Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Физика / Рабочие программы / Рабочая программа по ФГОС "Программа основного общего образования по предмету физика" на 245 часов

Рабочая программа по ФГОС "Программа основного общего образования по предмету физика" на 245 часов


  • Физика

Поделитесь материалом с коллегами:

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа основного общего образования по предмету физика адресована для 7-9 классов базового уровня общеобразовательного учебного учреждения.

Программа составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам обучения, представленных в Стандарте основного общего образования.

Данный курс является одним из звеньев в формировании естественнонаучных знаний учащихся наряду с химией, биологией, географией. Принцип построения курса — объединение изучаемых фактов вокруг общих физических идей. Это позволило рассматривать отдельные явления и законы, как частные случаи более общих положений науки, что способствует пониманию материала, развитию логического мышления, а не простому заучиванию фактов. Изучение строения вещества в 7 классе создает представления о познаваемости явлений, их обусловленности, о возможности непрерывного углубления и пополнения знаний: молекула — атом; строение атома — электрон. Далее эти знания используются при изучении массы, плотности, давления газа, закона Паскаля, объяснении изменения атмосферного давления.

В 8 классе продолжается использование знаний о молекулах при изучении тепловых явлений. Сведения по электронной теории вводятся в разделе «Электрические явления». Далее изучаются электромагнитные и световые явления.

Курс физики 9 класса расширяет и систематизирует знания по физике, полученные учащимися в 7 и 8 классах, поднимая их на уровень законов.

Новым в содержании курса 9 класса является включение астрофизического материала в соответствии с требованиями ФГОС.

Предлагаемая программа реализуется в учебниках А.В. Перышкина «Физика» для 7,8 классов и А.В. Перышкина, Е.М. Гутник «Физика» для 9 класса. Программа определяет содержание и структуру учебного материала последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации учащихся.

Изучение физики в 7-9 классах на базовом уровне направлено на достижение следующих целей:

  • усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;

  • формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;

  • систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;

  • организация экологического мышления и ценностного отношения к природе;

  • развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний и выбора физики как профильного предмета.

Сроки реализации программы 3 года.

Общими предметными результатами обучения по данному курсу являются:

умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;

развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.

Система оценивания результатов в освоении программы по физике предусматривает:

комплексный подход к оцениванию результатов при усвоении программы курса;

использование результатов освоения образовательной программы как содержательной и критериальной базы оценки;

оценка успешности учащихся в освоении содержания предмета на основе системно-деятельностного подхода, т. е. в способности выполнять учебно-практические и учебно-познавательные задачи;

использование персонифицированных процедур итоговой оценки и аттестации (метапредметные, предметные результаты) и неперсонифицированных (личностные результаты);

использование накопительной системы оценивания, которые характеризуют динамику индивидуальных образовательных достижений;

использование стандартных форм оценивания (письменная работа, устный ответ) и нестандартных форм (проекты, творческие работы, самоанализ, самооценка и др.).

Система оценки метапредметных, предметных и личностных результатов реализуется в рамках накопительной системы, которая может быть представлена в виде рабочего портфолио или портфолио достижений, созданных как на бума-

ге, так и в электронном виде.


2. ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

Данная программа разработана на основе авторской программы:

Программа основного общего образования. Физика. 7-9 классы/ Методическое пособие. Рекомендации по составлению рабочих программ. Физика 7-9 классы. 4-е издание, пересмотренное. – М.: Дрофа – 2014. Авторы программы А.В. Перышкин, Н.В. Филонович, Е.М. Гутник.

Школьный курс физики – системообразующий для естественнонаучных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире.

В 7 и 8 классах происходит знакомство с физическими явлениями, методом научного познания, формирование основных физических понятий, приобретение умений измерять физические величины, проводить лабораторный эксперимент по заданной схеме. В 9 классе начинается изучение основных физических законов, лабораторные работы становятся более сложными, школьники учатся планировать эксперимент самостоятельно.

3. ОПИСАНИЕ МЕСТА УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Физика в основной школе изучается с 7 по 9 класс. Учебный план на этом этапе образования составляет 242 учебных часа, в том числе в 7, 8 классах по 70 учебных часов из расчета 2 учебных часа в неделю, в 9 классе - 102 учебных часа по3 учебных часа в неделю.

В соответствии с базисным учебным планом курсу физики предшествует курс «Окружающий мир», включающий некоторые сведения из области физики и астрономии. В 5—6 классах возможно преподавание курса «Введение в естественнонаучные предметы. Естествознание», который можно рассматривать как пропедевтику курса физики.

В свою очередь, содержание курса физики в основной школе представляет собой основу для изучения общих физических, химических и естественнонаучных закономерностей, теорий, законов, гипотез в старшей школе, являясь базовым звеном в системе непрерывного физического и естественнонаучного образования и основой для последующей уровневой и профильной дифференциации.

4. ОПИСАНИЕ ЦЕННОСТНЫХ ОРИЕНТИРОВ СОДЕРЖАНИЯ УЧЕБНОГО ПРЕДМЕТА

В качестве ценностных ориентиров физического образования выступают объекты, которые изучаются в курсе физики и к которым у учащихся формируется ценностное отношение. При этом ведущую роль играют познавательные ценности, так как данный учебный предмет входит в группу предметов познавательного цикла, главная цель которых заключается в изучении природы.

Основу познавательных ценностей составляют научные знания, научные методы познания, а ценностные ориентиры, формируемые у учащихся в процессе изучения физики, проявляются:

  • в признании ценности научного знания, его практической значимости, достоверности;

  • в ценности физических методов исследования живой и неживой природы;

  • в понимании сложности и противоречивости самого процесса познания

  • как извечного стремления к истине.

В качестве объектов ценностей труда и быта выступают творческая созидательная деятельность, здоровый образ жизни, а ценностные ориентиры содержания курса физики могут рассматриваться как формирование:

  • уважительного отношения к созидательной, творческой деятельности;

  • понимания необходимости эффективного и безопасного использования различных технических устройств;

  • потребности в безусловном выполнении правил безопасного использования веществ в повседневной жизни;

  • сознательного выбора будущей профессиональной деятельности.

Курс физики обладает возможностями для формирования коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь, а ценностные ориентиры направлены на воспитание у учащихся:

  • правильного использования физической терминологии и символики;

  • потребности вести диалог, выслушивать мнение оппонента, участвовать в дискуссии;

  • способности открыто выражать, и аргументировано отстаивать свою точку зрения.


5. ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Личностные результаты обучения физике в основной школе:

  • Сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;

  • Убежденность в закономерной связи и познаваемости явлений природы, в объективности научного знания, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношения к физике как элементу общечеловеческой культуры;

  • Самостоятельность в приобретении новых знаний и практических умений;

  • Развитость теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства этих гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;

  • Готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;

  • Мотивация образовательной деятельности школьников на основе личностно-ориентированного подхода;

  • Приобретение ценностных отношений друг к другу, к учителю, авторам открытий и изобретений, к результатам обучения.

Метапредметные результаты обучения физике в основной школе:

  • Овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умением предвидеть возможные результаты своих действий;

  • Понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами;

  • Овладение универсальными учебными действиями на примерах выдвижения гипотез для объяснения известных фактов и экспериментальной проверки этих гипотез, разработки теоретических моделей процессов или явлений;

  • Сформированность умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на вопросы и излагать его;

  • Приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;

  • Развитость монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;

  • Коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации;

  • Освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

  • Формирование умений работать в группе с выполнением различных социальных целей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию

Предметные результаты обучения физике в основной школе:

  • Знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;

  • Умение пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;

  • Понимание и способность объяснять такие физические явления:

- свободное падение тел, атмосферное давление, плавание тел, диффузия,

большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел

(7 класс);

- процессы испарения и плавания вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током (8 класс);

- колебания нитяного и пружинного маятников, электромагнитная индукция, отражение и преломление света, дисперсия света, возникновение линейчатого спектра излучения (9 класс);

  • Умение измерять:

- расстояние, промежуток времени, скорость, массу, силу, работу силы, мощность, кинетическую энергию, потенциальную энергию (7 класс);

- температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы (8 класс);

- ускорение (9 класс);

  • Владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости:

- пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объема вытесненной воды, объема газа от давления при постоянной температуре (7 класс);

- силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала (8 класс);

- периода колебаний маятника от его длины, направления индукционного тока от условий его возбуждения, угла отражения от угла падения света (9 класс);

  • Понимание смысла основных физических законов:

- законов Паскаля и Архимеда, закона сохранения энергии (7 класс);

-закона сохранения электрического заряда, закона Ома для участка цепи, закона Джоуля-Ленца (8 класс);

- законов динамики Ньютона, закона всемирного тяготения, закона сохранения импульса (9 класс) и умение применять их на практике;

  • Умение применять теоретические знания по физике на практике, решать физические задачи с использованием полученных знаний;

  • Владение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;

  • Понимание принципа действия машин, приборов и технических устройств,

с которыми каждый человек постоянно встречается в повседневной жизни, а также способов обеспечения безопасности при их использовании;

  • Умение применять полученные знания для объяснения принципа действия важнейших технических устройств;

  • Умение использовать полученные знания, умения и навыки для решения практических задач повседневной жизни, обеспечение безопасности своей жизни, рационального природопользования и охраны окружающей среды.


6. СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА


7 класс(70 ч, 2 ч. в неделю)

I. Введение (4 ч.)

Физика – наука о природе. Наблюдение и описание физических явлений. Физические приборы, Физические величины и их измерение. Погрешности измерений. Физика и техника.

Фронтальная лабораторная работа.

1.Определение цены деления измерительного прибора.

II. Первоначальные сведения о строении вещества (6 ч.)

Строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия. Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Фронтальная лабораторная работа.

2.Измерение размеров малых тел.

III. Взаимодействие тел (23 ч.)

Механическое движение. Равномерное и не равномерное движение. Скорость. Расчет пути и времени движения. Траектория. Прямолинейное движение. Взаимодействие тел. Инерция. Масса. Плотность. Измерение массы тела на весах. Расчет массы и объема по его плотности. Сила. Силы в природе: тяготения, тяжести, трения, упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Динамометр. Сложение двух сил, направленных по одной прямой. Трение. Упругая деформация.

Фронтальная лабораторная работа.

3.Измерение массы тела на рычажных весах.

4.Измерение объема тела.

5.Опредение плотности твердого вещества.

6.Градуирование пружины и измерение сил динамометром.

7.Измерение силы трения с помощью динамометра.

IV. Давление твердых тел, жидкостей и газов (21 ч.)

Давление. Опыт Торричелли. Барометр-анероид. Атмосферное давление на различных высотах. Закон Паскаля. Способы увеличения и уменьшения давления. Давление газа. Вес воздуха. Воздушная оболочка. Измерение атмосферного давления. Манометры. Поршневой жидкостный насос. Передача давления твердыми телами, жидкостями, газами. Действие жидкости и газа на погруженное в них тело. Расчет давления жидкости на дно и стенки сосуда. Сообщающие сосуды. Архимедова сила. Гидравлический пресс. Плавание тел. Плавание судов. Воздухоплавание.

Фронтальная лабораторная работа.

8.Определение выталкивающей силы, действующей на погруженное в жидкость тело.

9.Выяснение условий плавания тела в жидкости.

V. Работа и мощность. Энергия (13 ч.)

Работа. Мощность. Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Простые механизмы. КПД механизмов. Рычаг. Равновесие сил на рычаге. Момент силы. Рычаги в технике, быту и природе. Применение закона равновесия рычага к блоку. Равенство работ при использовании простых механизмов. «Золотое правило» механики.

Фронтальная лабораторная работа.

10.Выяснение условия равновесия рычага.

11.Измерение КПД при подъеме по наклонной плоскости.

VI. Итоговая контрольная работа (1 ч.)

VII. Резервное время (2 ч.)

8 класс(70 ч, 2 ч. в неделю)


I. Тепловые явления (24 ч.)

Внутренняя энергия. Тепловое движение. Температура. Теплопередача. Необратимость процесса теплопередачи. Связь температуры вещества с хаотическим движением его частиц. Способы изменения внутренней энергии. Теплопроводность. Количество теплоты. Удельная теплоемкость. Конвекция. Излучение. Закон сохранения энергии в тепловых процессах. Плавление и кристаллизация. Удельная теплота плавления. График плавления и отвердевания. Преобразование энергии при изменениях агрегатного состояния вещества. Испарение и конденсация. Удельная теплота парообразования и конденсации. Работа пара и газа при расширении. Кипение жидкости. Влажность воздуха. Тепловые двигатели. Энергия топлива. Удельная теплота сгорания. Агрегатные состояния. Преобразование энергии в тепловых двигателях. КПД теплового двигателя.

Фронтальная лабораторная работа.

1.Сравнение количеств теплоты при смешивании воды разной температуры.

2.Изметение удельной теплоемкости твердого тела.

3.Измерение влажности воздуха.

II. Электрические явления (29 ч.) Электризация тел. Электрический заряд. Взаимодействие зарядов. Два вида

электрического заряда. Дискретность электрического заряда. Электрон. Закон сохранения электрического заряда. Электрическое поле. Электроскоп. Строение атомов. Объяснение электрических явлений. Проводники и непроводники электричества. Действие электрического поля на электрические заряды. Постоянный электрический ток. Источники электрического тока. Носители свободных электрических зарядов в металлах, жидкостях и газах. Электрическая цепь и ее составные части. Сила тока. Единицы силы тока. Амперметр. Измерение силы тока. Напряжение. Единицы напряжения. Вольтметр. Измерение напряжения. Зависимость силы тока от напряжения. Сопротивление. Единицы сопротивления. Закон Ома для участка электрической цепи. Расчет сопротивления проводников. Удельное сопротивление. Примеры на расчет сопротивления проводников, силы тока и напряжения. Реостаты. Последовательное и параллельное соединение проводников. Действия электрического тока. Закон Джоуля-Ленца. Работа электрического тока. Мощность электрического тока. Единицы работы электрического тока, применяемые на практике. Счетчик электрической энергии. Электронагревательные приборы. Расчет электроэнергии, потребляемой бытовыми приборами. Нагревание проводников электрическим током. Количество теплоты, выделяемое проводником с током. Лампа накаливания. Короткое замыкание. Предохранители.

Фронтальная лабораторная работа.

4.Сборка электрической цепи и измерение силы тока в ее различных участках.

5.Измерение напряжения на различных участках электрической цепи.

6.Регулирование силы тока реостатом.

7.Измерение сопротивления проводника с помощью амперметра и вольтметра.

8.Измерение работы и мощности электрического тока.

III. Электромагнитные явления (5 ч.)

Магнитное поле. Магнитное поле прямого тока и катушки с током. Магнитные линии. Постоянные магниты. Электромагниты. Магнитное поле Земли. Действие магнитного поля на проводник с током. Электродвигатель.

Фронтальная лабораторная работа

9. Сборка электромагнита и испытание его действия.

10. Изучение электрического двигателя постоянного тока (на модели).

IV. Световые явления (10 ч.)

Источники света. Прямолинейное распространение, отражение и преломление света. Луч. Закон отражения света. Плоское зеркало. Линза. Оптическая сила линзы. Изображение даваемое линзой. Измерение фокусного расстояния собирающей линзы. Оптические приборы. Глаз и зрение. Очки.

Фронтальная лабораторная работа.

11.Получение изображения с помощью линзы.

V. Резервное время (2 ч.)

9 класс (102 ч, 3 ч. в неделю)

I. Законы взаимодействия и движения тел (40 ч.)

Материальная точка. Траектория. Скорость. Перемещение. Система отсчета. Определение координаты движущего тела. Графики зависимости кинематических величин от времени. Прямолинейное равноускоренное движение. Скорость равноускоренного движения. Перемещение при равноускоренном движении. Определение координаты движущего тела. Графики зависимости кинематических величин от времени. Ускорение. Относительность механического движения. Инерциальная система отсчета. Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Свободное падение. Закон Всемирного тяготения. Криволинейное движение. Движение по окружности. Искусственные спутники Земли. Ракеты. Импульс. Закон сохранения импульса. Реактивное движение. Движение тела брошенного вертикально вверх. Движение тела брошенного под углом к горизонту. Движение тела брошенного горизонтально. Ускорение свободного падения на Земле и других планетах.

Фронтальная лабораторная работа.

1. Исследование равноускоренного движения без начальной скорости.

2.Измерение ускорения свободного падения.

II. Механические колебания и волны. Звук (12ч.)

Механические колебания. Амплитуда. Период, частота. Свободные колебания. Колебательные системы. Маятник. Зависимость периода и частоты нитяного маятника от длины нити. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Механические волны. Длина волны. Продольные и поперечные волны. Скорость распространения волны. Звук. Высота и тембр звука. Громкость звука. Распространение звука. Скорость звука. Отражение звука. Эхо. Резонанс.

Фронтальная лабораторная работа.

3.Исследование зависимости периода и частоты свободных колебаний маятника от длины его длины.

III. Электромагнитное поле (26 ч.)

Взаимодействие магнитов. Магнитное поле. Взаимодействие проводников с током. Действие магнитного поля на электрические заряды. Графическое изображение магнитного поля. Направление тока и направление его магнитного поля. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Магнитный поток. Электромагнитная индукция. Явление электромагнитной индукции. Получение переменного электрического тока. Электромагнитное поле. Неоднородное и неоднородное поле. Взаимосвязь электрического и магнитного полей. Электромагнитные волны. Скорость распространения электромагнитных волн. Электродвигатель. Электрогенератор. Свет – электромагнитная волна.

Фронтальная лабораторная работа.

4.Изучение явления электромагнитной индукции.

5. Наблюдение сплошного и линейчатых спектров испускания.

IV. Строение атома и атомного ядра (15 ч.)

Радиоактивность. Альфа -, бета - и гамма-излучение. Опыты по рассеиванию альфа-частиц. Планетарная модель атома. Атомное ядро. Протонно-нейтронная модель ядра. Методы наблюдения и регистрации частиц. Радиоактивные превращения. Экспериментальные методы. Заряд ядра. Массовое число ядра. Ядерные реакции. Деление и синтез ядер. Сохранение заряда и массового числа при ядерных реакциях. Открытие протона и нейтрона. Ядерные силы. Энергия связи частиц в ядре. Энергия связи. Дефект масс. Выделение энергии при делении и синтезе ядер. Использование ядерной энергии. Дозиметрия. Ядерный реактор. Преобразование внутренней энергии ядер в электрическую энергию. Атомная энергетика. Термоядерные реакции. Биологическое действие радиации.

Фронтальная лабораторная работа.

6. Измерение естественного радиационного фона дозиметром.

7.Изучение деления ядра урана по фотографии треков.

8. Оценка периода полураспада находящихся в воздухе продуктов распада радона.

9.Изучение треков заряженных частиц по готовым фотографиям.

V. Строение и эволюция Вселенной (6 ч)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

VI. Резервное время (3 ч.)



8.ОПИСАНИЕ МАТЕРИАЛЬНО- ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА


УМК «Физика. 7 класс»

1. Физика. 7 класс. Учебник (автор А. В. Перышкин).

2. Физика. Рабочая тетрадь. 7 класс (авторы Т. А. Ханнанова, Н. К. Ханнанов).

3. Физика. Методическое пособие. 7 класс (авторы Е. М. Гутник, Е. В. Рыбакова).

4. Физика. Тесты. 7 класс (авторы Н. К. Ханнанов, Т. А. Ханнанова).

5. Физика. Дидактические материалы. 7 класс (авторы А. Е. Марон, Е. А. Марон).

6. Физика. Сборник вопросов и задач. 7—9 классы (авторы А. Е. Марон, С. В. Позойский, Е. А. Марон).

7. Электронное приложение к учебнику.

УМК «Физика. 8 класс»

1. Физика. 8 класс. Учебник (автор А. В. Перышкин).

2. Физика. Методическое пособие. 8 класс (авторы Е. М. Гутник, Е. В. Рыбакова, Е. В. Шаронина).

3. Физика. Тесты. 8 класс (авторы Н. К. Ханнанов, Т. А. Ханнанова).

4. Физика. Дидактические материалы. 8 класс (авторы А. Е. Марон, Е. А. Марон).

5. Физика. Сборник вопросов и задач. 7—9 классы (авторы А. Е. Марон, С. В. Позойский, Е. А. Марон).

6. Электронное приложение к учебнику.


УМК «Физика. 9 класс»

1. Физика. 9 класс. Учебник (авторы А. В. Перышкин, Е. М. Гутник).

2. Физика. Тематическое планирование. 9 класс (автор Е. М. Гутник).

3. Физика. Тесты. 9 класс (авторы Н. К. Ханнанов, Т. А. Ханнанова).

4. Физика. Дидактические материалы. 9 класс (авторы А. Е. Марон, Е. А. Марон).

5. Физика. Сборник вопросов и задач. 7—9 классы (авторы А. Е. Марон, С. В. Позойский, Е. А. Марон).

6. Электронное приложение к учебнику.


Таблицы общего назначения

1. Международная система единиц (СИ).

2. Приставки для образования десятичных кратных и дольных единиц.

3. Физические постоянные.

4.Шкала электромагнитных волн.

5. Правила по технике безопасности при работе в кабинете физики.

6. Меры безопасности при постановке и проведении лабораторных работ по электричеству.

7. Порядок решения количественных задач.


Оборудование класса

  1. Компьютер

  2. Проектор

  3. Интерактивная доска

  4. Документкамера

  5. Комплект электроснабжения кабинета.





12



Автор
Дата добавления 24.08.2015
Раздел Физика
Подраздел Рабочие программы
Просмотров238
Номер материала ДA-013604
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх