Логотип Инфоурока

Получите 30₽ за публикацию своей разработки в библиотеке «Инфоурок»

Добавить материал

и получить бесплатное свидетельство о размещении материала на сайте infourok.ru

Инфоурок Алгебра Рабочие программыРабочая программа по алгебре 7 класса по УМК Муравиных

Рабочая программа по алгебре 7 класса по УМК Муравиных





Рассмотрена и одобрена Утверждаю:

на заседании кафедры Директор МОУ «Лямбирская

математики и физики СОШ №1»__________

Рук. кафедры ____________ Ю.Б. Мензуллин

Э.А.Фетхуллова Приказ № от «30»августа 2019 г.

Протокол № 1

от « 30 » августа 2019 года








Рабочая программа

учебного курса

по алгебре в 7 классе

(базовый уровень)








Составитель:

Фетхуллова Эльвира Абуевна,

учитель математики

МОУ «Лямбирская СОШ №1»,

учитель высшей квалификационной категории






Лямбирь 2019 год







Рецензия

на рабочую программу «Алгебра, 7 класс»,

разработанную учителем математики

МОУ «Лямбирская средняя общеобразовательная школа №1»

Фетхулловой Эльвирой Абуевной.


Рабочая программа по математике составлена для 7 класса на основе ФГОС ООО, программы по алгебре автора Г.К.Муравина, изд. «Дрофа», 2016. Разработанная рабочая программа реализуется по учебнику К.С. Муравина, О.В.Муравиной «Алгебра, 7 класс» М.: «Дрофа», 2016 г., рассчитана на 102 часа (3 часа в неделю) и направлена на базовый (общеобразовательный) уровень изучения предмета.

Содержание линии учебников и программ соответствует федеральному компоненту Государственного стандарта общего образования и учитывает федеральный базисный учебный план.

Для удобства использования программ содержание курса разбито на три этапа в соответствии с названиями используемых учебников.

Программа каждого этапа обучения имеет следующую структуру:

  • Содержание обучения.

  • Требования к уровню подготовки учащихся.

  • Примерное поурочное планирование.


В программу курса включены вопросы, позволяющие заложить прочный фундамент как для продолжения в 8-11 классах изучения математики и предметов естественнонаучного цикла в любом из профилей, так и для применения математического аппарата в практической деятельности.

Содержание рабочей программы соответствует необходимому уровню подготовки учащихся. В программе четко прописаны требования к уровню подготовки учащихся.

Учебные часы распределены в соответствии с учебным планом: 3 часа в неделю, всего 102 часа в год.

Последовательность изложения учебного материала соответствует Государственным требованиям к минимуму содержания и уровню подготовки учащихся.

Тематика и количество контрольных работ соответствует Государственному образовательному стандарту, учебному плану и содержанию рабочей программы.


Программа может быть использована при изучении вышеуказанного предмета.



Руководитель кафедры математики,

информатики и физики __________________Э.А.Фетхуллова







Рабочая программа по математике составлена для 7 класса на основе ФГОС ООО, программы по алгебре автора Г.К.Муравина, изд. «Дрофа», 2016. Разработанная рабочая программа реализуется по учебнику К.С. Муравина, О.В.Муравиной «Алгебра, 7 класс» М.: «Дрофа», 2016 г., рассчитана на 102 часа (3 часа в неделю) и направлена на базовый (общеобразовательный) уровень изучения предмета. Учебник входит в федеральный перечень учебников, утвержденный министерством образования и науки РФ на 2018-2019 учебный год.

Планируемые результаты освоения учебного предмета, курса.

Личностными результатами изучения предмета «Алгебра» являются следующие качества:

  • ответственного отношения к учению, готовность и способность обучающихся к самореализации и самообразованию на основе развитой мотивации учебной деятельности и личностного смысла изучения математики, заинтересованность в приобретении и расширении математических знаний и способов действий, осознанность построения индивидуальной образовательной траектории;

  • коммуникативной компетентности в общении, в учебно-исследовательской, творческой и других видах деятельности по предмету, которая выражается в умении ясно, точно, грамотно излагать свои мысли в устной и письменной речи, выстраивать аргументацию и вести конструктивный диалог, приводить примеры и контрпримеры, а также понимать и уважать позицию собеседника, достигать взаимопонимания, сотрудничать для достижения общих результатов;

  • целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.

  • представления об изучаемых математических понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

  • логического мышления: критичности (умение распознавать логически некорректные высказывания), креативности (собственная аргументация, опровержения, постановка задач, формулировка проблем, исследовательский проект и др.).


Метапредметными результатами изучения курса «Алгебра» являются

регулятивные УУД:

  • самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта; выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости)конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

  • составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

  • работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

  • в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

познавательные УУД:

  • анализировать, сравнивать, классифицировать и обобщать факты и явления;

  • осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;

  • строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

  • создавать математические модели;

  • составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

  • вычитывать все уровни текстовой информации.

  • уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

  • уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей.

коммуникативные УУД:

  • самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

  • отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

  • в дискуссии уметь выдвинуть контраргументы;

  • учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

  • понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

  • уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.


Предметными результатами изучения предмета «Алгебра» являются следующие умения:

  • умений работать с математическим текстом, точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический, табличный), доказывать математические утверждения;

  • умения использовать базовые понятия из основных разделов содержания (число, функция, уравнение, неравенство, вероятность, множество, доказательство и др.);

  • представлений о числе и числовых системах от натуральных до действительных чисел; практических навыков выполнения устных, письменных, инструментальных вычислений, вычислительной культуры;

  • представлений о простейших геометрических фигурах, пространственных телах и их свойствах; и умений в их изображении;

  • умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов простейших геометрических фигур;

  • умения использовать символьный язык алгебры, приемы тождественных преобразований рациональных выражений, решения уравнений, неравенств и их систем; идею координат на плоскости для интерпретации решения уравнений, неравенств и их систем; алгебраического аппарата для решения математических и нематематических задач;

  • умения использовать систему функциональных понятий, функционально-графических представлений для описания и анализа реальных зависимостей;

  • представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • приемов владения различными языками математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • умения применять изученные понятия, аппарат различных разделов курса к решению межпредметных задач и задач повседневной жизни.



Требования к уровню подготовки учащихся


В результате изучения алгебры в 7 классе ученики должны

знать:

- определение высказывания;

- определение уравнения и системы уравнений, корня уравнения и решения системы уравнений;

- определение функции, разные способы задания функции: описанием, правилом, формулой, таблицей, графиком;

- определение линейной функции, ее свойства и график;

- определение тождества;

- определение степени с натуральным показателем; свойства степени;

- определение многочлена и его степени;

- формулы сокращенного умножения и их словесные формулировки;

уметь:

- устанавливать истинность математических высказываний;

- находить множество истинности математического высказывания;

- составлять математические модели текстовых задач;

- решать линейные уравнения;

- решать системы линейных уравнений с двумя переменными способом сложения;

- находить значение функции по формуле для конкретного аргумента, находить аргумент функции по известному ее значению; определять, принадлежит ли заданная своими координатами точка графику функции; составлять таблицы значений функции; строить графики функций y=kx и y=kx+l; строить график линейного уравнения; графически находить приближенное решение системы линейных уравнений;

- приводить примеры тождеств; пользоваться тождественными преобразованиями для упрощения выражений;

- формулировать свойства степени с натуральным показателем и применять их для вычислений, преобразований одночленов, сокращения дробей; пользоваться терминами: «показатель степени», «основание степени»;

- приводить одночлены к стандартному виду, называть коэффициент и степень одночлена;

- находить степень числа с помощью вычислений, таблиц квадратов и кубов;

- приводить многочлен к стандартному виду, называть степень многочлена;

- применять формулы сокращенного умножения для преобразования произведения многочленов и для разложения многочлена на множители.


по элементам логики, комбинаторики, статистике теории вероятностей

- проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

- извлекать информацию, представленную в таблицах, на гистограммах, графиках; составлять таблицы, строить диаграммы и графики;

- решать комбинаторные задачи с помощью формул числа перестановок, числа размещений, числа сочетаний и с использованием правила произведения;

- вычислять средние значения измерений;

- находить частоту события, используя собственные наблюдения и готовые статистические данные;

- находить вероятности событий в простейших случаях и с использованием формул комбинаторики.

владеть компетенциями: познавательной, коммуникативной, информационной и рефлексивной.

способны решать следующие жизненно-практические задачи:

  • самостоятельно приобретать и применять знания в различных ситуациях;

  • работать в группах, аргументировать и отстаивать свою точку зрения, уметь слушать других;

  • извлекать учебную информацию на основе сопоставительного анализа объектов;

  • пользоваться предметным указателем, энциклопедией и справочником для нахождения информации;

  • самостоятельно действовать в ситуации неопределенности при решении актуальных для них проблем.


п/п

Наименование

разделов и тем

Максимальная нагрузка , ч.

Из них

Теоретическое обучение, ч.

Контроль ная работа, ч.

Самост-ная работа,ч.


Повторение

3

2

1


I.

Математический язык

23

19

2

2

II.

Функция

22

18

2

2

III.

Степень с натуральным показателем

15

11

2

2

IV.

Многочлены

27

22

3

2

V.

Вероятность

7

3

1

3

VI.

Повторение

5

2

1

2


Итого

102

77

12

13

Тематическое планирование по дисциплине «Алгебра. 7 класс»


Содержание обучения.


Математический язык. (23ч)

Числовые выражения. Сравнение чисел. Выражения с переменными. математическая модель текстовой задачи. Решение уравнений. Линейные уравнения с двумя переменными. Решение систем линейных уравнений с двумя переменными способом сложения.

Основная цель: систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одним неизвестным, полученными учащимися в 5-6 классах; выработать умения в решении систем уравнений.

Комментарии. Данная тема является связующим звеном между курсом математики 5-6 классов и курсом алгебры 7 класса. Ее изучение рекомендуется для закрепления ранее приобретенных умений в выполнении действий с рациональными числами и простейших преобразований выражений, решении линейных уравнений и решении текстовых задач с помощью уравнений.

Систематизируются знания учащихся о математическом языке. Речь идет о правилах составления числовых выражений, нахождения значений выражений и решении текстовых задач с помощью составления выражений. Вводится понятие переменной. В работе с выражениями, содержащими переменные, основное внимание уделяется допустимым значениям переменных, входящих в выражение. На примерах уравнений и неравенств вводятся понятия высказывания и его истинности, понятие предложения с переменной и его истинности. При изучении равносильных предложений обосновывается равносильность преобразований уравнений. Необходимо иметь в виду, что формирование умений выполнять тождественные преобразования, решать уравнения с одной переменной, применять уравнения к решению задач распределяется по всему курсу 7 класса, поэтому основное внимание в данной теме уделяется раскрытию смысла новой терминологии.

Вводится понятие линейного уравнения с двумя переменными. Введение двух переменных во многих случаях упрощает процесс перевода условия текстовой задачи на язык математических моделей. Важное место в теме принадлежит изучению алгоритма решения системы линейных уравнений с двумя переменными способом сложения.

При решении текстовых задач сначала формируется умение составлять уравнения по тексту задач, а затем – умение решать полученные уравнения и интерпретировать полученные результаты. Обращается внимание на рациональный выбор переменного при составлении уравнения.


В результате изучения данного материала ученики должны

знать:

- понятие высказывания, математической модели, системы уравнений, решения системы уравнений;

уметь:

- устанавливать истинность некоторых математических высказываний;

- находить множество истинности математических предложений;

- составлять математические модели к текстовым задачам;

- решать линейные уравнения;

- решать системы линейных уравнений с двумя переменными способом сложения.


Функция.(22ч)

Понятие функции. Таблица значений и график функции. Пропорциональные переменные. График функции y=kx. Определение линейной функции. график линейной функции. График линейного уравнения с двумя переменными.

Основная цель: сформировать основные функциональные понятия и знания о графике и свойствах функции y=kx и y=kx+l.

Комментарии. Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Вводятся понятия «функция», «аргумент», «значение функции», «область определения» и «область значений функции», «график функции». Школьники получают представление о способах задания функции, учатся находить значение функции по заданному значению аргумента по формуле, таблице и графику, а также решать обратные задачи. функциональные понятия конкретизируются при изучении функции y=kx, а затем и линейной функции y=kx+l.

Учащиеся повторяют понятие прямой пропорциональности величин, учатся строить график функции y=kx , находить коэффициент пропорциональности по заданным значениям аргумента и функции, заполнять таблицы значений прямо пропорциональных величин; строить графики линейных функций, заданных формулой, и, наоборот, по графику задавать функцию формулой.

Учащиеся знакомятся с геометрическим смыслом углового коэффициента k и начальной ординатой l функций y=kx и y=kx+l. Вводятся определения возрастающей и убывающей функций.

Формирование всех функциональных понятий и выработка соответствующих навыков, как и изучение линейной функции, сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

При изучении графика линейного уравнения обращается внимание на графики x=c и x=0.

Умение строить графики линейных уравнений позволяет графически исследовать вопрос о числе решений системы уравнений с двумя переменными..


В результате изучения данного материала ученики должны

знать:

- определение функции, аргумента и значения функции, графика функции;

- определение линейной функции и ее свойства;

- определения возрастающей и убывающей функций;

- разные способы задания функций: описанием, правилом, формулой, таблицей, графиком;

уметь:

- находить значение функции по формуле для конкретного аргумента и аргумент функции по известному значению;

- определять, принадлежит ли точка графику функции;

- составлять таблицы значений функции, по таблицам строить графики;

- читать графики функций:

- строить графики функций y=kx и y=kx+l;

- по графику линейной функции задавать ее формулой;

- строить график линейного уравнения;

- графически находить приближенное решение системы линейных уравнений.


Степень с натуральным показателем (15ч)

Тождества и тождественные преобразования. Определение степени с натуральным показателем. Свойства степени. Одночлены. Сокращение дробей.

Основная цель: сформировать у учащихся умения выполнять действия со степенями с натуральным показателем.

Комментарии. В начале темы определяется тождество как равенство, верное при всех допустимых значениях входящих в него переменных, дается определение тождественно равных выражений, формируется понятие тождественных преобразований выражений, а также повторяются законы арифметических действий, приведение подобных слагаемых, раскрытие скобок и вынесение общего множителя за скобки.

Затем дается определение степени с натуральным показателем. При вычислении значений выражений, содержащих степени, обращается внимание на порядок действий. Обоснование свойств степеней позволяет познакомить учащихся с доказательствами, проводимыми на алгебраическом материале. Дается определение одночлена. Свойства степеней применяются при приведении одночленов к стандартному виду и сокращении дробей. Прочно сформированные знания и умения по данной теме являются для изучения следующего материала.


В результате изучения данного материала ученики должны

знать:

- определение тождества;

- определение степени с натуральным показателем;

- свойства степеней с натуральным показателем;

- понятие одночлена м его стандартного вида;

уметь:

- приводить примеры тождеств;

- пользоваться тождественными преобразованиями для упрощения выражений (приведение подобных слагаемых, раскрытие скобок);

- формулировать свойства степени с натуральным показателем и применять их для вычислений, преобразований одночленов, сокращения дробей;

- пользоваться терминологией «показатель степени», «основание степени»;

- приводить одночлены к стандартному виду, называть коэффициент и степень одночлена;

- находить степень числа с помощью вычислений, таблиц квадратов и кубов.


Многочлены.(27ч)

Понятие многочлена. Преобразование произведения одночлена и многочлена. Вынесение общего множителя за скобки. Преобразование произведения двух многочленов. Разложение на множители способом группировки. Формулы сокращенного умножения: квадраты суммы и разности, разность квадратов.

Основная цель: сформировать умения выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители, применять формулы сокращенного умножения в преобразованиях.

Комментарии. данная тема играет важную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Ее изучение начинается с введения понятия многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами – сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность и произведение многочленов можно представить в виде многочлена.

Серьезное внимание уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки его членов. Учащиеся встречаются с примерами использования рассмотренных преобразований при решении уравнений и задач.

Формулы сокращенного умножения: квадраты суммы и разности, разность квадратов изучаются одновременно, остальные формулы будут изучены в начале 8 класса. Школьники учатся применять формулы для рационализации вычислений, преобразования многочленов, решения уравнений.


В результате изучения данного материала ученики должны

знать:

- определение многочлена и его степени;

- формулы сокращенного умножения и их словесные формулировки;

уметь:

- приводить многочлен к стандартному виду, называть степень многочлена;

- применять формулы сокращенного умножения как для преобразования произведения в многочлен, так и для разложения многочлена на множители.


Вероятность. (7ч)

Понятие вероятности. Равновероятностные возможности. Достоверные и невозможные события. Вероятность события. Число вариантов.

Основная цель: сформировать представления учащихся о вероятностном характере многих явлений окружающего мира, о вероятности события и научить школьников решать несложные задачи на вычисление вероятностей. познакомить школьников с правилом произведения, а также с формулами числа перестановок, размещений и сочетаний.

Комментарии. В начале темы формируются представления о равновероятных и неравновероятных возможностях, о достоверных и невозможных событиях. Дается классическое определение вероятности и вычисляется вероятность некоторых событий. При вычислении вероятностей возникает необходимость решать комбинаторные задачи, что мотивирует изучение данного вопроса. На конкретных задачах выводятся формулы числа перестановок, размещений и сочетаний. Все три формулы закрепляются совместно, что учит школьников различать случаи, в которых применяется каждая из формул. Задачи носят комплексный характер, при их решении отрабатывается умение применять формулы комбинаторики и вычислять вероятности. Применяются полученные комбинаторные знания также и при вычислениях значений выражений, при нахождении количества натуральных делителей числа, количества членов в многочленах, сокращении алгебраических дробей, содержащих факториалы.


В результате изучения данного материала ученики должны

знать:

- определение вероятности;

- формулу классической вероятности;

- формулы комбинаторики: перестановок, размещений, сочетаний;

уметь:

- различать равновероятностные возможности и возможности, которые такими не являются, указывать более вероятные и менее вероятные возможности, достоверные и невозможные события;

- решать комбинаторные задачи с помощью систематического перебора, правила произведения и формул комбинаторики;

- находить в простейших случаях вероятности событий;

- решать учебные и практические задачи, требующие систематического перебора вариантов;

- сравнивать шансы наступления случайных событий;

- оценивать вероятность случайного события в практических ситуациях.


Повторение.(5ч)

Выражения. Функции и графики. Тождественные преобразования. Уравнения и системы уравнений.

Основная цель: систематизировать и обобщить знания, полученные в 7 классе.

Комментарии. При повторении, в отличие от этапа изучения, материал рассматривается крупными блоками по темам: выражения, функции и графики, тождественные преобразования, уравнения и системы уравнений. Задания носят комплексный характер, так как включают материал из разных разделов курас. Целям систематизации знаний отвечают и включенные в объяснительные тексты исторические сведения о развитии математических понятий и символики, связанные с повторяемым материалом.


Сокращения, используемые в рабочей программе:

Типы уроков:

Виды самостоятельной работы:

УОНМ — урок ознакомления с новым материалом.

УЗИМ — урок закрепления изученного материала.

УПЗУ — урок применения знаний и умений.

УОСЗ — урок обобщения и систематизации знаний.

УПКЗУ — урок проверки и коррекции знаний и умений.

КУ — комбинированный урок.

ФО — фронтальный опрос.

ИРД — индивидуальная работа у доски.

ИРК — индивидуальная работа по карточкам.

ОСР — обучающая самостоятельная работа.

ПР — проверочная работа.

МД — математический диктант.

Т – тестовая работа.


















Календарно-тематическое планирование


урока


Наименование

разделов и тем


Кол.

часов


Тип урока


Вид деят

Дата проведен

занятия

планов фактич

7А 7Б

1-3

Повторение курса математики 5-6 классов.


Вводная контрольная работа

4

УПЗУ


3.09

4.09

5.09

10.09



Гл.1

Математический язык

23ч






§ 1

Выражения 8 ч








1. Числовые выражения

2






4

Числовые выражения

1

УПЗУ


11.09



5

Решение примеров на вычисление значений числовых выражений

1

УПЗУ

ФО

12.09




2. Сравнение чисел

2






6

Сравнение чисел

1



17.09



7

Решение задач на сравнение

1

УЗИМ

ФО ПР

18.09




3. Выражения с переменными

3






8

Выражения с переменными

1



19.09



9

Решение задач на нахождение значения алгебраического выражения

1

УПЗУ

ФО ИРК

24.09



10

Решение текстовых задач

1

УОСЗ

ПР

25.09



11

Контрольная работа по теме «Выражения»




26.09



§ 2

Уравнения 15ч.








4. Математическая модель текстовой задачи

4






12

Математическая модель текстовой задачи

1

УОНМ


1.10



13

Задачи на выполнение плановых действий и изменения количества

1

УЗИМ


2.10



14

Задачи на движение

1

УЗИМ


3.10



15

Задачи на сплавы и смеси

1

УЗИМ


8.10




5. Решение уравнений

5






16-17

Решение уравнений

2

УЗИМ

ФО ИРК

9.10

10.10



18-19

Решение задач на составление уравнений

2

УПЗУ


15.10

16.10



20

Решение уравнений, содержащих модули

1

УПЗУ

ПР

17.10




6. Уравнения с двумя переменными и их системы

5






21

Уравнения с двумя переменными и их системы

1

УОНМ

ФО

22.10



22

Метод исключения неизвестных

1

УОНМ


23.10



23

Решение систем уравнений методом исключения неизвестных

1

УЗИМ

ИРК ПР

24.10



24

Решение задач на составление систем уравнений

1

УПЗУ

ИРК ПР

6.11



25

Решение уравнений и систем уравнений

1

УОСЗ


7.11



26

Контрольная работа по теме «Уравнения»




12.11



Гл.2

Функция

22






§ 3

Функции и способы их задания 5 ч.








7. Понятие фукнции

2






27

Понятие фукнции

1

УОНМ


13.11



28

Решение задач на нахождение значения функции и значения аргумента

1

УЗИМ

ФО

14.11



29

Самостоятельная работа.

8.Таблица значений и график функции

20мин

3

УОСЗ

ПР

19.11



30

Решение задач на использование таблицы значений и графика функций

1

УОНМ


20.11



31

Решение задач на применение табличного и графического способов задания функции

1

УЗИМ

ФО ПР

21.11



§ 4

Функция у=kx








9. Пропорциональные переменные

2






32

Пропорциональные переменные

1

УОНМ

ФО

26.11



33

Решение задач на пропорциональность величин

1

УЗИМ

ИРК

27.11




10. График функции у=kx

3






34

График функции у=kx

1

УОНМ


28.11



35

Решение задач на построение графика функции у=kx

1

УОНМ

ФО ИРК

3.12



36

Решение задач на построение и исследование гр.ф. у=kx

1

УОСЗ


ПР

4.12



37

Контрольная работа по теме «Функция у=kx»




5.12



§ 5

Линейная функция 11ч








11. Определение линейной функции

2






38

Определение линейной функции

1

УОНМ

ФО

10.12



39

Решение задач на исследование у=kx+l

1

УЗИМ

ПР

11.12




12. График линейной функции

4






40

График линейной функции

1

УОНМ


12.12



41

Решение задач на построение графика линейной функции

1

УЗИМ

ФО ИРК

17.12.



42-43

Решение задач на использование графика линейной функции

2

УПЗУ

ПР

18.12

19.12




13. График линейного уравнения с двумя переменными

8






44

График линейного уравнения

1

УОНМ


24.12



45

Решение задач на построение графика линейного уравнения

1

УЗИМ

ФО ИРК

25.12



46-47

Графический способ решения систем линейных уравнений с двумя переменными

2

УОНМ

ПР

26.12

9.01



48-49

Решение задач по теме «Линейная функция»

2

УОСЗ

Т

14.01



50

Решение задач по п.13

1



15.01



51

Контрольная работа по теме «Линейная функция»

1



16.01



Гл.3

Степень с натуральным показателем

15






§ 6

Степень и её свойства. 9ч.








14. Тождества и тождественные преобразования

2






52

Тождества и тождественные преобразования

1

УОНМ


21.01



53

Решение задач на тождественные преобразования

1

УЗИМ

ИРК ПР

22.01




15.Определение степени с натуральным показателем

2






54

Определение степени с натуральным показателем

1

УОНМ

Т

23.01



55

Решение задач на применение степени с натуральным показателем

1

УПЗУ

ФО ИРК ПР

28.01




16. Свойства степени.

3







Свойства степени.

1

УОНМ


29.01



56

Решение задач на применение свойств степеней

1

УЗИМ

ФО ИРК

30.01




57

Решение задач на делимость

1

УОСЗ

ПР

4.02



58

Контрольная работа по теме «Степень и её свойства»




5.02



§ 7

Действия со степенями 6ч








17. Одночлены.

2






59

Одночлены.

1

УОНМ

Т

6.02



60

Решение задач на преобразование одночленов

1

УЗИМ

ФО ИРК

11.02



61

18. Сокращение дробей

3







Сокращение дробей

1

УОНМ

ИРК

12.02



62

Решение задач на сокращение дробей

1

УЗИМ

ИРК ПР

13.02



63

Решение уравнений на применение свойств степеней.

1

УОСЗ

Т

18.02



64

Контрольная работа по теме «Действия со степенями»




19.02



Гл.4

Многочлены

27






§ 8

Произведение одночлена и многочлена 11








19. Понятие многочлена

2






65

Понятие многочлена

1

УОНМ


20.02



66

Решение задач на сложение и вычитание многочленов

1

УЗИМ

ФО ИРК

25.02




20.Преобразование произведения одночлена и многочлена

3






67

Преобразование произведения одночлена и многочлена

1

УОНМ

ФО

26.02



68

Решение задач на умножение одночлена на многочлен

1

УЗИМ

ФО Т ИРК

27.02



69

Решение уравнений с применением произведения одночлена и многочлена

1

УПЗУ

ФО ПР

3.03




21. Вынесение общего множителя за скобки

4






70

Вынесение общего множителя за скобки

1

УОНМ

ФО

4.03



71

Решение задач на разложение многочлена на множители

1

УЗИМ

ИРК

5.03



72

Решение задач на сокращение дробей

1

УПЗУ

ИРК ПР

10.03



73

Решение задач по теме «Произведение одночлена и многочлена»

1

УОСЗ

ИРК

11.03



74

Контрольная работа по теме «Произведение одночлена и многочлена»







§ 9

Произведение многочленов 8ч








22.Преобразование произведения двух многочленов

3






75

Преобразование произведения двух многочленов

1

УОНМ


12.03



76

Решение задач на умножение двух многочленов

1

УЗИМ

ФО ИРК

17.03



77

Умножение многочленов. Решение задач.

1

УПЗУ

ИРК ПР

18.03




23. Разложение на множители способом группировки.

5






78-79

Разложение на множители способом группировки.

2

УОНМ


19.03

31.03



80

Сокращение дробей

1

УЗИМ

ФО Т

1.04



81-82

Решение задач на разложение многочлена на множители

2

УОСЗ

ИРК ПР

2.04

7.04



83

Контрольная работа по теме «Произведение многочленов»







§ 10

Формулы сокращенного умножения 8ч








24.Квадрат суммы, разности и разность квадратов

4






84

Квадрат суммы. Квадрат разности.

1

УОНМ


8.04



85

Решение задач на применение формул квадрата суммы и квадрата разности

1

УЗИМ

ФО ПР ИРК

9.04



86

Разность квадратов.

1

УОНМ

Т

14.04



87

Решение задач на применение формулы разности квадратов

1

УЗИМ

ФО ПР ИРК

15.04



88

25. Разложение на множители с помощью формул сокращенного умножения

3






89

Разложение на множители с помощью формул сокращенного умножения

1

УЗИМ

ФО ИРК ПР

16.04



90

Контрольная работа по теме «Формулы сокращенного умножения»

1



21.04



91

Промежуточная аттестация

1



22.04



Гл.5

Вероятность

7







26.Равновероятные возможности

1



23.04



92

Равновероятные возможности

1

УОНМ


28.04




27.Вероятность события

2






93

Вероятность события

1

УОНМ


29.04




94

Решение задач на вычисление вероятности событий..

1

УЗИМ

ФО ИРК

30.04




28. Число вариантов

3






95

Число вариантов

1

УОНМ


5.05



96

Перестановки и сочетания

1

УПЗУ

Т

6.05



97

Решение задач на вычисление числа перестановок и числа сочетаний.

1

УЗИМ

ФО ПР ИРК

7.05



98

Контрольная работа по теме «Вероятность»







Гл.6

Повторение

5






99

29. Выражения

1

УПЗУ

Т

12.05



100

30.Функции и их графики

2

УПЗУ

Т

13.05

14.05



101

31.Тождественные преобразования

32.Уравнения и системы уравнений

2

УПЗУ

Т

19.05

20.05



102

Итоговая контрольная работа.








Итого

102



21.05

26.05

27.05

28.05
















Материально-техническое обеспечение учебного предмета.

- Дидактический материал

- Раздаточный материал по разделам курса

- Мультимедийный комплекс

Электронные учебные пособия:

- CD –диски «Кирилл и Мефодий»

- CD – диски «Математика 7-11 кл.»

- Интерактивная математика. 5-9 класс. Электронное учебное пособие для основной школы. М., ООО «Дрофа», ООО «ДОС»,, 2002.

- Математика. Практикум. 5-11 классы. Электронное учебное издание. М., ООО «Дрофа», ООО «ДОС», 2003.


Учебно-методическое обеспечение.

1.Программа курса математики для 5-11 классов общеобразовательных учреждений: Сост. Г.К Муравин, О.В.Муравина. – М.: Дрофа, 2007, рекомендованная Министерством образования Российской Федерации.

2. Учебник: Алгебра: Учебник для 7 класса общеобразовательных учреждений / Г.К Муравин, – М.: Дрофа, 2009, допущен Министерством образования Российской Федерации.

3. Методические рекомендации к учебнику Г.К.Муравина «Алгебра. 7 класс» М.: Дрофа, 2009

4. Научно-теоретический и методический журнал «Математика в школе»

5. Еженедельное учебно-методическое приложение к газете «Первое сентября» Математика

6. Макарычев Ю.Н., Миндюк Н.Г. Элементы статистики и теории вероятностей. Алгебра. 7 – 9 классы. М., «Просвещение», 2008.























































15


Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал
Скачать тест к материалу

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 480 377 материалов в базе

Материал подходит для УМК

Скачать материал
Скачать тест к материалу

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    Скачать тест к материалу
    • 26.11.2019 146
    • DOCX 286 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Фетхуллова Эльвира Абуевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Пожаловаться на материал
  • Автор материала

    Фетхуллова Эльвира Абуевна
    Фетхуллова Эльвира Абуевна
    • На проекте: 7 лет и 1 месяц
    • Подписчики: 1
    • Всего просмотров: 50369
    • Всего материалов: 22