Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по алгебре 11 класс 2015-2016 учебный год

Рабочая программа по алгебре 11 класс 2015-2016 учебный год

  • Математика

Поделитесь материалом с коллегами:

Муниципальное общеобразовательное учреждение

«Медведевская школа» Джанкойского района Республики Крым



Рассмотрена и принята на

заседании школьного

методического совета

Протокол от _____№________

Руководитель

______ ___________________

дата А.Ш. Абибуллаев



Согласовано


заместитель

директора по УВР

______ ____________

дата Н.Н. Паламарчук


Утверждаю

Приказ от _____№________



Директор

_______ ______________

дата Н.Н. Васильев





Рабочая программа

по учебному предмету «Алгебра»

для 11 класса (базовый уровень)

на 2015 – 2016 учебный год





Программу составил

учитель математики

Абибуллаев А.Ш.







Медведевка, 2015

Оглавление

  1. Пояснительная записка

  2. Общая характеристика курса

  3. Содержание обучения

  4. Календарно-тематический план

  5. Критерии и нормы оценки знаний, умений и навыков обучающихся

  6. Место предмета в федеральном базисном учебном плане

  7. Литература









































Пояснительная записка

Рабочая программа учебного курса предназначена для изучения предмета на базовом уровне и является целостным документом.

Рабочая программа по алгебре и началам математического анализа 11 класс  составлена на основании:

  • федерального компонента государственного стандарта среднего (полного) полного образования;

  • Основная образовательная программа среднего (полного) общего образования муниципального общеобразовательного учреждения «Медведевская школа» Джанкойского района Республики Крым на 2015-2016 учебный год;

  • Авторской программы: «Программы по алгебре и началам анализа 10 класс» С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин из сборника «Программы общеобразовательных учреждений. Алгебра и начала математического анализа. 10-11 классы» составитель: Т.А. Бурмистрова – М.: «Просвещение» 2011 и ориентирована на работу с учебником и учебно-методическим комплексом:

  1. Никольский СМ., Потапов М.К., Решетни­ков Н.Н., Шевкин А. В. Программы по алгебре и на­чалам математического анализа. 10—11 классы. М.: Просвещение, 2011.

  2. Никольский СМ., Потапов М.К., Решетни­ков Н.Н., Шевкин А.В. Алгебра и начала математи­ческого анализа. 11 класс: Учебник для учащихся общеобразовательных учреждений (базовый и про­фильный уровни). М.: Просвещение, 2014.

  3. Потапов М.К., Шевкин А.В. Алгебра и нача­ла математического анализа: Книга для учителя. 10 класс (базовый и профильный уровни). М.: Про­свещение, 2008.

  4. Потапов М.К., Шевкин А.В. Алгебра и нача­ла математического анализа: Дидактические мате­риалы. 11 класс (базовый и профильный уровни). М.: Просвещение, 2011.

Нормативными документами для составления рабочей программы являются:

  1. Федеральный закон от 29.12.2012 N 273-ФЗ (ред. от 03.02.2014)  "Об образовании в Российской Федерации" 

  2. Постановление гл. государственного санитарного врача РФ от 29.12.2010 г. № 189  "Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»

  3. Приказ Минобрнауки РФ от 09.03.2004 N 1312 «Об утверждении федерального базисного ученого плана и примерных учебных планов для образовательных учреждений РФ, реализующих программы общего образования

  4. Приказ Минобразования России от 05.03.2004 N 1089 (ред. от 31.01.2012) "Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования"

  5. Федеральный компонент государственого стандарта общего образования, утвержденный приказом Минобрнауки РФ от 05.03.2004 №1089.

  6. Федеральный базисный учебный план для основного общего образования, утвержденный приказом Минобрнауки РФ от 09.03.2004 №1312.

  7. Федеральным законом от 05.05.2014 N 84-ФЗ "Об особенностях правового регулирования отношений в сфере образования в связи с принятием в Российскую Федерацию Республики Крым и образованием в составе Российской Федерации новых субъектов – Республики Крым и города федерального значения Севастополя и о внесении изменений в Федеральный закон "Об образовании в Российской Федерации".

  8. Методические рекомендации КРИППО: «Об особенностях преподавания математики в 2015– 2016 уч. году»



Общая характеристика курса

В базовом курсе содержание образования старшей школы, материал изученный  в основной школе, развивается в следующих направлениях:

  • систематизация сведений о числах; формирование представлений о расширении числовых множеств  от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

  • развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

  • систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

  • расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;

  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

  • совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

  • формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Цели:

Изучение математики в старшей школе на базовом  уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение  устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения  школьных  естественно-научных дисциплин,  для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры,  пространственного воображения, развитие математического мышления и интуиции,  творческих способностей на уровне, необходимом для продолжения образования и  для самостоятельной  деятельности в области математики и ее приложений  в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности:  знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Общеучебные умения, навыки и способы деятельности

В ходе изучения математики в базовом курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов,
использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;
– решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
– планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале;
– использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента;
– выполнения расчетов   практического характера;
– построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни;  
– проверки и оценки  результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным  опытом;
– самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.



Содержание обучения


включает следующие тематические блоки:

1.Функции и их графики(6 ч)

Элементарные функции и их свойства. Исследование функций и построение их графиков элементарными методами. Основные способы преобразования графиков.

Основная цель – овладеть методами исследования функций и построения их графиков.

Сначала вводятся понятия элементарной функции и суперпозиции функций

( сложной функции). Затем исследуются вопросы об области определения и области изменения функции, об ограниченности, четности (или нечетности) и переодичности функции, о промежутках возрастания(убывания) и знакопостоянства функции. Результаты исследования функции применяются для построения ее гра­фика. Далее рассматриваются основные способы преобразо­вания графиков функций — симметрия относительно осей координат, сдвиг вдоль осей, растяжение и сжатие графи­ков. Все эти способы применяются к построению графика функции у= Af (k (x- а)) + В по графику функции у = f(x).Рассматривается симметрия графиков функций у = f(x) и х = f(y)относительно прямой у = х. 

2.Предел функции и непрерывность(5ч)

Понятие предела функции. Односторонние пределы, свойства пределов. Непрерывность функций в точке, на интервале. Непрерывность элементарных функ­ций.

Основная цель — усвоить понятия предела функ­ции и непрерывности функции в точке и на интервале.

На интуитивной основе вводятся понятия предела функ­ции сначала при   х→+∞ , х→- ∞             , затем в точке. Рассмат­риваются односторонние пределы и свойства пределов функций. Вводится понятие непрерывности функции в точ­ке и на интервале. Выясняются промежутки непрерывности элементарных функций.

3.Обратные функции(3ч)

Понятие обратной функции.

Основная цель — усвоить понятие функции, обрат­ной к данной, и научить находить функцию, обратную к данной.

Сначала на простом примере вводится понятие функции, обратной к данной. Затем определяется функция, обратная

к данной строго монотонной функции. Приводится способ построения графика обратной функции.

Вводится понятие взаимно обратных функций, устанав­ливается свойство графиков взаимно обратных функций, построенных в одной системе координат. Исследуются основные обратные тригонометрические функции и строят­ся их графики.

4.Производная(9ч) или 8ч

Понятие производной. Производная суммы, разности, произведения и частного двух функций. Произ­водные элементарных функций. Производная сложной функции.

Основная цель — научить находить производную любой элементарной функции.

Сначала вводится новая операция: дифференцирование функции и ее результат — производная функции. Затем выясняется механический и геометрический смысл произ­водной, после чего находятся производные суммы, разно­сти, произведения, частного и суперпозиции двух функ­ций, а также производные всех элементарных функций. Доказывается непрерывность функции в точке, в которой она имеет производную..

5.Применение производной(15ч)

Максимум и минимум функции. Уравнение касательной. Приближенные вычисления. . Возраста­ние и убывание функций. Производные высших поряд­ков. Задачи на максимум и минимум.  По­строение графиков функций с применением производной.

Основная цель — научить применять производную при исследовании функций и решении практических задач.

Сначала вводятся понятия локальных максимума и ми­нимума функции, ее критических точек, а затем рассматри­вается метод нахождения максимума и минимума функции на отрезке. Выводится уравнение касательной к графи­ку функции, исследуется возрастание и убывание функций с помощью производных. Рассматриваются экстремум функ­ции с единственной критической точкой и задачи на макси­мум и минимум. Проводится исследование функций с помо­щью производной, строятся их графики.

6.Первообразная и интеграл(11ч) или 8ч

Понятие первообразной. . Площадь криволинейной трапеции. Определенный интеграл. Формула Ньютона — Лейбница. Свойства определенных интегралов. .

Основная цель — знать таблицу первообразных (не­определенных интегралов) основных функций и уметь при­менять формулу Ньютона — Лейбница при вычислении определенных интегралов и площадей фигур.

Сначала вводится понятие первообразной для функции, непрерывной на интервале, затем понятие неопределенного интеграла, приводятся основные свойства неопределенных «,, интегралов и таблица неопределенных интегралов. Опреде­ляется площадь криволинейной трапеции как предел инте­гральной суммы для неотрицательной функции. Опреде­ленный интеграл также вводится как предел интегральной суммы для непрерывной на отрезке функции. Приводится формула Ньютона — Лейбница для вычисления опреде­ленных интегралов.

Рассматриваются способы нахождения неопределенных интегралов — замена переменной и интегрирование по час­тям, метод трапеций для приближенного вычисления опре­деленных интегралов. Приводятся свойства определенных интегралов и их применение для вычисления площадей фи­гур на плоскости и для решения геометрических и физиче­ских задач.

7.Равносильность уравнений и неравенств(4ч)

Равносильные преобразования уравнений и неравенств.

Основная цель — научить применять равносильные преобразования при решении уравнений и неравенств.

Сначала перечисляются равносильные преобразования уравнений. Подчеркивается, что при таких преобразовани­ях множество корней преобразованного уравнения совпа­дает с множеством корней исходного уравнения. Рассматриваются примеры применения таких преобразований пpи решении уравнений.

Затем аналогичным образом рассматриваются равно сильные преобразования неравенств и их применение при решении неравенств.

8. Уравнения-следствия(7ч) или 5ч

Понятие уравнения-следствия. Возведение уравнения в четную степень. Потенцирование логарифмических уравнений. Приведение подобных членов уравнения. Освобождение уравнения от знаменателя.

Основная цель — научить применять преобразования, приводящие к уравнению-следствию.

Сначала вводится понятие уравнения-следствия, перечисляются преобразования, приводящие к уравнению-след­ствию. Подчеркивается, что при таком способе решение уравнения проверка корней уравнения-следствия является обязательным этапом решения исходного уравнения. Затем рассматриваются многочисленные примеры применения каждого из этих преобразований в отдельности и несколь­ких таких преобразований.

9.Равносильность уравнений и неравенств системам(9ч) или 5ч

Решение уравнений с помощью систем. Решение неравенств с помощью систем.

Основная цель — научить применять переход от уравнения (или неравенства) к равносильной системе.

Сначала вводятся понятия системы, равносильности систем, равносильности уравнения (неравенства) системе или совокупности систем.

Затем перечисляются некоторые уравнения (неравенст­ва) и равносильные им системы. Формулируются утверждения об их равносильности. Приводятся примеры приме­нения этих утверждений.

10.Равносильность уравнений на множествах(4ч)

Возведение уравнения в четную степень.

Основная цель — научить применять переход к сравнению, равносильному на некотором множестве исходному уравнению.

Сначала вводится понятие равносильности двух уравне­ний на множестве, описываются те множества чисел, на каждом из которых получается уравнение, равносильное на этом множестве исходному уравнению при возведении уравнения в четную степень, при умножении уравнения на функцию, при логарифмировании, при потенцировании, при приведении подобных членов уравнения, при приме­нении некоторых формул. Для каждого преобразования уравнения формулируются соответствующие утверждения о равносильности и приводятся примеры их применения.

11.Равносильность неравенств на множествах(3ч)

Возведение неравенства в четную степень и умноже­ние неравенства на функцию, потенцирование логариф­мических неравенств, приведение подобных членов, при­менение некоторых формул. Нестрогие неравенства.

Основная цель — научить применять переход к не­равенству, равносильному на некотором множестве исход­ному неравенству.

Вводится понятие равносильности двух неравенств на множестве, описываются те множества чисел, на каждом из которых получается неравенство, равносильное на этом множестве исходному неравенству при возведении уравне­ния в четную степень, при умножении уравнения на функ­цию, при потенцировании логарифмического неравенства, при приведении подобных членов неравенства, при приме­нении некоторых формул. Для каждого преобразования неравенства формулируются соответствующие утвержде­ния о равносильности и приводятся примеры их примене­ния. Рассматриваются нестрогие неравенства.

12.Метод промежутков для уравнений и неравенств(4ч) При 2,5 ч в неделю эта тема не изучается

Уравнения и неравенства с модулями. Метод интерва­лов для непрерывных функций.

Основная цель — научить решать уравнения и не­равенства с модулями и применять метод интервалов для решения неравенств.

Сначала рассматриваются уравнения с модулями и опи­сывается способ решения таких уравнений переходом к уравнениям, равносильным исходному на некотором мно­жестве и не содержащим модулей. Затем аналогично рас­сматриваются неравенства с модулями. Наконец, для функ­ций f(x), непрерывных на некоторых интервалах, рассмат­ривается способ решения неравенств f(x) > 0 и f(x) < 0. называемый методом интервалов.

При обучении на профильном уровне рассматриваются более сложные уравнения и неравенства.

13.Системы уравнений с несколькими неизвестными (7ч) или 5ч

Равносильность систем. Система-следствие. Метод заме­ны неизвестных.

Основная цель — освоить разные способы решения систем уравнений с несколькими неизвестными.

Вводятся понятия системы уравнений, равносильности систем, приводятся утверждения о равносильности сис­тем при тех или иных преобразованиях, рассматриваются основные методы решения систем уравнений: метод подста­новки, метод линейных преобразований, метод перехода к системе-следствию, метод замены неизвестных.

Рассматривается решение систем уравнений при помо­щи рассуждений с числовыми значениями.

14.Повторение курса алгебры и начал математическо­го анализа за 1011 классы (15ч) или 14ч

На вводное повторение в начале года взяты 2 часа из итогового повторения.



Календарно-тематическое планирование учебного материала

Алгебра и начала математического анализа 11 класс

урока

Пункта учебника

Тема урока

Кол-во

часов

Тип урока

Дата проведения урока

Повторение

Домашнее задание

По плану

По факту

1


Урок вводного повторения

1






2


Диагностическая контрольная работа

1








Функции

6






3


Элементарные функции

1




Функции, основные способы преобразования графиков


4


Область определения и область изменения функции. Ограниченность функции

1






5


Четность, нечетность, периодичность функций

1






6


Промежутки возрастания, убывания, знакопостоянства и нули функции

1






7


Исследование функций и построение их графиков элементарными методами

1






8


Основные способы преобразования графиков

1








Предел функции и непрерывность

5






9


Понятие предела функции.

1




Понятие предела последовательности


10,

11


Односторонние пределы и их свойства.

2




Свойства пределов


12,

13


Непрерывность функции

2








Обратные функции

3






14,

15


Понятие обратной функции

2






16


Контрольная работа №1 «Функции, их графики»

1








Производная

9






17,

18


Анализ контрольной работы. Понятие производной

2






19


Производная суммы, разности.

1




Понятие логарифма. Основное логарифмическое тождество


20,

21


Производная произведения, частного.

2




Свойства логарифмов


22


Производные элементарных функций

1






23,

24


Производная сложной функции

2




Показательные и логарифмические уравнения и неравенства


25


Контрольная работа №2 по теме: «Производная»

1








Применение производной

15






26,

27


Максимум и минимум функции

2






28,

29


Уравнение касательной

2




Уравнение прямой


30


Приближенные вычисления

1




Основные соотношения между тригонометрическими функциями одного аргумента


31,

32


Возрастание и убывание функций

2






33


Производные высших порядков

1






34,

35


Экстремум функции с единственной критической точкой

2




Тригонометрические уравнения


36,

37


Задачи на максимум и минимум

2




Тригонометрические функции, их графики и свойства


38,

39


Построение графиков функций с помощью производной

2




Основные способы преобразования графиков


40


Контрольная работа №3 «Применение производной»

1








Первообразная и интеграл

11






41,

42,

43


Анализ контрольной работы. Понятие первообразной

3






44


Площадь криволинейной трапеции

1




Тригонометрические уравнения


45,

46


Определённый интеграл

2




Тригонометрические уравнения


47,

48,

49


Формула Ньютона – Лейбница


3




Основные способы преобразования графиков


50


Свойства определённых интегралов

1






51


Контрольная работа №4 «Первообразная и интеграл»

1








Равносильность уравнений и неравенств

4






52,

53


Анализ контрольной работы. Равносильные преобразования уравнений

2




Тригонометрические уравнения


54,

55


Равносильные преобразования неравенств

2








Уравнения-следствия

7






56


Понятие уравнения-следствия

1




Показательные и логарифмические уравнения и неравенства


57,

58


Возведение уравнения в чётную степень

2






59


Потенцирование логарифмических уравнений.

1






60


Другие преобразования, приводящие к уравнению-следствию

1






61,

62


Применение нескольких преобразований, приводящих к уравнению-следствию

2




Вероятность события




Равносильность уравнения и неравенств

9






63


Равносильность уравнения и неравенств. Основные понятия

1






64,

65,

66,

67


Решение уравнений с помощью систем

4




Применение комбинаторных формул для вычисления вероятности


68-71


Решение неравенств с помощью систем

4








Равносильность уравнений на множествах

4






72


Равносильность уравнений на множествах. Основные понятия

1






73,

74


Возведение уравнения в чётную степень

2




Тригонометрические уравнения


75


Контрольная работа № 5 «Уравнения-следствия. Равносильность уравнений и неравенств системам»

1








Равносильность неравенств на множествах.

3






76


Анализ контрольной работы. Основные понятия

1






77

78


Возведение неравенств в чётную степень

2




Тригонометрические уравнения




Метод промежутков для уравнений и неравенств

4






79


Уравнения с модулями

1






80


Неравенства с модулями

1






81


Метод интервалов для непрерывных функций

1






82


Контрольная работа №6 «Равносильность неравенств на множествах. Метод интервалов»

1








Системы уравнений с несколькими неизвестными

7






83

84


Анализ контрольной работы. Равносильность систем

2




Показательные и логарифмические уравнения и неравенства


85

86


Система-следствие

2




Тригонометрические уравнения


87

88


Метод замены неизвестных

2






89


Контрольная работа №7 «Системы уравнений с несколькими неизвестными»

1








Повторение

13






90

91

92

93

94

95

96

97



Анализ контрольной работы. Повторение курса алгебры и начал математического анализа за 10 – 11 классы






8






98


Итоговая контрольная работа

2






99


Анализ контрольной работы

1






100-102


Резерв

3








Планирование составлено на основе программы общеобразовательных учреждений. Алгебра и начала анализа. 10-11 классы, - М.Просвещение, 2009. Составитель Т. А. Бурмистрова»



Учебник: Никольский СМ., Потапов М.К., Решетни­ков Н.Н., Шевкин А.В. Алгебра и начала математи­ческого анализа. 11 класс: Учебник для учащихся общеобразовательных учреждений (базовый и углубленный уровни). М.: Просвещение, 2014.



График проведения контрольных работ



Дата проведения урока

Тема

по плану

примечание



Контрольная работа №1 по теме: «Функции, их графики»



Контрольная работа №2 по теме: «Производная»



Контрольная работа № 3 по теме: «Применение производной»



Контрольная работа №4 по теме: «Первообразная и интеграл»



Контрольная работа №5 по теме: «Уравнения-следствия. Равносильность уравнений и неравенств системам»



Итоговая контрольная работа



Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике.

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Требования к уровню подготовки учащихся

В результате изучения математики на базовом уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира.

Алгебра

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.

Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

Начала математического анализа

уметь

  • вычислять производные и первообразные элементарных функций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

  • вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

Уравнения и неравенства

уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

  • составлять уравнения и неравенства по условию задачи;

  • использовать для приближенного решения уравнений и неравенств графический метод;

  • изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

уметь

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;

  • анализа информации статистического характера.



Место предмета в учебном плане школы

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования (10-11 классы) отводится не менее 276 часов из расчета 4 часа в неделю. Рабочая программа конкретизирует содержание предметных тем и даёт распределение учебных часов по разделам курса.

На преподавание алгебры и начал математического анализа в 11 классе отведено 3 часа в неделю, всего 102 часа в год. Или 2,5 часа в неделю, всего 85 часов.На итоговое повторение отведено 15 часовили 14 ч в конце учебного года, в данной программе на вводное повторение вначале года взяты 2 часа из итогового повторения, поэтому наповторение курса алгебры и начал математическо­го анализа за 1011 классы отведено 13ч или 12ч, остальные часы распределены по всем темам. В ходе изучения предмета в 11 классе проводится 8 контрольных работ.или 6 ч

Литература

  1. «Программа общеобразовательных учреждений. Алгебра и начала анализа. 10-11 классы, – М.Просвещение, 2009. Составитель Т. А. Бурмистрова»

2. Алгебра и начала анализа: учебник для 11 класса общеобразовательных учреждений. Составители: М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин. — М.: Просвещение,2014.

3. «Алгебра и начала анализа. Дидактические материалы для 11 класса базовый и профильный уровни 3 –е издание, - М. Просвещение, 2009-2014. Авторы: М. К. Потапов и А. В. Шевкин»

4. «Алгебра и начала математического анализа». Тематические тесты для 11 класса базовый и профильный уровни, - М. Просвещение, 2009-2014. Автор Ю. В. Шепелева

5. «Алгебра и начала математического анализа 11 класс». Книга для учителя. Базовый и профильный уровни, - М. Просвещение, 2009-2014. Авторы: М. К. Потапов и А. В. Шевкин



Интернет -ресурсы:

1. Цифровые образовательные ресурсы из Единой коллекции ЦОРhttp://school-collection.edu.ru/

2. Открытый банк ЕГЭ 2015 г: http://mathege.ru/or/ege/



25



Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 29.09.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров680
Номер материала ДВ-018348
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх