Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Физика / Рабочие программы / Рабочая программа по физике

Рабочая программа по физике


  • Физика

Поделитесь материалом с коллегами:

Муниципальное казенное общеобразовательное учреждение

«Чистоозерная СОШ № 3»





«Согласовано»

Заместитель директора школы по УВР МКОУ «Чистоозерная СОШ № 3»

__________ Клешня Т.В.

«__»_______2015 г.


«Утверждаю»

Директор МКОУ «Чистоозерная СОШ № 3»

_________ Сапсай А.А.

«__» _________2015 г



Рабочая программа

учебного курса по физике

для 9 класса







Составитель: учитель физики

Соловьева М.С.

2015-2016 учебный год


Пояснительная записка


Так как в 2015 – 2016 учебном году в 9 классе трое учащихся обучаются по адаптированной программе для детей с ЗПР, то данная рабочая программа адаптирована к общеобразовательной программе и составлена на основе «Примерной программы основного общего образования по физике. 7-9 классы.» под редакцией В. А. Орлова, О. Ф. Кабардина, В. А. Коровина и др. авторской программы «Физика. 7-9 классы» под редакцией Е. М. Гутник, А. В. Перышкина, федерального компонента государственного стандарта основного общего образования по физике 2004 г.

Данная программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса и последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет набор лабораторных и практических работ, выполняемых учащимися. Программа учитывает особенности познавательной деятельности детей, обучающихся по адаптированной программе для детей с ЗПР. Важными коррекционными задачами курса физики для таких учащихся являются:

развитие у учащихся основных мыслительных операций (анализ, синтез, сравнение, обобщение);

нормализация взаимосвязи деятельности с речью;

формирование приемов умственной работы;

развитие речи, умения использовать при пересказе соответствующую терминологию;

развитие общеучебных умений и навыков.

Контроль результатов обучения обучающихся по адаптированной программе для детей с ЗПР должен осуществляться в соответствии с «Требованиями к уровню подготовки выпускников основной школы». Контрольные работы составлены с учетом индивидуальных особенностей учащегося, где преобладают задачи пониженного уровня сложности (задания соответствуют уровню общеобразовательной школы).

Согласно базисному учебному плану на изучение физики отводится 2 ч в неделю (68 часов за год).

Изучение физики на ступени основного общего образования направлено на достижение следующих целей:

  • освоение знаний о механических явлениях, величинах, характеризующих эти явления, законах, которым они подчиняются, методах научного познания природы и формирование на этой основе представлений о физической картине мира;

  • овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений, представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические закономерности, применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;

  • развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний, при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;

  • воспитание убежденности в возможности познания законов природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники, отношения к физике как к элементу общечеловеческой культуры;

  • использование полученных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального использования и охраны окружающей среды.




При реализации рабочей программы используется УМК


Перышкина А. В, Гутник Е. М., входящий в Федеральный перечень учебников, утвержденный Министерством образования и науки РФ. Для изучения курса рекомендуется классно-урочная система с использованием различных технологий, форм, методов обучения.

Для организации коллективных и индивидуальных наблюдений физических явлений и процессов, измерения физических величин и установления законов, подтверждения теоретических выводов необходимы систематическая постановка демонстрационных опытов учителем, выполнение лабораторных работ учащимися. Рабочая программа предусматривает выполнение практической части курса: 5 лабораторных работ, 5 контрольных работ.

В обязательный минимум, утвержденный в 2004 году, вошли темы, которых не было в предыдущем стандарте: «Невесомость», «Трансформатор», «Передача электрической энергии на расстояние», «Конденсатор», «Энергия заряженного поля конденсатора», «Колебательный контур», «Электромагнитные колебания», «Принципы радиосвязи и телевидения», «Дисперсия света», «Оптические спектры».



ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ


В результате изучения курса физики 9 класса ученик должен:

знать/понимать

  • смысл понятий: электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения;

  • смысл физических величин: путь, скорость, ускорение, сила, импульс;

  • смысл физических законов: Ньютона, всемирного тяготения, сохранения импульса и механической энергии;

уметь

  • описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, электромагнитную индукцию, преломление и дисперсию света;

  • использовать физические приборы и измерительные инструменты для измерения физических величин: естественного радиационного фона;

  • представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: периода колебаний нитяного маятника от длины нити, периода колебаний пружинного маятника от массы груза и от жесткости пружины;

  • выражать результаты измерений и расчетов в единицах Международной системы;

  • приводить примеры практического использования физических знаний о механических, электромагнитных явлениях;

  • решать задачи на применение изученных физических законов;

  • осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для рационального использования, обеспечения безопасности в процессе использования электрических приборов, оценки безопасности радиационного фона.



Содержание программы учебного предмета.

(68 часов)

Законы взаимодействия и движения тел (31 час)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение. Мгновенная скорость. Ускорение. Графики зависимости скорости и перемещения от времени при прямолинейном равномерном и равноускоренном движениях. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Первый, второй и третий законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса. Реактивное движение.

Демонстрации.

Относительность движения. Равноускоренное движение. Свободное падение тел в трубке Ньютона. Направление скорости при равномерном движении по окружности. Второй закон Ньютона. Третий закон Ньютона. Невесомость. Закон сохранения импульса. Реактивное движение..

Лабораторные работы и опыты.

Исследование равноускоренного движения без начальной скорости.

Механические колебания и волны. Звук. (13 часов)

Колебательное движение. Пружинный, нитяной, маятники. Свободные и вынужденные колебания. Затухающие колебания. Колебательная система. Амплитуда, период, частота колебаний. Превращение энергии при колебательном движении. Резонанс.

Распространение колебаний в упругих средах. Продольные и поперечные волны. Длина волны. Скорость волны. Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо.

Демонстрации.

Механические колебания. Механические волны. Звуковые колебания. Условия распространения звука.

Лабораторная работа.

Исследование зависимости периода и частоты свободных колебаний нитяного маятника от длины нити.

Электромагнитное поле (11 часов)

Магнитное поле. Однородное и неоднородное магнитное поле. направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние.

Электромагнитное поле. Электромагнитные волны. Скорость электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Конденсатор. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Типы оптических спектров. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Демонстрации.

Устройство конденсатора. Энергия заряженного конденсатора. Электромагнитные колебания. Свойства электромагнитных волн. Дисперсия света. Получение белого света при сложении света разных цветов.

Лабораторная работа.

Изучение явления электромагнитной индукции.

Строение атома и атомного ядра. 12 часов

Радиоактивность как свидетельство сложного строения атомов. Модели атомов. Опыт Резерфорда Радиоактивные превращения атомных ядер. Экспериментальные методы исследования частиц. Открытие протона и нейтрона. Состав атомного ядра. Массовое число. Зарядовое число. Ядерные силы. Энергия связи. Дефект масс. Деление ядер урана. Цепная реакция. Ядерный реактор. Преобразование внутренней энергии атомных ядер в электрическую. Атомная энергетика Биологическое действие радиации. Закон радиоактивного распада. Термоядерная реакция. Элементарные частицы. Античастицы.

Демонстрации.

Модель опыта Резерфорда. Наблюдение треков в камере Вильсона. Устройство и действие счетчика ионизирующих частиц.

Лабораторные работы.

Изучение треков заряженных частиц по готовым фотографиям. Изучение деления ядра атома урана по фотографии треков.

Итоговое повторение 1 час





Формы и средства контроля.

Основными методами проверки знаний и умений учащихся по физике являются устный опрос, письменные и лабораторные работы. К письменным формам контроля относятся: физические диктанты, самостоятельные и контрольные работы, тесты. Основные виды проверки знаний – текущая и итоговая. Текущая проверка проводится систематически из урока в урок, а итоговая – по завершении темы (раздела), школьного курса. Ниже приведены контрольные работы для проверки уровня сформированности знаний и умений учащихся после изучения каждой темы и всего курса в целом.

Тексты контрольных работ взяты из поурочных разработок по физике В.А. Волкова (Москва «ВАКО» 2007)



Основная и дополнительная литература:


В.А. Волков, С.Е. Полянский Поурочные разработки по физике9 класс Учебно-методическое пособие; Москва «Вако» 2007 г.

Перышкин А. В., Гутник Е. М. Физика. 9 кл.: Учеб. для общеобразоват учеб. заведе-ний. М.: Дрофа, 2008

Лукашик В. И. Сборник задач по физике: Учеб пособие для учащихся 7-9 кл. сред. шк.

Программы для общеобразовательных учреждений. Физика. Астрономия. 7-11 кл. / сост. В. А. Коровин, В. А. Орлов. – 2-е изд., стереотип. – М.: Дрофа, 2009. – 334 с.

Дидактические карточки-задания М. А. Ушаковой, К. М. Ушакова.

Сборник задач по физике. 7 – 9 класс/ Е.Г. Москвина, В.А. Волков. – Москва «Вако», 2011. – 176 с.


Оборудование и приборы.

Номенклатура учебного оборудования по физике определяется стандартами физического образования, минимумом содержания учебного материала, базисной программой общего образования.

Для постановки демонстраций достаточно одного экземпляра оборудования, для фронтальных лабораторных работ не менее одного комплекта оборудования на двоих учащихся.










Автор
Дата добавления 02.03.2016
Раздел Физика
Подраздел Рабочие программы
Просмотров145
Номер материала ДВ-499602
Получить свидетельство о публикации


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх