Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по алгебре 9 класса

Рабочая программа по алгебре 9 класса

  • Математика

Поделитесь материалом с коллегами:

г. Новошахтинск Ростовской области


Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №34





«Утверждаю»

Директор МБОУ СОШ №34

Приказ от 30.08. 2014г. №79\9


Подпись руководителя / Мальцева Н. В./



РАБОЧАЯ ПРОГРАММА


по алгебре

Уровень общего образования, (класс) основное общее образование, 9 класс


Количество часов 136


Учитель Федотова Татьяна Николаевна


Программа разработана в соответствии с Примерной программой основного общего образования по математике (Сборник нормативных документов. Математика. М.: Дрофа, 2004 г.)

с учетом требований федерального компонента государственного стандарта общего образования и

Программой для общеобразовательных учреждений (Сборник “Программы для общеобразовательных учреждений: Алгебра 7-9 кл.”/ Сост. Т.А.Бурмистрова, М. Просвещение, 2011).














ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Рабочая программа составлена с учётом примерной программы основного общего образования по математике и скорректирована на основе программы: «Алгебра 9» авторы Ш.А.Алимов, Ю.М. Колягин, Ю.В. Сидоров и др. Примерная программа основного общего образования по математике. (Сборник нормативных документов. Математика. М.: Дрофа, 2004 г.)

  • Программа для общеобразовательных учреждений (Сборник “Программы для общеобразовательных учреждений: Алгебра 7-9 кл.”/ Сост. Т.А. Бурмистрова, 2-е изд.,.- М. Просвещение, 2011 г..).

  • Стандарт основного общего образования по математике.

  • (Стандарт основного общего образования по математике //Математика в школе. – 2004г,-№4, -с.4)

  • Базисный учебный план МБОУ СОШ №34 на 2014-2015 учебный год

  • Учебник для 9 класса общеобразовательных организаций авторов Ш. А. Алимова, Ю.М.Колягина, Ю. В. Сидорова и др. Просвещение, 2013.

Данная рабочая программа полностью отражает базовый уровень подготовки школьников по разделам программы. Она конкретизирует содержание тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

Программа выполняет две основные функции. Информационно – методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно – планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его качественных и количественных характеристик на каждом из этапов.

Цели:

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

На основании требований Государственного образовательного стандарта в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:

  • развитие алгоритмического мышления, овладение навыками дедуктивных рассуждений;

преобразование символических форм, развитие воображения, способностей к математическому творчеству.

  • получение школьниками конкретных знаний о функциях как о важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциональных, периодических);

  • формирование представлений о роли математики в развитии цивилизации и культуры;

  • развитие воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты;

  • сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру.


Общая характеристика учебного курса


Изучение алгебры в основной школе дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;
6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.


Ценностные ориентиры содержания образования


В соответствии с Федеральным государственным образовательным стандартом среднего (полного) общего образования основные цели математического образования состоят:

в завершении формирования у обучающихся – средствами культуры, науки, искусства, литературы – общей культуры и относительно целостной системы знаний, деятельностей и представлений о природе, обществе и человеке;

в формировании устойчивой потребности учиться, готовности к непрерывному образованию, саморазвитию и самовоспитанию, к созидательной и ответственной трудовой деятельности на благо семьи, общества и государства;

в развитии индивидуальности и творческих способностей с учетом предпрофильных намерений, интересов и запросов обучающихся;

в обеспечении условий обучения и воспитания, социализации и духовно – нравственного развития обучающихся, формирования гражданской идентичности, социального становления личности, самореализации в социально и личностно значимой деятельности.

В процессе изучения курса алгебры формируется представление о социальных, культурных и исторических факторах становления математической науки; понимание роли информационных процессов в современном мире; представление о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.

В результате изучения алгебры обучающиеся развивают логическое и математическое мышление, получают представление о математических моделях; овладевают математическими рассуждениями; учатся применять математические знания при решении различных задач и оценивать полученные результаты; овладевают умениями решения учебных задач; развивают математическую интуицию; получают представление об основных информационных процессах в реальных ситуациях.

Курс направлен на осознание значения математики в повседневной жизни человека и успешного решения практических задач: оптимизировать семейный бюджет и правильно распределять время, критически ориентироваться в статистической, экономической и логической информации, правильно оценивать рентабельность возможных деловых партнеров и предложений, проводить несложные инженерные и технические расчеты для практических задач.

Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира.

Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.



Место предмета в федеральном базисном учебном плане


Программой отводится на изучение алгебры по 4 урока в неделю (из них 3 часа из инвариантной части и 1 час из вариативной части учебного плана). Реализация учебного предмета «Алгебра 9 класс» будет осуществлена за 133 часа в соответствии с учебным планом и расписанием уроков МБОУ СОШ № 34 на 2014-2015 учебный год за счет уплотненного изучения тем «Степень с рациональным показателем», « Случайные события», «Случайные явления. Уменьшение запланировано на 1 час по каждой теме. Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.


Срок реализации рабочей учебной программы – один учебный год

Содержание учебного предмета

Курс алгебры построен в соответствии с традиционными содержательно-методическими линиями: числовой, функциональной, алгоритмической, уравнений и неравенств, алгебраических преобразований.

В курсе алгебры 9-го класса продолжается систематизация и расширение сведений о функциях.

На этапе 9-го класса завершается изучение рациональных уравнений с одной переменной. Дается понятие целого рационального уравнения и его степени. Особое внимание уделяется решению уравнений третьей и четвертой степени с помощью разложения на множители и введения вспомогательной переменной, что широко используется в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений. Рассматриваются системы, содержащие уравнения второй степени с двумя неизвестными.

Даются первые знания об арифметической и геометрической прогрессиях, как о частных видах последовательностей. Изучая формулу нахождения суммы первых членов арифметической прогрессии и формулу суммы первых членов геометрической прогрессии , целесообразно уделить внимание заданиям, связанным с непосредственным применением этих формул.

Из курса геометрии продолжается изучение синуса, косинуса и тангенса острого угла прямоугольного треугольника. Вводится понятие котангенса угла. Изучаются свойства синуса, косинуса, тангенса и котангенса, которые находят применение в преобразованиях тригонометрических выражений. Специальное внимание уделяется переходу от радианной меры угла к градусной мере и наоборот. Центральное место занимают формулы, выражающие соотношения между тригонометрическими функциями одного и того же аргумента.

Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Основное содержание в рабочей программе представлено разделами:


ГЛАВА 1. НЕРАВЕНСТВА И СИСТЕМЫ НЕРАВЕНСТВ

Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Элемент множества, подмножество данного множества, пустое множество. Пересечение и объединение множеств. Системы линейных неравенств, частное и общее решение системы неравенств.

Основная цель: формирование представлений о частном и общем решении рациональных неравенств и их систем, о неравенствах с модулями, о равносильности неравенств; овладение умением совершать равносильные преобразования, решать неравенства методом интервалов; расширение и обобщение сведений о рациональных неравенствах и способах их решения: метод интервалов, метод замены переменной.

ГЛАВА 2. СИСТЕМЫ УРАВНЕНИЙ

Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные уравнения, равносильные преобразования. График уравнения, система уравнений с двумя переменными, решение системы уравнений с двумя переменными. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, графический метод, равносильные системы уравнений.

Основная цель: формирование представлений о системе двух рациональных уравнений с двумя переменными, о рациональном уравнении с двумя переменными; овладение умением совершать равносильные преобразования, решать уравнения и системы уравнений с двумя переменными; отработка навыков решения уравнения и системы уравнений различными методами: графическим, подстановкой, алгебраического сложения, введения новых переменных.

ГЛАВА 3.ЧИСЛОВЫЕ ФУНКЦИИ

Функция, область определение и множество значений функции. Аналитический, графический, табличный, словесный способы задания функции. График функции. Монотонность (возрастание и убывание) функции, ограниченность функции снизу и сверху, наименьшее и наибольшее значения функции, непрерывная функция, выпуклая вверх или вниз. Элементарные функции. Четная и нечетная функции и их графики. Степенные функции с натуральным показателем, их свойства и графики. Свойства и графики степенных функций с четным и нечетным показателями, с отрицательным целым показателем.

Основная цель: формирование представлений о таких фундаментальных понятиях математики, какими являются понятия функции, еѐ области определения, области значения; о различных способах задания функции: аналитическом, графическом, табличном, словесном; овладение умением применения четности или нечетности, ограниченности, непрерывности, монотонности функций; формирование умений находить наибольшее и наименьшее значение на заданном промежутке, решая практические задачи; формирование понимания того, как свойства функций отражаются на поведении графиков функций.

ГЛАВА 4. ПРОГРЕССИИ

Числовая последовательность. Способы задания числовой последовательности. Свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов конечной арифметической прогрессии, характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия, формула n-го члена геометрической прогрессии, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.

Основная цель: формирование преставлений о понятии числовой последовательности, арифметической и геометрической прогрессиях как частных случаях числовых последовательностей; о трех способах задания последовательности: аналитическом, словесном и рекуррентном; сформировать и обосновать ряд свойств арифметической и геометрической прогрессий, свести их в одну таблицу; овладение умением решать текстовые задачи, используя свойства арифметической и геометрической прогрессии.

ГЛАВА 5. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

Методы решения простейших комбинаторных задач (перебор вариантов, построение дерева вариантов, правило умножения). Факториал. Общий ряд данных и ряд данных конкретного измерения, варианта ряда данных, еѐ кратность, частота и процентная частота, сгруппированный ряд данных, многоугольники распределения. Объем, размах, мода, среднее значение. Случайные события: достоверное и невозможное события, несовместные события, событие, противоположное данному событию, сумма двух случайных событий. Классическая вероятностная схема. Классическое определение вероятности.

Основная цель: формирование преставлений о всевозможных комбинациях, о методах статистической обработки результатов измерений, полученных при проведе-нии эксперимента, о числовых характеристиках информации; овладеть умением ре-шения простейших комбинаторных и вероятностных задач.

ПОВТОРЕНИЕ

Основная цель: обобщение и систематизация знаний по основным темам курса алгебры за 9 класс; формирование понимания возможности использования приобретенных знаний и умений в практической деятельности и повседневной жизни


Тематическое планирование

п\п

Разделы программы

Основное содержание по темам

Характеристика основных видов деятельности ученика

Характеристика универсальных учебных действий

1







Алгебраические уравнения. Системы нелинейных уравнений


Деления многочленов. Решение алгебраических уравнений. Уравнения, сводящиеся к алгебраическим. Системы нелинейных уравнений с двумя неизвестными. Различные способы решения систем уравнений. Решение задач с помощью систем уравнений.


Выполнять деление многочлена на многочлен. Знать способы поиска корня алгебраического уравнения. Решать алгебраические уравнения третьей и четвертой степени. Решать уравнения, сводящиеся к алгебраическим. Определять является ли пара чисел решением данного уравнения с двумя неизвестными. Решать задачи, алгебраической моделью которых является система нелинейных уравнений с двумя неизвестными. Решать системы двух нелинейных уравнений с двумя неизвестными. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели, путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат.


Регулятивные:

самостоятельно ставить новые учебные цели и задачи;

при планировании достижения целей самостоятельно и адекватно учитывать условия и средства их достижения;

выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ.

Познавательные: ориентироваться на разнообразие способов решения задач; извлекать необходимую информацию из учебно-научных текстов;

самостоятельная работа с источниками информации, анализ обобщения и систематизации полученной информации; развитие умения производить аргументированные рассуждения, проводить обобщение.

владеют навыками самоанализа и самоконтроля

Коммуникативные:

учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве; формулировать собственное мнение и позицию, аргументировать и координировать ее с позициями партнеров в сотрудничестве при выработке общего решения в совместной деятельности





2


Степень с рациональным показателем

Степень с целым показателем и её свойства. Возведение числового неравенства в степень с натуральным показателем. Корень n-й степени, степень с рациональным показателем.



Сравнивать и упорядочивать степени с целыми и рациональными показателями. Выполнять вычисления с рациональными числами. Формулировать определение арифметического корня натуральной степени из числа. Вычислять приближенные значения корней, используя калькулятор. Применять свойства арифметического корня для преобразования выражений. Формулировать определение корня третьей степени; находить значения кубических корней.. исследовать свойства кубического корня, проводя числовые эксперименты с использованием калькулятора, компьютера. Возводить число числовое неравенство с положительной левой и правой частью в степень. Сравнивать степени с разными основаниями и равными показателями. Формулировать определение степени с рациональным показателем, применять свойства степени с рациональным показателем при вычислениях.

Регулятивные: учитывать правило в планировании и контроле способа решения; построение математических моделей;

поиск нужной информации по заданной теме в источниках различного типа.


Познавательные:

осуществлять расширенный поиск информации с использованием ресурсов библиотеки Интернета

модели и схемы для решения задач;

осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;


Коммуникативные:

устанавливать и сравнивать разные точки зрения, прежде чем принимать решения и де-лать выбор;

аргументировать свою точку зрения, спорить и отстаивать свою позицию не враждебным для оппонентов образом;

задавать вопросы, необходимые для организации собственной деятельности и со-трудничества с партнером


3

Степенная функция

Область определения функции. Возрастание и убывание функции. Чётность и нечётность функции. Функция y=k/x.


Вычислять значения функций, заданных формулами, составлять таблицы значений функций. Формулировать определение функции. Строить по точкам графики функций. Описывать свойства функций га основе ее графического представления( область определения, множество значений, промежутки знакопостоянства, четность, нечетность, возрастание, убывание, наибольшее и наименьшее значения). интерпретировать графики реальных зависимостей. Строить речевые конструкции с использованием функциональной терминологии. Распознавать виды изучаемых функций. Строить графики указанных функций (в том числе с применение движений графиков); описывать их свойства. Решать простейшие уравнения и неравенства, содержащие степень. Решать иррациональные неравенства.


Регулятивные:

вносить необходимые

коррективы в действие после

его завершения на основе учета характера сделанных ошибок; определение последовательности промежуточных целей с учетом конечного результата; составление плана и последовательности действий

Познавательные:

владеть общим приемом решения задач; самостоятельное выделение и формулирование познавательной цели; поиск и выделение необходимой информации;

моделирование; применение методов информационного поиска, в том числе с помощью компьютерных средств; структурирование знаний;

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов;

способность к мобилизации сил и энергии; способность к волевому усилию - к выбору в ситуации мотивационного конфликта и к преодолению препятствий

4

Прогрессии

Числовая последовательность. Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов арифметической и геометрической прогрессии.


Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности. Вычислять члены последовательностей, заданных формулой п-го члена или рекуррентной формулой. Устанавливать закономерность в построении последовательности, если выписаны первые несколько членов. Изображать члены последовательности точками на координатной плоскости. Распознавать прогрессии. Выводить формулы общего члена прогрессий, суммы п первых членов, решать задачи с использованием этих формул. Доказывать характеристические свойства прогрессий, применять их при решении задач. Решать задачи на сложные проценты, в том числе задачи из реальной практики (используя калькулятор).

Регулятивные:

выделение и осознание учащимся того что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения; сличение способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона.

Познавательные:

осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы; осознанное и произвольное построение речевого высказывания;

выбор наиболее эффективных способов решения учебных задач;

рефлексия способов и условий действия, контроль и оценка процесса результатов деятельности;

Коммуникативные:

учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве; способность к мобилизации сил и энергии; способность к волевому усилию - к выбору в ситуации мотивационного конфликта и к преодолению препятствий



5

Случайные события

События невозможные, достоверные, случайные. Совместные и несовместные события. Равновозможные события. Классическое определение вероятности события. Представление о геометрической вероятности. Решение вероятностных задач с помощью комбинаторики. Противоположные события и их вероятности. Относительная частота и закон больших чисел. Тактика игр, справедливые и несправедливые игры.



Находить вероятность события в испытаниях с равновозможными исходами ( с применением классического определения вероятности). Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем. Приводить примеры достоверных и невозможных событий. Решать задачи на нахождение вероятностей событий, в том числе с применение комбинаторики. Приводить примеры противоположных событий.. Решать задачи на применение представлений о геометрической вероятности. Использовать при решении задач свойство вероятностей противоположных событий.


6

Случайные величины

Таблицы распределения значений случайной величины. Наглядное представление распределения случайной величины: полигон частот, диаграммы круговые, линейные, столбчатые, гистограмма. Генеральная совокупность и выборка. Репрезентативная выборка. Характеристики выборки: размах, мода, медиана, среднее. Представление о законе нормального распределения.


Организовывать информацию и представлять ее в виде таблиц, столбчатых и круговых диаграмм. Строить полигоны частот. Находить среднее арифметическое, размах и моду совокупности числовых данных. Приводить содержательные примеры использования средних значений для характеристики совокупности данных( спортивные показатели, размер одежды). Приводить примеры генеральной совокупности, произвольной выборки из нее и репрезентативной выборки.

Регулятивные: выделение и осознание учащимся того что

уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения; сличение способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона.

Познавательные:

осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы; осознанное и произвольное построение речевого высказывания;

выбор наиболее эффективных способов решения учебных задач;

рефлексия способов и условий действия, контроль и оценка процесса результатов деятельности;

Коммуникативные:

учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве


7

Множества и логика

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.


Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.


Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.


Понятие о равносильности, следовании, употребление логических связок если ..., то ..., в том и только в том случае, логические связки и, или.

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств, разность множеств. Приводить примеры несложных классификаций. Использовать теоретико- множественную символику и язык при решении различных разделов курса. Конструировать несложные формулировки определений. Воспроизводить формулировки и доказательства теорем, проводить несложные доказательства высказываний самостоятельно, ссылаться в ходе объяснений на определения, теоремы, аксиомы. Выявлять необходимые и достаточные условия, формулировать противоположные теоремы. Записывать уравнения прямой, окружности. Изображать на координатной плоскости множество решений систем уравнений с двумя неизвестными; фигуры, заданные неравенством или системой неравенств с двумя неизвестными.

Регулятивные: выделение и осознание учащимся того что

уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения; сличение способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона.

Познавательные:

осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы; осознанное и произвольное построение речевого высказывания;

выбор наиболее эффективных способов решения учебных задач;

рефлексия способов и условий действия, контроль и оценка процесса результатов деятельности;

Коммуникативные:

учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве.


8

Повторение курса алгебры





Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.


Календарно-тематическое планирование (смотреть приложение №1 к рабочей программе)


Учебно-методическое и материально-техническое обеспечение образовательного процесса


Учебно-методический комплект

1.Алгебра: учебник для 9 класса общеобразовательных организаций/ [Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др.]. - М.: Просвещение, 2013.

2. Рабочая тетрадь по алгебре для 9 класса. / Ю.М. Колягин, Ю.В. Сидоров, М.В. Ткачева и др. – М.: Просвещение, 2008.

3. В.И. Жохов. «Дидактические материалы по алгебре. 9 класс»

4. А.П.Ершова « Алгебра и геометрия. 9 класс» (разноуровневые самостоятельные и контрольные рабоы»

5. Л.В.Кузнецова «Сборник заданий для подготовки к итоговой аттестации в 9 классе».-М.,: Просвещение, 2006.


Дополнительные пособия для учителя


  1. Математика 5-11 классы. Программы для общеобразовательных школ, гимназий, лицеев. М., «Дрофа», 2002.

  2. Концепция математического образования (проект)//Математика в школе.- 2000. – № 2. – с.13-18.

  3. Концепция модернизации российского образования на период до 2010// «Вестник образования» -2002- № 6 - с.11-40.

  4. Стандарт основного общего образования по математике//«Вестник образования» -2004 - № 12 - с.107-119.

  5. Бурмистрова Т.А. Алгебра 7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2009.

Методическая литература:

  1. Изучение алгебры в 7-9 классах: Методические рекомендации к учебнику: Кн. для учителя/ Ю.М. Колягин, Ю.В. Сидоров, М.В. Ткачёва и др. – 2 изд. М.: Просвещение, 2004.

  2. Вся школьная математика в самостоятельных и контрольных работах. Алгебра 7-11/ А.П. Ершова, В.А. Голобородько. – М.: Илекса, 2007.

  3. Алгебра: дидактический материал для 9 класса/ В.И. Жохов, Ю.Н. Макарычев, И.Г.Миндюк. – М.: Просвещение, 2008.

  4. Алгебра. 9 класс: Поурочные планы/ Авт.-сост. Е.Г. Лебедева – Волгоград: Учитель, 2008.

  5. Алгебра: математические диктанты. 7-9 классы/ авт.-сост. А.С. Конте. –Волгоград: Учитель, 2010.

  6. Контрольно-измерительные материалы. Алгебра: 9 класс/ Сост. Л.Ю. Бабошкина. – М.: ВАКО, 2010.


Программные средства и цифровые образовательные ресурсы:

  1. http://school-collection.edu.ru

  2. http://mon.gov.ru


Наглядные средства обучения:

  1. Доска магнитная с координатной сеткой.

  2. Таблицы по алгебре для 9 классов.

  3. Набор цифр, букв, знаков для средней школы (магнитный).

  4. Комплект чертежных инструментов.


Технические средства обучения

  1. Компьютер.

  2. Мультимедийный проектор.

  3. Графопроектор




Результаты освоения курса алгебры 9 класса и система их оценки


В результате изучения курса алгебры 9 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где кhello_html_5825b7de.gif0, у=кх+b, у=х2, у=х3, у =hello_html_m78e30021.gif, у=hello_html_1c51bb38.gif, у=ах2+bх+с, у= ах2+n у= а(х- m) 2 ), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;




Элементы логики, комбинаторики,
статистики и теории вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контр примеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.

Система оценки планируемых результатов

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучающимися всех трёх групп результатов образования: личностных, метапредметных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

.

 Особенности оценки предметных результатов

Оценка предметных результатов представляет собой оценку достижения обучающимся планируемых результатов по отдельным темам.

Формирование этих результатов обеспечивается за счёт основных компонентов образовательного процесса — учебных предметов.

Основным объектом оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.

Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода, принятого в стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися.

Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.

Практика показывает, что для описания достижений обучающихся целесообразно установить следующие пять уровней.

Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).

Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:

• повышенный уровень достижения планируемых результатов, оценка «хорошо» (отметка «4»);

• высокий уровень достижения планируемых результатов, оценка «отлично» (отметка «5»).

Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области.

Индивидуальные траектории обучения обучающихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.

Для описания подготовки учащихся, уровень достижений которых ниже базового, целесообразно выделить также два уровня:

• пониженный уровень достижений, оценка «неудовлетворительно» (отметка «2»);

• низкий уровень достижений, оценка «плохо» (отметка «1»).

Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.

Как правило, пониженный уровень достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что обучающимся не освоено даже и половины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.

Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.

Описанный выше подход целесообразно применять в ходе различных процедур оценивания: текущего, промежуточного и итогового.

Для формирования норм оценки в соответствии с выделенными уровнями необходимо описать достижения обучающегося базового уровня (в терминах знаний и умений, которые он должен продемонстрировать), за которые обучающийся обоснованно получает оценку «удовлетворительно». После этого определяются и содержательно описываются более высокие или низкие уровни достижений. Важно акцентировать внимание не на ошибках, которые сделал обучающийся, а на учебных достижениях, которые обеспечивают продвижение вперёд в освоении содержания образования.

Для оценки динамики формирования предметных результатов в системе внутришкольного мониторинга образовательных достижений целесообразно фиксировать и анализировать данные о сформированности умений и навыков, способствующих освоению систематических знаний, в том числе:

• первичному ознакомлению, отработке и осознанию теоретических моделей и понятий(общенаучных и базовых для данной области знания), стандартных алгоритмов и процедур;

• выявлению и осознанию сущности и особенностейизучаемых объектов, процессов и явлений действительности (природных, социальных, культурных, технических и др.) в соответствии с содержанием конкретного учебного предмета, созданию и использованию моделей изучаемых объектов и процессов, схем;

• выявлению и анализу существенных и устойчивых связей и отношениймежду объектами и процессами.

При этом обязательными составляющими системы накопленной оценки являются материалы:

• стартовой диагностики;

• тематических и итоговых проверочных работ;

• творческих работ, включая и учебные проекты.

Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. В период введения Стандарта критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня.


 

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.


1. Оценка письменных контрольных работ обучающихся по математике.

Отметка «5», если:

  • работа выполнена полностью;

  • в рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка«4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой«5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала недостаточно сформированы основные умения и навыки.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.


Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.

К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.


Контроль ЗУН предлагается при проведении математических диктантов, практических работ, самостоятельных работ обучающего и контролирующего вида, контрольных работ






















Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 31.08.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров156
Номер материала ДA-023586
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх