Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Физика / Рабочие программы / Рабочая программа по физике (ФГОС) 7-9 классы

Рабочая программа по физике (ФГОС) 7-9 классы

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs


Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Цели конкурса: повысить интерес учеников к математике, усилить внутреннюю мотивацию, веру в себя и свои силы. Ученики отвечают на задания прямо на сайте конкурса, учителю не нужно распечатывать задания. Для каждого ученика конкурс по математике «Поверь в себя» - это прекрасная возможность проявить себя и раскрыть свой потенциал.

Подробнее о конкурсе - https://urokimatematiki.ru/

  • Физика

Поделитесь материалом с коллегами:

Муниципальное бюджетное общеобразовательное учреждение

«Котельниковская средняя общеобразовательная школа № 1

имени Героя Советского Союза Л.Д. Чурилова»

140053, Московская область, г.о. Котельники, мкр-н Силикат, д.33т/факс 554-34-69, тел.554,-51-68

E-mail: silikan_33, сайт школы http://sch1-kotel.edumsko.ru/


"УТВЕРЖДАЮ"

Директор МБОУ КСОШ №1

_______________/ _____________

Приказ от __________ №________









Рабочая программа по физике

(базовый уровень)

7-9 классы










Составитель Назарова Ольга Александровна

учитель первой категории











Котельники городской округ

2016





1. Пояснительная записка


Рабочая программа по предмету «Физике 7-9» для основной школы составлена в соответствии с требованиями Федерального Государственного образовательного стандарта общего образования на основе примерной образовательной программы образовательного учреждения ОООФКГОС и авторской программой "Физика 7 – 9 классы" Е.М. Гутник, А.В. Перышкин.

Структура программы

Программа составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам основного общего образования, представленных в федеральном государственном образовательном стандарте общего образования второго поколения.

Содержание программы имеет особенности, обусловленные, во-первых, задачами развития, обучения и воспитания учащихся, социальными требованиями к уровню развития их личностных и познавательных качеств; во-вторых, предметным содержанием системы основного общего образования; в-третьих, психологическими возрастными особенностями учащихся.

Программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса и рекомендуемую последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, определяет минимальный набор опытов, демонстраций, проводимых учителем в классе, лабораторных работ, выполняемых учащимися.

Программа определяет пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации учащихся.

Программа содействует сохранению единого образовательного пространства.

Исходя из общих положений концепции физического образования, начальный курс физики призван решать следующие задачи:

- создать условия для формирования логического и абстрактного мышления у школьников как основы их дальнейшего эффективного обучения;

  • сформировать набор необходимых для дальнейшего обучения предметных и общеучебных умений на основе решения как предметных, так и интегрированных жизненных задач;

  • обеспечить прочное и сознательное овладение системой физических знаний и умений, необходимых для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования; обеспечить интеллектуальное развитие, сформировать качества мышления, характерные для физической деятельности и необходимые для полноценной жизни в обществе;

  • сформировать представление об идеях и методах физики, о физике как форме описания и методе познания окружающего мира;

  • сформировать представление о физике как части общечеловеческой культуры, понимание значимости физики для общественного прогресса;

  • сформировать устойчивый интерес к физике на основе дифференцированного подхода к учащимся;

  • выявить и развить творческие способности на основе заданий, носящих нестандартный, занимательный характер.

2. Общая характеристика учебного предмета

Школьный курс физики – системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии.

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.


Цели изучения физики в основной школе следующие:

усвоение учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;

формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;

систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;

формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;

организация экологического мышления и ценностного отношения к природе;

развитие познавательных интересов и творческих способностей учащихся, а также интереса к расширению и углублению физических знаний.


Достижение этих целей обеспечивается решением следующих задач:

знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;

приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях. Физических величинах, характеризующих эти явления;

формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов;

овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

В результате освоения предметного содержания предлагаемого курса физики у учащихся предполагается формирование универсальных учебных действий (познавательных, регулятивных, коммуникативных) позволяющих достигать предметных, метапредметных и личностных результатов.

  • Познавательные: в предлагаемом курсе физики изучаемые определения и правила становятся основой формирования умений выделять признаки и свойства объектов. В процессе вычислений, измерений, объяснений физических явлений, поиска решения задач у учеников формируются и развиваются основные мыслительные операции (анализа, синтеза, классификации, сравнения, аналогии и т.д.), умения различать разнообразные явления, обосновывать этапы решения учебной задачи, производить анализ и преобразование информации, используя при решении самых разных физических задач простейшие предметные, знаковые, графические модели, таблицы, диаграммы, строя и преобразовывая их в соответствии с содержанием задания). Решая задачи, рассматриваемые в данном курсе, можно выстроить индивидуальные пути работы с физическим содержанием, требующие различного уровня логического мышления.

  • Регулятивные: физическое содержание позволяет развивать и эту группу умений. В процессе работы ребёнок учится самостоятельно определять цель своей деятельности, планировать её, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат.

  • Коммуникативные: в процессе изучения физики осуществляется знакомство с физическим языком, формируются речевые умения: дети учатся высказывать суждения с использованием физических терминов и понятий, формулировать вопросы и ответы в ходе выполнения задания, доказательства верности или неверности выполненного действия, обосновывают этапы решения учебной задачи.

Работая в соответствии с инструкциями к заданиям учебника, дети учатся работать в парах. Умение достигать результата, используя общие интеллектуальные усилия и практические действия, является важнейшим умением для современного человека.

Образовательные и воспитательные задачи обучения физики решаются комплексно.

Предлагаемый учебно-методический курс также обеспечивает интеграцию в физику информационных технологий. Предполагается, что в расписании курса физики может иметь постоянное место компьютерный урок в специально оборудованном классе, где может происходить работа с цифровыми образовательными ресурсами (ЦОР) по физике, созданного на основе учебников по данному курсу (http://school-collection.edu.ru/, http://www.bing.com, http://www.openclass.ru).

Эти же ресурсы (http://school-collection.edu.ru/, http://www.bing.com, http://www.openclass.ru) могут быть использованы и на обычном уроке в обычном классе, при наличии специально оборудованного учительского места.

Рассматриваемый курс физики предлагает решение новых образовательных задач путём использования современных образовательных технологий.

Учитель имеет право самостоятельного выбора технологий, методик и приёмов педагогической деятельности, однако при этом необходимо понимать, что необходимо эффективное достижение целей, обозначенных федеральным государственным образовательным стандартом основного общего образования.

Деятельностный подход – основной способ получения знаний.

Материалы курса организованы таким образом, чтобы педагог и дети могли осуществлять дифференцированный подход в обучении и обладали правом выбора уровня решаемых физических задач.

3. Описание места учебного предмета в учебном плане

Учебный план для школы отводит 204 часа для обязательного изучения физики на ступени основного общего образования. В том числе в VII, VIII и IX классах по 68 учебных часа из расчета 2 учебных часа в неделю. В программе предусмотрен резерв свободного учебного времени для реализации авторских подходов, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий, учета местных условий.

4. Ценностные ориентиры содержания учебного предмета

Ценностные ориентиры содержания курса физики в основной школе определяются спецификой физики как науки. Понятие «ценности» включает единство объективного и субъективного, поэтому в качестве ценностных ориентиров физического образования выступают объекты, изучаемые в курсе физики, к которым у учащихся формируется ценностное отношение. При этом ведущую роль играют познавательные ценности. Так как данный учебный предмет входит в группу предметов познавательного цикла, главная цель которых заключается в изучении природы.

Основу познавательных ценностей составляют научные знания, научные методы познания, а ценностная ориентация, формируемая у учащихся в процессе изучения физики, проявляется:

в признании ценности научного знания, его практической значимости, достоверности;

в осознании ценности физических методов исследования живой и неживой природы;

в понимании сложности и притиворечивости самого процесса познания как извечного стремления к Истине.

В качестве объектов ценности труда и быта выступают творческая созидательная деятельность, здоровый образ жизни, а ценностная ориентация содержания курса физики может рассматриваться как формирование:

уважительного отношения к созидательной, творческой деятельности;

понимания необходимости эффективного и безопасного использования различных технических устройств;

потребности в безусловном выполнении правил безопасного использования веществ в повседневной жизни;

сознательного выбора будущей профессиональной деятельности.

Курс физики обладает возможностями для формирования коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь, а ценностная ориентация направлена на воспитание у учащихся:

правильного использования физической терминологии и символики;

потребности вести диалог, выслушивать мнение оппонента, участвовать в дискуссии;

способности открыто выражать и аргументированно отстаивать свою точку зрения.


5. Результаты освоения курса.

Личностными результатами обучения физике в основной школе являются:

сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;

убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;

самостоятельность в приобретении новых знаний и практических умений;

готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;

мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениям предвидеть возможные результаты своих действий;

понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и

реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

  • формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

  • приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;

  • развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;

  • освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

  • формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами обучения физике в основной школе являются:

  • знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;

  • умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;

  • умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;

  • умения и навыки применять полученные знания для объяснения принципов действия важнейших технических


устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;

  • формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;

  • развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;

  • коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частными предметными результатами обучения физике в основной школе, на которых основываются общие результаты, являются:

  • понимание и способность объяснять такие физические явления, как свободное падение тел, колебания нитяного и пружинного маятников, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел, процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током, электромагнитная индукция, отражение и преломление света, дисперсия света, возникновение линейчатого спектра излучения;

  • умения измерять расстояние, промежуток времени, скорость, ускорение, массу, силу, импульс, работу силы, мощность, кинетическую энергию, потенциальную энергию, температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;

  • владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объема вытесненной воды, периода колебаний маятника от его длины, объема газа от давления при постоянной температуре, силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала, направления индукционного тока от условий его возбуждения, угла отражения от угла падения света;

  • понимание смысла основных физических законов и умение применять их на практике: законы динамики Ньютона, закон всемирного тяготения, законы Паскаля и Архимеда, закон сохранения импульса, закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца;

  • понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использования;

  • овладение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;

  • умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.).


7 класс

Личностными результатами изучения курса «Физика» в 7-м классе является формирование следующих умений:

  • Определять и высказывать под руководством педагога самые общие для всех людей правила поведения при сотрудничестве (этические нормы).

  • В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех правила поведения, делать выбор, при поддержке других участников группы и педагога, как поступить.


Средством достижения этих результатов служит организация на уроке работы в парах постоянного и сменного состава, групповые формы работы.

Метапредметными результатами изучения курса «Физика» в 7-м классе являются формирование следующих универсальных учебных действий (УУД).

Регулятивные УУД:

  • Определять и формулировать цель деятельности на уроке.

  • Ставить учебную задачу.

  • Учиться составлять план и определять последовательность действий.

  • Учиться высказывать своё предположение (версию) на основе работы с иллюстрацией учебника.

  • Учиться работать по предложенному учителем плану.


Средством формирования этих действий служат элементы технологии проблемного обучения на этапе изучения нового материала.


  • Учиться отличать верно выполненное задание от неверного.

  • Учиться совместно с учителем и другими учениками давать эмоциональную оценку деятельности класса на уроке.


Средством формирования этих действий служит технология оценивания образовательных достижений.

Познавательные УУД:

  • Ориентироваться в своей системе знаний: отличать новое от уже известного с помощью учителя.

  • Делать предварительный отбор источников информации: ориентироваться в учебнике (на развороте, в оглавлении, в словаре).

  • Добывать новые знания: находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке.

  • Перерабатывать полученную информацию: делать выводы в результате совместной работы всего класса.

  • Перерабатывать полученную информацию: сравнивать и классифицировать.

  • Преобразовывать информацию из одной формы в другую: составлять физические рассказы и задачи на основе простейших физических моделей (предметных, рисунков, схематических рисунков, схем); находить и формулировать решение задачи с помощью простейших моделей (предметных, рисунков, схематических рисунков, схем).


Средством формирования этих действий служит учебный материал, задания учебника и задачи из сборников.

Коммуникативные УУД:

  • Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).

  • Слушать и понимать речь других.

  • Читать и пересказывать текст.


Средством формирования этих действий служит технология проблемного обучения.


  • Совместно договариваться о правилах общения и поведения в школе и следовать им.

  • Учиться выполнять различные роли в группе (лидера, исполнителя, критика).


Средством формирования этих действий служит организация работы в парах постоянного и сменного состава.

Предметными результатами изучения курса «Физика» в 7-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны знать/понимать:

  • смысл понятий: физическое явление, физический закон, физические величины, взаимодействие;

  • смысл физических величин: путь, скорость, масса, плотность, сила, давление, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия;

  • смысл физических законов: Паскаля, Архимеда, Гука.

2-й уровень (программный)

  • Учащиеся должны уметь:

  • собирать установки для эксперимента по описанию, рисунку и проводить наблюдения изучаемых явлений;

  • измерять массу, объём, силу тяжести, расстояние; представлять результаты измерений в виде таблиц, выявлять эмпирические зависимости;

  • объяснять результаты наблюдений и экспериментов;

  • применять экспериментальные результаты для предсказания значения величин, характеризующих ход физических явлений;

  • выражать результаты измерений и расчётов в единицах Международной системы;

  • решать задачи на применение изученных законов;

  • приводить примеры практического использования физических законов;

  • использовать приобретённые знания и умения в практической деятельности и в повседневной жизни.

8-й класс

Личностными результатами изучения предметно-методического курса «Физика» в 8-м классе является формирование следующих умений:


  • Самостоятельно определять и высказывать общие для всех людей правила поведения при совместной работе и сотрудничестве (этические нормы).

  • В предложенных педагогом ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, самостоятельно делать выбор, какой поступок совершить.


Средством достижения этих результатов служит организация на уроке работы в парах постоянного и сменного состава, групповые формы работы.

Метапредметными результатами изучения курса «Физика» в 8-м классе являются формирование следующих универсальных учебных действий.

Регулятивные УУД:

  • Определять цель деятельности на уроке самостоятельно.

  • Учиться формулировать учебную проблему совместно с учителем.

  • Учиться планировать учебную деятельность на уроке.

  • Высказывать свою версию, пытаться предлагать способ её проверки.

  • Работая по предложенному плану, использовать необходимые средства (учебник, простейшие приборы и инструменты).


Средством формирования этих действий служат элементы технологии проблемного обучения на этапе изучения нового материала.


  • Определять успешность выполнения своего задания при помощи учителя.


Средством формирования этих действий служит технология оценивания учебных успехов.

Познавательные УУД:

  • Ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг.

  • Делать предварительный отбор источников информации для решения учебной задачи.

  • Добывать новые знания: находить необходимую информацию как в учебнике, так и в предложенных учителем словарях и энциклопедиях.

  • Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).

  • Перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы.


Средством формирования этих действий служит учебный материал учебника, словари, энциклопедии

Коммуникативные УУД:

  • Донести свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне одного предложения или небольшого текста).

  • Слушать и понимать речь других.

  • Выразительно пересказывать текст.

  • Вступать в беседу на уроке и в жизни.

Средством формирования этих действий служит технология проблемного диалога и технология продуктивного чтения.

  • Совместно договариваться о правилах общения и поведения в школе и следовать им.

  • Учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Средством достижения этих результатов служит организация на уроке работы в парах постоянного и сменного состава, групповые формы работы.

Предметными результатами изучения курса «Физики» в 8-м классе являются формирование следующих умений.

1-й уровень (необходимый)

знать/понимать

  • смысл понятий: тепловое движение, теплопередача, теплопроводность, конвекция, излучение, агрегатное состояние, фазовый переход. электрический заряд, электрическое поле, проводник, полупроводник и диэлектрик, химический элемент, атом и атомное ядро, протон, нейтрон, электрическая сила, ион, электрическая цепь и схема, точечный источник света, поле зрения, аккомодация, зеркало, тень, затмение, оптическая ось, фокус, оптический центр, близорукость и дальнозоркость. магнитное поле, магнитные силовые линии, постоянный магнит, магнитный полюс.

  • смысл физических величин: внутренняя энергия, количество теплоты, удельная теплоемкость вещества, удельная теплота сгорания топлива, удельная теплота парообразования, удельная теплота плавления, температура кипения, температура плавления, влажность, электрический заряд, сила тока, напряжение, сопротивление, удельное сопротивление, работа и мощность тока, углы падения, отражения, преломления, фокусное расстояние, оптическая сила.

  • смысл физических законов: сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля-Ленца, закон Ампера, закон прямолинейного распространения света, законы отражения и преломления света.

2-й уровень (программный)

Учащиеся должны уметь:

  • описывать и объяснять физические явления: теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, отражение, преломление света;

  • использовать физические приборы и измерительные инструменты для измерения физических величин: температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;

  • представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;

  • выражать результаты измерений и расчетов в единицах Международной системы;

  • приводить примеры практического использования физических знаний о тепловых, электромагнитных явлениях;

  • решать задачи на применение изученных физических законов.

9-й классы

Личностными результатами изучения учебно-методического курса «Физика» в 9-м классах является формирование следующих умений:

  • Самостоятельно определять и высказывать общие для всех людей правила поведения при общении и сотрудничестве (этические нормы общения и сотрудничества).

  • В самостоятельно созданных ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, делать выбор, какой поступок совершить.


Средством достижения этих результатов служит учебный материал – умение определять свое отношение к миру.

Метапредметными результатами изучения учебно-методического курса «Физика» в 9-ом классе являются формирование следующих универсальных учебных действий.

Регулятивные УУД:

  • Самостоятельно формулировать цели урока после предварительного обсуждения.

  • Учиться обнаруживать и формулировать учебную проблему.

  • Составлять план решения проблемы (задачи).

  • Работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.

Средством формирования этих действий служат элементы технологии проблемного обучения на этапе изучения нового материала.

  • В диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев.

Средством формирования этих действий служит технология оценивания учебных успехов.

Познавательные УУД:

  • Ориентироваться в своей системе знаний: самостоятельно предполагать, какая информация нужна для решения учебной задачи в несколько шагов.

  • Отбирать необходимые для решения учебной задачи источники информации.

  • Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).

  • Перерабатывать полученную информацию: сравнивать и группировать факты и явления; определять причины явлений, событий.

  • Перерабатывать полученную информацию: делать выводы на основе обобщения знаний.

  • Преобразовывать информацию из одной формы в другую: составлять простой план и сложный план учебно-научного текста.

  • Преобразовывать информацию из одной формы в другую: представлять информацию в виде текста, таблицы, схемы.

Средством формирования этих действий служит учебный материал.

Коммуникативные УУД:

  • Донести свою позицию до других: оформлять свои мысли в устной и письменной речи с учётом своих учебных и жизненных речевых ситуаций.

  • Донести свою позицию до других: высказывать свою точку зрения и пытаться её обосновать, приводя аргументы.

  • Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

Средством формирования этих действий служит технология проблемного диалога.


  • Читать вслух и про себя тексты учебников и при этом: вести «диалог с автором» (прогнозировать будущее чтение; ставить вопросы к тексту и искать ответы; проверять себя); отделять новое от известного; выделять главное; составлять план.

Средством формирования этих действий служит технология продуктивного чтения.

  • Договариваться с людьми: выполняя различные роли в группе, сотрудничать в совместном решении проблемы (задачи).

  • Учиться уважительно относиться к позиции другого, пытаться договариваться.

Средством достижения этих результатов служит организация на уроке работы в парах постоянного и сменного состава, групповые формы работы.

Предметными результатами изучения курса «Физика» в 9-м классе являются формирование следующих умений.

1-й уровень (необходимый)

Учащиеся должны знать/понимать:

  • смысл понятий: магнитное поле, атом, атомное ядро, радиоактивность, ионизирующие излучения; относительность механического движения, траектория, инерциальная система отсчета, искусственный спутник, замкнутая система. внутренние силы, математический маятник, звук. изотоп, нуклон;

  • смысл физических величин: магнитная индукция, магнитный поток, энергия электромагнитного пол, перемещение, проекция вектора, путь, скорость, ускорение, ускорение свободного падения, центростремительное ускорение, сила, сила тяжести, масса, вес тела, импульс, период, частота. амплитуда, фаза, длина волны, скорость волны, энергия связи, дефект масс.

  • смысл физических законов: уравнения кинематики, законы Ньютона (первый, второй, третий), закон всемирного тяготения, закон сохранения импульса, принцип относительности Галилея, законы гармонических колебаний, правило левой руки, закон электромагнитной индукции, правило Ленца, закон радиоактивного распада.

2-й уровень (программный)

Учащиеся должны уметь:

  • собирать установки для эксперимента по описанию, рисунку и проводить наблюдения изучаемых явлений;

  • измерять силу тяжести, расстояние; представлять результаты измерений в виде таблиц, выявлять эмпирические зависимости;

  • объяснять результаты наблюдений и экспериментов;

  • применять экспериментальные результаты для предсказания значения величин, характеризующих ход физических явлений;

  • выражать результаты измерений и расчётов в единицах Международной системы;

  • решать задачи на применение изученных законов;

  • приводить примеры практического использования физических законов;

  • использовать приобретённые знания и умения в практической деятельности и в повседневной жизни.

6.Основное содержание учебного предмета

Основное содержание

Физика и физические методы изучения природы

Физика — наука о природе. Наблюдение и описание физических явлений. Физические приборы. Физические величины и их измерение. Погрешности измерений. Международная система единиц. Научный метод познания. Физический эксперимент и физическая теория. Наука и техника.

Демонстрации

Наблюдение физических явлений: свободного падения тел, колебаний маятника, притяжение стального шара магнитом, свечение нити электрической лампы. Физические приборы.

Лабораторные работы и опыты

Определение цены деления шкалы измерительного прибора.1

Измерение длины.

Измерение объема жидкости и твердого тела.

Измерение температуры.

Механические явления

Кинематика

Динамика

Законы сохранения импульса и механической энергии

Механические колебания и волны

Механическое движение. Относительность движения. Система отсчета. Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Методы измерения расстояния, времени и скорости.

Неравномерное движение. Мгновенная скорость. Ускорение. Равноускоренное движение. Свободное падение тел. Графики зависимости пути и скорости от времени.

Равномерное движение по окружности. Период и частота обращения.

Явление инерции. Первый закон Ньютона. Масса тела. Плотность вещества. Методы измерения массы и плотности.

Взаимодействие тел. Сила. Правило сложения сил.

Сила упругости. Методы измерения силы.

Второй закон Ньютона. Третий закон Ньютона.

Сила тяжести. Закон всемирного тяготения. Искусственные спутники Земли. Вес тела. Невесомость. Геоцентрическая и гелиоцентрическая системы мира.

Сила трения.

Момент силы. Условия равновесия рычага. Центр тяжести тела. Условия равновесия тел.

Импульс. Закон сохранения импульса. Реактивное движение.

Работа. Мощность. Кинетическая энергия. Потенциальная энергия взаимодействующих тел. Закон сохранения механической энергии. Простые механизмы. Коэффициент полезного действия. Методы измерения энергии, работы и мощности.

Давление. Атмосферное давление. Методы измерения давления. Закон Паскаля. Гидравлические машины. Закон Архимеда. Условие плавания тел.

Механические колебания. Период, частота и амплитуда колебаний. Период колебаний математического и пружинного маятников.

Механические волны. Длина волны. Звук.

Демонстрации

Равномерное прямолинейное движение.

Относительность движения.

Равноускоренное движение.

Направление скорости при равномерном движении по окружности.

Явление инерции.

Взаимодействие тел.

Зависимость силы упругости от деформации пружины.

Сложение сил.

Сила трения.

Второй закон Ньютона.

Третий закон Ньютона.

Невесомость.

Закон сохранения импульса.

Реактивное движение.

Изменение энергии тела при совершении работы.

Превращения механической энергии из одной формы в другую.

Зависимость давления твердого тела на опору от действующей силы и площади опоры.

Обнаружение атмосферного давления.

Измерение атмосферного давления барометром - анероидом.

Закон Паскаля.

Гидравлический пресс.

Закон Архимеда.

Простые механизмы.

Механические колебания.

Механические волны.

Звуковые колебания.

Условия распространения звука.

Лабораторные работы и опыты

Измерение скорости равномерного движения.

Изучение зависимости пути от времени при равномерном и равноускоренном движении

Измерение ускорения прямолинейного равноускоренного движения.

Измерение массы.

Измерение плотности твердого тела.

Измерение плотности жидкости.

Измерение силы динамометром.

Сложение сил, направленных вдоль одной прямой.

Сложение сил, направленных под углом.

Исследование зависимости силы тяжести от массы тела.

Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины.

Исследование силы трения скольжения. Измерение коэффициента трения скольжения.

Исследование условий равновесия рычага.

Нахождение центра тяжести плоского тела.

Вычисление КПД наклонной плоскости.

Измерение кинетической энергии тела.

Измерение изменения потенциальной энергии тела.

Измерение мощности.

Измерение архимедовой силы.

Изучение условий плавания тел.

Изучение зависимости периода колебаний маятника от длины нити.

Измерение ускорения свободного падения с помощью маятника.

Изучение зависимости периода колебаний груза на пружине от массы груза.


Молекулярная физика и термодинамика

Строение и свойства веществ

Тепловые явления

Строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия. Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Тепловое движение. Тепловое равновесие. Температура и ее измерение. Связь температуры со средней скоростью теплового хаотического движения частиц.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Виды теплопередачи: теплопроводность, конвекция, излучение. Количество теплоты. Удельная теплоемкость. Закон сохранения энергии в тепловых процессах.

Испарение и конденсация. Насыщенный пар. Влажность воздуха. Кипение. Зависимость температуры кипения от давления. Плавление и кристаллизация. Удельная теплота плавления и парообразования. Удельная теплота сгорания. Расчет количества теплоты при теплообмене.

Принципы работы тепловых двигателей. Паровая турбина. Двигатель внутреннего сгорания. Реактивный двигатель. КПД теплового двигателя. Объяснение устройства и принципа действия холодильника.

Преобразования энергии в тепловых машинах. Экологические проблемы использования тепловых машин.

Демонстрации

Сжимаемость газов.

Диффузия в газах и жидкостях.

Модель хаотического движения молекул.

Модель броуновского движения.

Сохранение объема жидкости при изменении формы сосуда.

Сцепление свинцовых цилиндров.

Принцип действия термометра.

Изменение внутренней энергии тела при совершении работы и при теплопередаче.

Теплопроводность различных материалов.

Конвекция в жидкостях и газах.

Теплопередача путем излучения.

Сравнение удельных теплоемкостей различных веществ.

Явление испарения.

Кипение воды.

Постоянство температуры кипения жидкости.

Явления плавления и кристаллизации.

Измерение влажности воздуха психрометром или гигрометром.

Устройство четырехтактного двигателя внутреннего сгорания.

Устройство паровой турбины

Лабораторные работы и опыты

Исследование изменения со временем температуры остывающей воды.

Изучение явления теплообмена.

Измерение удельной теплоемкости вещества.

Измерение влажности воздуха.

Исследование зависимости объема газа от давления при постоянной температуре.

Электрические и магнитные явления

Электрические явления

Магнитные явления

Электромагнитные колебания и волны

Оптические явления

Электризация тел. Электрический заряд. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда.

Электрическое поле. Действие электрического поля на электрические заряды. Проводники, диэлектрики и полупроводники.

Постоянный электрический ток. Источники постоянного тока. Действия электрического тока. Сила тока. Напряжение. Электрическое сопротивление. Электрическая цепь. Закон Ома для участка электрической цепи. Последовательное и параллельное соединения проводников. Работа и мощность электрического тока. Закон Джоуля-Ленца. Носители электрических зарядов в металлах.

Опыт Эрстеда. Магнитное поле тока. Взаимодействие постоянных магнитов. Магнитное поле Земли. Электромагнит. Действие магнитного поля на проводник с током. Сила Ампера. Электродвигатель. Электромагнитное реле.

Электромагнитная индукция. Опыты Фарадея. Правило Ленца. Электрогенератор.

Переменный ток. Трансформатор. Передача электрической энергии на расстояние.

Электромагнитные колебания. Электромагнитные волны и их свойства. Скорость распространения электромагнитных волн. Принципы радиосвязи и телевидения.

Свет - электромагнитная волна. Влияние электромагнитных излучений на живые организмы.

Прямолинейное распространение света. Отражение и преломление света. Закон отражения света. Плоское зеркало. Линза. Фокусное расстояние линзы. Оптическая сила линзы. Глаз как оптическая система. Оптические приборы. Дисперсия света.

Демонстрации

Электризация тел.

Два рода электрических зарядов.

Устройство и действие электроскопа.

Проводники и изоляторы.

Электризация через влияние

Перенос электрического заряда с одного тела на другое

Закон сохранения электрического заряда.

Источники постоянного тока.

Составление электрической цепи.

Измерение силы тока амперметром.

Наблюдение постоянства силы тока на разных участках неразветвленной электрической цепи.

Измерение силы тока в разветвленной электрической цепи.

Измерение напряжения вольтметром.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала. Удельное сопротивление.

Реостат и магазин сопротивлений.

Измерение напряжений в последовательной электрической цепи.

Зависимость силы тока от напряжения на участке электрической цепи.

Опыт Эрстеда.

Магнитное поле тока.

Действие магнитного поля на проводник с током.

Устройство электродвигателя.

Электромагнитная индукция.

Правило Ленца.

Самоиндукция.

Получение переменного тока при вращении витка в магнитном поле.

Устройство генератора постоянного тока.

Устройство генератора переменного тока.

Устройство трансформатора.

Передача электрической энергии.

Электромагнитные колебания.

Свойства электромагнитных волн.

Принцип действия микрофона и громкоговорителя.

Принципы радиосвязи.

Источники света.

Прямолинейное распространение света.

Закон отражения света.

Изображение в плоском зеркале.

Преломление света.

Ход лучей в собирающей линзе.

Ход лучей в рассеивающей линзе.

Получение изображений с помощью линз.

Принцип действия проекционного аппарата и фотоаппарата.

Модель глаза.

Дисперсия белого света.

Получение белого света при сложении света разных цветов.

Лабораторные работы и опыты

Наблюдение электрического взаимодействия тел

Сборка электрической цепи и измерение силы тока и напряжения.

Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении.

Исследование зависимости силы тока в электрической цепи от сопротивления при постоянном напряжении.

Изучение последовательного соединения проводников

Изучение параллельного соединения проводников

Измерение сопротивление при помощи амперметра и вольтметра.

Изучение зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала. Удельное сопротивление.

Измерение работы и мощности электрического тока.

Изучение взаимодействия постоянных магнитов.

Исследование магнитного поля прямого проводника и катушки с током.

Исследование явления намагничивания железа.

Изучение принципа действия электромагнитного реле.

Изучение действия магнитного поля на проводник с током.

Изучение принципа действия электродвигателя.

Изучение явления электромагнитной индукции.

Изучение принципа действия трансформатора.

Изучение явления распространения света.

Исследование зависимости угла отражения от угла падения света.

Изучение свойств изображения в плоском зеркале.

Исследование зависимости угла преломления от угла падения света.

Измерение фокусного расстояния собирающей линзы.

Получение изображений с помощью собирающей линзы.

Наблюдение явления дисперсии света.

Квантовые явления

Опыты Резерфорда. Планетарная модель атома. Линейчатые оптические спектры. Поглощение и испускание света атомами.

Состав атомного ядра. Зарядовое и массовое числа.

Ядерные силы. Энергия связи атомных ядер. Радиоактивность. Альфа-, бета - и гамма-излучения. Методы регистрации ядерных излучений.

Ядерные реакции. Деление и синтез ядер. Источники энергии Солнца и звезд. Ядерная энергетика.

Дозиметрия. Влияние радиоактивных излучений на живые организмы. Экологические проблемы работы атомных электростанций.

Демонстрации

Модель опыта Резерфорда.

Наблюдение треков частиц в камере Вильсона.

Устройство и действие счетчика ионизирующих частиц.

Лабораторные работы и опыты

Наблюдение линейчатых спектров излучения.

Измерение естественного радиоактивного фона дозиметром.

Строение и эволюция Вселенной

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной Системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной.

Демонстрации

Астрономические наблюдения.

Знакомство с созвездиями и наблюдение суточного вращения звездного неба.

Наблюдение движения Луны, Солнца и планет относительно звезд.

7 класс

(68 часов, 2 часа в неделю)

Учебник: А.В.Перышкин.


Наименование темы

часы

контрольные работы

лабораторные работы

1

Введение

4


1

2

Первоначальные сведения о строении вещества

5


1

3

Взаимодействие тел

22

2

5

4

Давление твердых тел, жидкостей и газов

19

2

2

5

Работа и мощность. Энергия

14

1

2

6

Повторение

4




ИТОГО

68

5

11

Введение (4 ч)


Что изучает физика. Физические явления. Наблюдения, опыты, измерения. Физика и техника.

Лабораторные работы:

  1. Определение цены деления измерительного цилиндра.

Первоначальные сведения о строении вещества (5 ч)

Молекулы и атомы. Диффузия. Движение молекул. Связь температуры тела со скоростью движения его молекул. Притяжение и отталкивание молекул. Различные состояния вещества и их объяснение на основе молекулярно – кинетических представлений.

Лабораторные работы:

  1. Измерение размеров малых тел.

Взаимодействие тел (22 ч)

Механическое движение. Равномерное движение. Скорость.

Инерция. Взаимодействие тел. Инерция. Масса тела. Измерение массы тела с помощью весов. Плотность вещества.

Явление тяготения. Сила тяжести. Сила, возникающая при деформации. Вес. Связь между силой тяжести и массой.

Упругая деформация тела. Закон Гука.

Динамометр. Графическое изображение силы. Сложение сил, действующих по одной прямой.

Трение. Сила трения. Трение скольжения, качения, покоя. Подшипники.

Лабораторные работы:

1Измерение массы тела на рычажных весах.

  1. Измерение объема тела.

  2. Измерение плотности твердого тела.

  3. Градуирование пружины и измерение силы с помощью динамометра.

Давление твердых тел, жидкостей и газов (19 ч)

Давление. Давление твердых тел.

Давление газа. Объяснение давления газа на основе молекулярно – кинетических представлений. Закон Паскаля.

Давление в жидкости и газе. Сообщающиеся сосуды. Шлюзы. Гидравлический пресс.

Атмосферное давление. Опыт Торричелли. Барометр-анероид. Изменение атмосферного давления с высотой. Манометры. Насос.

Архимедова сила. Условия плавания тел. Водный транспорт. Воздухоплавание.

Лабораторные работы:

1.Измерение выталкивающей силы, действующей на погруженное в жидкость тело.

2. Выяснение условий плавания тел в жидкости.

Работа и мощность. Энергия(14 ч)

Работа силы, действующей по направлению движения тела. Мощность. Простые механизмы. Условие равновесия рычага. Момент силы. Равновесие тел с закрепленной осью вращения. Виды равновесия.

Равенство работ при использовании механизмов. Коэффициент полезного действия.

Потенциальная энергия поднятого тела, сжатой пружины. Кинетическая энергия движущегося тела. Превращение одного вида механической энергии в другой. Энергия рек и ветра.

Лабораторные работы:

1. Выяснение условия равновесия рычага.

2. Измерение КПД при подъеме тела по наклонной плоскости.

Повторение (4ч)


Учащиеся должны уметь:

- давать определение понятий: физика, тело, вещество, материя, величина, наблюдение, опыт, измерение, погрешность, единицы измерения, измерительные приборы, цена деления, экспериментальные и теоретические методы изучения природы, атом, молекула, капилляр, механическое движение, траектория, система отсчета, график движения, инертность, взаимодействие тел, простые механизмы; диффузия, смачивание, несмачивание, инерция, невесомость, перегрузки, свободное падение, плавание;

- давать определение физическим величинам: скорость, путь, масса, плотность, сила, сила тяжести, сила упругости, сила трения, вес тела, коэффициент трения, коэффициент жесткости, давление, архимедова сила, работа, механическая энергия, потенциальная энергия, кинетическая энергия, мощность, КПД, момент силы;

- определять цену деления и погрешность прибора;

- правильно пользоваться мензуркой, линейкой;

- измерять объем тела с помощью мензурки;

- приводить примеры физических явлений, физического тела вещества;

- формулировать основные положения МКТ;

- решать качественные задачи по теме;

- по таблицам находить температуру перехода вещества из одного агрегатного состояния в другое;

- приводить примеры смачивающих и несмачивающих жидкостей; использования капиллярности; вещества в различных агрегатных состояниях;

- экспериментально определять размеры малых тел.

- записывать формулы скорости, пути, времени движения, плотности, массы и объема тела; равнодействующей силы; закона Гука; веса тела, силы тяжести;

- правильно пользоваться весами, динамометром;

- измерять силу, массу;


- по числу раскрыть физический смысл скорости, плотности вещества, жесткости тела;

- приводить примеры материальной точки, поступательного движения; различных видов движения; практического использования инерции; видов трения; подшипников;

- формулировать законы Гука, Паскаля, Архимеда, «золотое правило» механики; условие равновесие рычага, закон сохранения энергии;

- решать простейшие задачи на определение цены деления прибора и погрешности измерения, качественные задачи на объяснение явлений с точки зрения строения вещества. на выяснение причин движения тела; расчетные задачи на закон Гука; задачи на расчет сил природы, расчетные задачи на закон Архимеда, плавание тел, на закон сообщающихся сосудов, на расчет работы, энергии, мощности, КПД, момента сил; задачи на применение условия равновесия рычага;

- правильно пользоваться приборами манометром, барометром;

- объяснять назначение, устройство и принцип действия барометров, манометров, гидравлических машин, насосов и их использование;

- измерять архимедову силу;

- собирать опытные установки для проведения эксперимента по выяснению условия равновесия рычага, КПД наклонной плоскости;

- приводить примеры практического применения простых механизмов.


8 класс

(68 часов, 2 часа в неделю)

Учебник:А.В.Перышкин.

Наименование темы

часы

контрольные работы

лабораторные работы

1

Тепловые явления

12

1

2

2

Изменение агрегатных состояний

11

2

1

3

Электрические явления

27

3

5

4

Электромагнитные явления

7

1

2

5

Световые явления

9

1

1


ИТОГО

68

8

11







Тепловые явления. Изменение агрегатных состояний (23 ч)

Тепловое движение. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Виды теплопередачи.

Количество теплоты. Удельная теплоемкость. Удельная теплота сгорания топлива. Плавление и кристаллизация. Температура плавления. Удельная теплота плавления.

Испарение и конденсация. Относительная влажность воздуха и ее измерение.

Кипение. Температура кипения. Удельная теплота парообразования.

Объяснение изменений агрегатных состояний вещества на основе молекулярно – кинетических представлений.

Превращения энергии в механических и тепловых процессах.

Двигатель внутреннего сгорания. Паровая турбина.

Лабораторные работы:

1. Сравнение количеств теплоты при смешивании воды разной температуры.

2.Измерение удельной теплоемкости твердого тела.

Электрические явления (27 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие зарядов. Электрическое поле.

Дискретность электрического заряда. Электрон. Строение атомов.

Постоянный электрический ток. Гальванические элементы. Аккумуляторы. Электрическая цепь. Электрический ток в металлах. Сила тока. Амперметр.

Электрическое напряжение. Вольтметр.

Электрическое сопротивление.

Закон Ома для участка электрической цепи.

Удельное сопротивление. Реостаты. Виды соединений проводников.

Работа и мощность электрического тока. Количество теплоты, выделяемое проводником с током. Счетчик электрической энергии. Лампа накаливания. Электронагревательные приборы. Расчет электроэнергии, потребляемой бытовыми электроприборами. Короткое замыкание. Плавкие предохранители.

Лабораторные работы

  1. Сборка электрической цепи и измерение силы тока.

  2. Измерение напряжения на различных участках цепи.

  3. Регулирование силы тока реостатом.

  4. Измерение сопротивления проводника с помощью амперметра и вольтметра.

  5. Измерение работы и мощности электрического тока.

  6. Изучение модели электродвигателя.

Электромагнитные явления (7ч)

Магнитное поле тока. Электромагниты и их применение. Постоянные магниты. Магнитное поле Земли. Действие магнитного поля на проводник с током. Электродвигатель.

Лабораторные работы

9.Изучение модели электродвигателя.

10.Сборка электромагнита и испытание его действия.

Световые явления (9 ч)

Источники света. Прямолинейное распространение света.

Отражение света. Законы отражения света. Плоское зеркало.

Преломление света.

Линзы. Фокусное расстояние и оптическая сила линзы. Построение изображений, даваемых тонкой линзой. Оптические приборы.

Лабораторные работы:

  1. Изучение законов отражения света.

  2. Наблюдение явления преломления света.

12. Получение изображений с помощью собирающей линзы.


Учащиеся должны уметь:- давать определение понятий тепловое движение, теплопередача, теплопроводность, конвекция, излучение, агрегатное состояние, фазовый переход. электрический заряд, электрическое поле, проводник и диэлектрик, химический элемент, атом и атомное ядро, протон, нейтрон, электрическая сила, ион, электрическая цепь и схема. магнитное поле, магнитные силовые линии, электромагнитное поле, постоянный магнит, магнитный полюс, точечный источник света, поле зрения, аккомодация, зеркало, тень, затмение, оптическая ось, фокус, оптический центр, близорукость и дальнозоркость;

- давать определение физическим величинам: внутренняя энергия, количество теплоты, удельная теплоемкость вещества, удельная теплота сгорания топлива, удельная теплота парообразования, удельная теплота плавления, температура, температура кипения, температура плавления, влажность, электрический заряд, сила тока, напряжение, сопротивление, удельное сопротивление, работа и мощность тока, углы падения, отражения, преломления, фокусное расстояние, оптическая сила.

- формулировать закон сохранения энергии в тепловых процессах;

- решать простейшие качественные и расчетные задачи на тепловые явления;

- по числу дать понятие физического смысла табличных данных темы;

- работать с соответствующими таблицами;

- определять цену деления термометра;

- уметь пользоваться термометром, калориметром, психрометром;

- объяснять назначение, устройство и принцип действия ДВС, психрометра;

- приводить примеры практического использования законов курса и тепловых двигателей.

- составлять простейшие электрические цепи и вычерчивать их схемы;

- измерять силу тока и напряжение, сопротивление;

- пользоваться реостатом;

- находить удельное сопротивление проводника по таблице;

- объяснять на основе положений электронной теории электризацию тел, существование проводников и диэлектриков; нагревания проводника электрическим током; действие электронагревательных приборов;

-объяснять действие электроизмерительных приборов, электродвигателя;

- решать задачи с применением закона Ома, Джоуля-Ленца, законов последовательного и параллельного соединения проводников и следующих формул: R = l/S; A=UIt; P=UI;

Q=I2 Rt;

- формулировать законы прямолинейного распространения света, отражения и преломления света;

- практически применять основные понятия и законы для объяснения действия фотоаппарата, глаза, очков;

- получать изображения предмета с помощью линзы и плоского зеркала;

- строить и описывать изображения предмета в плоском зеркале и в тонкой линзе;

- решать качественные и расчетные задачи на законы отражения света, на расчет оптической силы линзы и оптической силы системы линз.


9 класс

( 68 часов, 2 часа в неделю)

Учебник: А.В.Перышкин, Е.М.Гутник.

Наименование темы

часы

контрольные работы

лабораторные работы

1

Законы движения и взаимодействия тел.

27

2

2

2

Механические колебания и волны. Звук.

11

1

1

3

Электромагнитные явления

12

1

2

4

Строение атома и атомного ядра


13

1

4

5

Строение и эволюция Вселенной


3



6

Повторение

2




ИТОГО

68

5

9


Законы движения и взаимодействия тел (27 ч)

Материальная точка. Система отсчета.

Перемещение. Скорость прямолинейного равномерного движения.

Равноускоренное прямолинейное движение: мгновенная скорость, ускорение, перемещение.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении.

Относительность механического движения.

Первый закон Ньютона. Инерциальные системы отсчета. Второй закон Ньютона. Третий закон Ньютона.

Свободное падение. Закон всемирного тяготения. Искусственные спутники Земли.

Импульс. Закон сохранения импульса. Ракеты.

Лабораторные работы:

  1. Исследование равноускоренного движения без начальной скорости.

  2. Измерение ускорения свободного падения.

Механические колебания и волны. Звук (11 ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Период, частота и амплитуда колебаний.

Превращение энергии при колебаниях. Затухающие колебания. Вынужденные колебания.

Распространение колебаний в упругих средах. Поперечные и продольные волны. Связь длины волны со скоростью ее распространения и периодом.

Звуковые волны. Скорость звука. Громкость звука и высота тона. Эхо.

Лабораторные работы:

3. Исследование зависимости периода и частоты свободных колебаний маятника от его длины.

Электромагнитные явления (12ч)

Однородное и неоднородное магнитное поле.

Направление тока и направление линий его магнитного поля. Правило буравчика.

Обнаружение магнитного поля. Правило левой руки.

Индукция магнитного поля. Магнитный поток. Электромагнитная индукция.

Генератор переменного тока. Преобразование энергии в электрогенераторах. Экологические проблемы, связанные с тепловыми и гидроэлектростанциями.

Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Электромагнитная природа света.

Лабораторные работы:

4.Изучение явления электромагнитной индукции.

Строение атома и атомного ядра (13ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета - и гамма-излучения.

Опыты Резерфорда. Ядерная модель атома.

Радиоактивные превращения атомных ядер.

Протонно – нейтронная модель ядра. Зарядовое и массовое число.

Ядерные реакции. Деление и синтез ядер. Сохранение зарядового и массового чисел при ядерных реакциях.

Энергия связи частиц в ядре. Выделение энергии при ядерных реакциях. Излучение звезд. Ядерная энергетика. Экологические проблемы работы атомных электростанций.

Методы наблюдения и регистрации частиц в ядерной физике. Дозиметрия.

Лабораторные работы:

5. Изучение деления ядра атома урана по фотографии треков.


Строение и эволюция Вселенной (3 ч)

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной Системы. Физическая природа Солнца и звезд. Строение Вселенной. Эволюция Вселенной.

Повторение (2 ч)

Учащиеся должны уметь:

- давать определение основных понятий относительность механического движения, траектория, инерциальная система отсчета, искусственный спутник, замкнутая система, внутренние силы, математический маятник, звук, магнитное поле, вихревое поле, электромагнитное поле, электромагнитные волны. альфа-, бета-, гамма- излучение, изотоп, нуклон, атомное ядро, протон, нейтрон;

- давать определение физических величин: перемещение, проекция вектора, путь, скорость, ускорение, ускорение свободного падения, центростремительное ускорение, сила, сила тяжести, масса, вес тела, импульс, период, частота, амплитуда, период, частота, фаза, длина волны, скорость волны, магнитная индукция, магнитный поток, энергия электромагнитного поля; энергия связи, дефект масс.

- объяснять сущность геоцентрической и гелиоцентрической системы мира,

- уметь объяснять происхождение Солнечной системы, строение Вселенной, эволюцию Вселенной, Физическую природу небесных тел, Солнца и звезд;

- уметь формулировать законы Ньютона, законы сохранения импульса; уравнения кинематики, закон всемирного тяготения, закон сохранения импульса, принцип относительности Галилея, законы гармонических колебаний, правило левой руки, закон электромагнитной индукции, правило Ленца, закон радиоактивного распада;

- объяснять механические явления;

- решать ОЗМ для равномерного и равнопеременного прямолинейного движения;

- формулировать закон электромагнитной индукции, правило Ленца;

- объяснять превращение энергии при колебаниях;

- пользоваться моделями темы для объяснения явлений;

- решать задачи первого уровня.


8. Описание материально-технического обеспечения образовательного процесса:

Учебник

Автор, название

Год издания

Класс

Учебник: А.В.Перышкин. Физика. 7класс.

«Дрофа»М., 2012

7

Учебник: А.В.Перышкин. Физика. 8 класс

«Дрофа»М., 2014

8

Учебник: Перышкин А. В., Е.М.Гутник 9 класс

«Дрофа»М., 2014

9

Учебно-методические пособия

Автор, название

Год издания

Класс


Учебно-методический комплект. ФГОС


2015

7-9

Рзноуровневые самостоятельные и контрольные работы Л.А Кирик

2006

7-9

Тесты Л.В.Алмаева

2006

7-9

Сборник тестовых заданий для тематического и итогового контроля ( МИОО)

2009

7-9

Поурочные разработки-7 С.Е.Полянский

2011

7

Поурочные разработки-8 С.Е.Полянский

2011

8

Поурочные разработки-9 В.А.Волков

2011

9

Сборник задач по физике 7-9 В.И.Лукашик,Е.В.Иванова

2006

7-9

Электронные образовательные ресурсы, применяемые при изучении предмета

Название ресурса (автор, ссылка на Интернет-ресурс)

Темы, в изучении которых применяется ресурс

Класс

https://mrko.mos.ru/

Различные темы

7-9

2

http://www.all-fizika.com/

Различные темы

7-9

3

http://nsportal.ru/shkola/fizika

Различные темы

7-9

4

http://distant.msu.ru/course/view.php?id=89

Различные темы

7-9

5

http://www.drofa.ru/for-users/teacher/help/

Различные темы

7-9

6

class-fizika-narod.ru/

Различные темы

7-9

7

http://standart.edu/catalog.aspx?Catalog=227

Различные вопросы

7-9

8

http://минобрнауки.рф/

Различные вопросы

7-9

9

http://metodist.lbz.ru/

Различные вопросы

7-9

10

http:// www.russobit-m.ru

Различные темы

7-9

11

http:// www.media 2000.ru//

Различные темы

7-9

Материально-техническое обеспечение

Название учебного оборудования

Темы, в изучении которых применяется оборудование

Класс

7-9

ОБОРУДОВАНИЕ ОБЩЕГО НАЗНАЧЕНИЯ

Различные темы

7-9

АМПЕРМЕТРЫ ЛАБОРАТОРНЫЕ


Электрические и электромагнитные явления

8-9

ВОЛЬТМЕТР ЛАБОРАТОРНЫЙ

Электрические и электромагнитные явления

8-9

ВЕСЫ РЫЧАЖНЫЕ ЛАБОРАТОРНЫЕ

Различные темы

7-9

ДИНАМОМЕТРЫ ЛАБОРАТОРНЫЕ

Различные темы

7-9

МЕНЗУРКИ

Различные темы

7-9

НАБОР ИНСТРУМЕНТОВ

Различные темы

7-9

Источники и постоянного напряжения

Различные темы

7-9

КОМПЛЕКТ ЛАБОРАТОРНЫЙ «МЕХАНИКА»

Различные темы

7-9

КОМПЛЕКТ ПО МОЛЕКУЛЯРНОЙ ФИЗИКЕ

Различные темы

7-9

КОМПЛЕКТ ЛАБОРАТОРНЫЙ «ЭЛЕКТРОДИНАМИКА»

Различные темы

7-9

КОМПЛЕКТ ЛАБОРАТОРНЫЙ «ОПТИКА»

Световые явления

8

ДЕМОНСТРАЦИОННОЕ ОБОРУДОВАНИЕ ОБЩЕГО НАЗНАЧЕНИЯ

Различные темы

7-9

БАРОМЕТР-АНЕРОИД

давление

7

МАНОМЕТР ЖИДКОСТНЫЙ ОТКРЫТЫЙ ДЕМОНСТРАЦИОННЫЙ

давление

7

ТЕРМОМЕТР ДЕМОНСТРАЦИОННЫЙ ЖИДКОСТНЫЙ

Различные темы

7-9

КОМПЛЕКТ ТЕЛЕЖЕК ЛЕГКОПОДВИЖНЫХ

механика

7,9

НАБОР ДЕМОНСТРАЦИОННЫЙ «МЕХАНИКА»

механика

7,9

ВЕДЕРКО АРХИМЕДА

Выталкивающая сила

7

КАМЕРТОНЫ НА РЕЗОНИРУЮЩИХ ЯЩИКАХ С МОЛОТОЧКОМ

звук

9

МАШИНА ВОЛНОВАЯ

Различные темы

7-9

НАБОР ТЕЛ РАВНОЙ МАССЫ И ОБЪЁМА

Различные темы

7-9

СОСУДЫ СООБЩАЮЩИЕСЯ

Давление

7

РЫЧАГ ДЕМОНСТРАЦИОННЫЙ

Простые механизмы

7

ТРИБОМЕТР ДЕМОНСТРАЦИОННЫЙ

механика

7,9

ПРИБОР ДЛЯ ИССЛЕДОВАНИЯ РАВНОУСКОРЕННОГО ДВИЖЕНИЯ

механика

7,9

НАБОР ПОДВИЖНЫХ И НЕПОДВИЖНЫХ БЛОКОВ

механика

7,9

ШАР ПАСКАЛЯ

давление

7

ТРУБКА ВАКУУМНАЯ

Различные темы

7-9

ТРУБКА ДЛЯ ДЕМОНСТРАЦИИ КОНВЕКЦИИ В ЖИДКОСТИ

Тепловые явления

8

ШАР С КОЛЬЦОМ

Тепловое расширение

7

ЦИЛИНДРЫ СВИНЦОВЫЕ С ВИНТОВЫМ ПРЕССОМ

Взаимодействие частиц

7

МОДЕЛЬ ДВС

Тепловые двигатели

8

ТЕПЛОПРИЕМНИК

Тепловые явления

8

ДЕМОНСТРАЦИОННОЕ ОБОРУДОВАНИЕ ПО ЭЛЕКТРОДИНАМИКЕ

Электродинамика

8.9

УНИВЕРСАЛЬНЫЕ ТЕМАТИЧЕСКИЕ НАБОРЫ

Различные темы

7-9

ЭЛЕКТРОМЕТРЫ С ПРИНАДЛЕЖНОСТЯМИ

Эл.явления

8

ПАЛОЧКИ ИЗ СТЕКЛА И ЭБОНИТА

Эл.явления

8

ЗВОНОК ЭЛЕКТРИЧЕСКИЙ

Различные темы

7-9

НАБОР МАГНИТОВ

Различные темы

7-9

ПРИБОР ДЛЯ ДЕМОНСТРАЦИИ ПРАВИЛА ЛЕНЦА

электромагнитные явления

8-9

ЭЛЕКТРОМАГНИТ РАЗБОРНЫЙ

электромагнитные явления

8-9

НАБОР ДЕМОНСТРАЦИОННЫЙ «ГЕОМЕТРИЧЕСКАЯ ОПТИКА»

Световые явления

8

УНИВЕРСАЛЬНЫЕ НАБОРЫ И КОМПЛЕКТЫ

Различные темы

7-9

ТАБЛИЦЫ УЧЕБНЫЕ

Различные темы

7-9

Портреты ученых

Различные темы

7-9


Компьютерная техника и интерактивное оборудование

Название учебного оборудования

Темы, в изучении которых применяется оборудование

Класс

Компьютер

Различные темы

7-9

Телевизор

Различные темы

7-9

Мультимедийный проектор

Различные темы

7-9

Принтер

Различные темы

7-9



"СОГЛАСОВАНО"


Протокол заседания ШМО от "_____" ________ 2016г. №_____


Руководитель ШМО _______________ / (________________________)

(подпись)






"СОГЛАСОВАНО"


Зам. директора по УВР


_____________________/ __________________

подпись ФИО


"_____" ____________ 2016г.


1 Время проведения лабораторной работы может варьироваться от 10 до 45 минут

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Автор
Дата добавления 25.06.2016
Раздел Физика
Подраздел Рабочие программы
Просмотров206
Номер материала ДБ-132310
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх