотрен в старшей школе.

5. Элементы комбинаторики и теории вероятностей (14 часов)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.



6. Повторение (17 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.


Информационные источники


Литература для учителя:

  1. Алгебра-9:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2004 – 2007 год.

  2. Уроки алгебры в 9 классе: кн. для учителя / В.И. Жохов, Л.Б. Крайнева. — М.: Просвещение, 2005— 2008.

  3. Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2008.

  4. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 - 2007г.

Литература для обучающихся:

  1. Алгебра-9:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2004 – 2007 год.

  2. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2007г.


Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 12.10.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров42
Номер материала ДБ-255155
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх