Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии

Рабочая программа по геометрии

  • Математика

Поделитесь материалом с коллегами:

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Целью изучения курса геометрии в 7-9 классах является систематическое изучение свойств геометрических фигур на плоскости, формирование про­странственных представлений, развитие логического мышле­ния и подготовка аппарата, необходимого для изучения смеж­ных дисциплин (физика, черчение и т. д.) и курса стереометрии в старших классах.

Курс характеризуется рациональным сочетанием логиче­ской строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширя­ются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Уча­щиеся овладевают приемами аналитико-синтетической дея­тельности при доказательстве теорем и решении задач.

Систе­матическое изложение курса позволяет начать работу по формированию представлений учащихся о строении мате­матической теории, обеспечивает развитие логического мыш­ления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием ри­сунков и чертежей на всех этапах обучения и развитием гео­метрической интуиции на этой основе. Целенаправленное об­ращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания


Рабочая программа разработана на основании авторской программы по геометрии для 7-9 классов (авторы – Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 2-е издание. – М.: Просвещение, 2012г.).


Рабочая программа по геометрии рассчитана на 2 ч в неделю (68 ч в год), в том числе, для проведения контрольных работ – 5 ч.


Планируемый уровень подготовки выпускников на конец ступени в соответствии с требованиями, установленным федеральными государственными образовательными стандартами:


Используемый учебник «Геометрия, 7-9» авторов Л.С. Атанасяна, В.Ф. Бутусова, С.Б. Кадомцева и др.М-Просвященние ,2012г. рекомендован министерством образования Российской Федерации.

Требования к уровню подготовки учащихся:


В результате изучения данного курса учащиеся должны уметь/знать:


  • Знать, какая фигура называется отрезком; уметь обозначать точки и прямые на рисунке, изображать возможные случаи взаимного расположения точек и прямых, двух прямых, объяснить, что такое отрезок, изображать и обозначать отрезки на рисунке.

  • Объяснить, что такое луч, изображать и обозначать лучи, знать какая геометрическая фигура называется углом, что такое стороны и вершины угла, обозначать неразвёрнутые и развёрнутые углы, показывать на рисунке внутреннюю область неразвёрнутого угла, проводить луч, разделяющий его на два угла;

  • Какие геометрические фигуры называются равными, какая точка называется серединой отрезка, какой луч называется биссектрисой угла; сравнивать отрезки и углы, записывать результаты сравнения, отмечать с помощью масштабной линейки середину отрезка, с помощью транспортира проводить биссектрису угла;

  • Измерить данный отрезок с помощью масштабной линейки и выразить его длину в сантиметрах, миллиметрах, метрах, находить длину отрезка в тех случаях, когда точка делит данный отрезок на два отрезка, длины которых известны;

  • Что такое градусная мера угла, находить градусные меры углов, используя транспортир, изображать прямой, острый, тупой и развёрнутый углы;

  • Какие углы называются смежными и чему равна сумма смежных углов, какие углы называются вертикальными и каким свойством обладают вертикальные углы, какие прямые называются перпендикулярными; уметь строить угол, смежный с данным углом, изображать вертикальные углы, находить на рисунке смежные и вертикальные углы;

  • Объяснить, какая фигура называется треугольником, и назвать его элементы; что такое периметр треугольника, какие треугольники называются равными, формулировку и доказательство первого признака равенства треугольников;

  • Определения перпендикуляра, проведённого из точки к данной прямой, медианы, биссектрисы, высоты треугольника, равнобедренного и равностороннего треугольников; знать формулировку теорем о перпендикуляре к прямой, о свойствах равнобедренного треугольника;

  • Формулировки и доказательства второго и третьего признаков равенства треугольников;

  • Определение окружности, уметь объяснить, что такое центр, радиус, хорда, диаметр, дуга окружности, выполнять с помощью циркуля и линейки простейшие построения: отрезка, равного данному; угла, равного данному; биссектрисы данного угла; прямой, проходящей через данную точку и перпендикулярную к данной прямой; середины данного отрезка;

  • Определение параллельных прямых, названия углов, образующихся при пересечении двух прямых секущей, формулировки признаков параллельности прямых; понимать, какие отрезки и лучи являются параллельными; уметь показать на рисунке пары накрест лежащих, соответственных, односторонних углов, доказывать признаки параллельности двух прямых;

  • Аксиому параллельных прямых и следствия из неё; доказывать свойства параллельных прямых и применять их при решении задач;

  • Доказывать теорему о сумме углов треугольника и её следствия; знать какой угол называется внешним углом треугольника, какой треугольник называется остроугольным, прямоугольным, тупоугольным;

  • Доказывать теорему о соотношениях между сторонами и углами треугольника и следствия из неё, теорему о неравенстве треугольника, применять их при решении задач;

  • Доказывать свойства прямоугольных треугольников, знать формулировки признаков равенства прямоугольных треугольников и доказывать их, применять свойства и признаки при решении задач;

  • Какой отрезок называется наклонной, проведённой из данной точки к данной прямой, что называется расстоянием от точки до прямой и расстоянием между двумя параллельными прямыми; уметь строить треугольник по двум сторонам и углу между ними, по стороне и двум прилежащим к ней углам, по трём сторонам.


СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

7 класс (68 ч)

1. Введение

Возникновение геометрии из практики. Геометрические фигуры и тела. Определения, аксиомы, теоремы, следствия, доказательства. Контрпример


2. Начальные геометрические сведения (11 ч)

Простейшие геометрические фигуры: прямая, точка, отре­зок, луч, угол.

Понятие равенства геометрических фигур.

Срав­нение отрезков и углов. Измерение отрезков, длина отрезка. Из­мерение углов, градусная мера угла.

Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Основная цель — систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе нагляд­ных представлений учащихся путем обобщения очевидных или известных из курса математики 1—6 классов геометрических фактов.

Понятие аксиомы на начальном этапе обучения не вво­дится, и сами аксиомы не формулируются в явном виде. Необхо­димые исходные положения, на основе которых изучаются свой­ства геометрических фигур, приводятся в описательной форме.

Принципиальным моментом данной темы является введение по­нятия равенства геометрических фигур на основе наглядного понятия наложения.

Определенное внимание должно уделяться практическим приложениям геометрических понятий.


Учащиеся должны уметь:

- формулировать определения и иллюстрировать понятия отрезка, луча; угла, прямого, острого, тупого и раз­вернутого углов; вертикальных и смежных углов; биссект­рисы угла;

- формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов;

- формулировать определения перпендикуляра к прямой;

- решать задачи на доказательство и вычисления, при­меняя изученные определения и теоремы;

- опираясь на условие задачи, проводить необходимые до­казательные рассуждения;

- сопоставлять полученный ре­зультат с условием задачи.


Перечень контрольных мероприятий:

Контрольная работа №1 «Начальные геометрические сведения»


3. Треугольники (17 ч)

Треугольник. Признаки равенства треугольников.

Перпенди­куляр к прямой. Медианы, биссектрисы и высоты треугольника.

Равнобедренный треугольник и его свойства.

Задачи на построе­ние с помощью циркуля и линейки.

Основная цель — ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изучен­ных признаков; ввести новый класс задач — на построение с по­мощью циркуля и линейки.

Признаки равенства треугольников являются основным рабо­чим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснова­ние их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников. Применение призна­ков равенства треугольников при решении задач дает возмож­ность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения при­знаков равенства треугольников целесообразно использовать за­дачи с готовыми чертежами.

Учащиеся должны уметь:

- распознавать на чертежах, формулировать определе­ния, изображать равнобедренный, равносторонний треугольни­ки; высоту, медиану, биссектрису;

- формулировать определение равных треугольников;

- формулировать и доказывать теоремы о признаках ра­венства треугольников;

- объяснять и иллюстрировать неравенство треугольни­ка;

- формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника,

- моделировать условие задачи с помощью чертежа или ри­сунка, проводить дополнительные построения в ходе реше­ния;

- решать задачи на доказательство и вычисления, при­меняя изученные определения и теоремы;

- опираясь на условие задачи, проводить необходимые до­казательные рассуждения;

- интерпретировать полученный результат и сопоставлять его с условием задачи;

- решать основные задачи на построение с помощью циркуля и линейки: деление отрезка пополам; построение угла, равного данному; построение тре­угольника по трем сторонам; построение перпендику­ляра к прямой; построение биссектрисы угла; деление отрезка на и равных частей.

Перечень контрольных мероприятий:

Контрольная работа №2 «Треугольники»

4. Параллельные прямые (13 ч)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель — ввести одно из важнейших понятий — понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксио­му параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широ­ко используются в дальнейшем при изучении четырехугольни­ков, подобных треугольников, при решении задач, а также в кур­се стереометрии.

Учащиеся должны уметь:

- распознавать на чертежах, изображать, формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; пер­пендикулярных прямых; перпендикуляра и наклонной к прямой; серединного перпендикуляра к отрезку;

- формулировать аксиому параллельных прямых;

- формулировать и доказывать теоремы, выражающие свойства и при­знаки параллельных прямых;

- моделировать условие задачи с помощью чертежа или ри­сунка, проводить дополнительные построения в ходе реше­ния;

- решать задачи на доказательство и вычисления, при­меняя изученные определения и теоремы;

- опираясь на условие задачи, проводить необходимые до­казательные рассуждения;

- интерпретировать полученный результат и сопоставлять его с условием задачи.

Перечень контрольных мероприятий:

Контрольная работа №3 «Параллельные прямые»


5. Соотношения между сторонами и углами треугольника (19 ч)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника.

Неравенство треугольника.

Прямоуголь­ные треугольники, их свойства и признаки равенства.

Расстоя­ние от точки до прямой. Расстояние между параллельными пря­мыми.

Построение треугольника по трем элементам.

Основная цель — рассмотреть новые интересные и важ­ные свойства треугольников.

В данной теме доказывается одна из важнейших теорем гео­метрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводит­ся на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограни­читься только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутство­вать лишь тогда, когда это оговорено условием задачи.

Учащиеся должны уметь:

- распознавать на чертежах, формулировать определе­ния, изображать прямоугольный, остроугольный, тупо­угольный;

- формулировать и доказывать теоремы

- о соотношениях между сторонами и углами треугольника,

- о сумме углов треугольника,

- о внешнем угле треугольника;

- формулировать свойства и признаки равенства прямоугольных треугольников;

- решать задачи на построение треугольника по трем его элементам с помощью циркуля и линейки.

Перечень контрольных мероприятий:

Контрольная работа №4 «Соотношения между сторонами и углами треугольника»

Контрольная работа №5 «Прямоугольные треугольники. Построение треугольника по трем элементам»

6. Повторение (6 ч)

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

раздела, темы

Наименование раздел, тем


Всего

Контрольные работы

1

Введение

2

2

Начальные геометрические сведения

11

1

3

Треугольники

17

1

4

Параллельные прямые

13

1

5

Соотношения между сторонами и углами треугольника

19

2

6

Повторение

6

Календарно-тематическое планирование

по геометрии для 7 класса

Тема урока

Количество часов

Предполагаемая дата

Фактическая дата

Начальные геометрические сведения .

1

Прямая и отрезок, луч и угол

1



2

Луч и угол.

1



3

Сравнение отрезков и углов.

1



4

Измерение отрезков.

1



5

Измерение углов.

1



6

Смежные и вертикальные углы

1



7

Перпендикулярные прямые.

1



8

Решение задач. .Подготовка к контрольной работе

1



9

Контрольная работа №1 по теме: «Измерение отрезков и углов

1



10

Работа над ошибками»

1




Треугольник.




11

Треугольник.

1



12-13

Первый признак равенства треугольников.

2



14

Медианы, биссектрисы и высоты треугольника.

1



15

Свойства равнобедренного треугольника

1



16

Решение задач по теме : «Равнобедренный треугольник».

1



17

Второй признак равенства треугольников.

1



18

Решение задач на применение Второго признака равенства треугольников.

1



19

Третий признак равенства треугольников

1



20

Решение задач на применение третьего признака равенства треугольников.

1



21

Окружность

1



22-23

Задачи на построение.

2



24-26

Решение задач на применение признаков равенства треугольников.

3



27

Контрольная работа №2 по теме: «Треугольники».

1



28

Работа над ошибками.

1



Параллельные прямые .

29-30

Признаки параллельности двух прямых.

2



31

Практические способы построения параллельных прямых.

1



32

Решение задач по теме «Признаки параллельности прямых»

1



33

Аксиома параллельных прямых.

1



34-35

Свойства параллельных прямых.

2



36-39

Решение задач по теме «Параллельные прямые»..

4



40

Контрольная работа №3 по теме: «Параллельные прямые»

1



41

Работа над ошибками.

1




Соотношения между сторонами



и углами

треугольника .

42-43

Сумма углов треугольника.

2



44-45

Соотношения между сторонами и углами треугольника.

2



46

Неравенство треугольника.

1



47

Решение задач.

1



48

Контрольная работа №4 по теме: «Прямоугольные треугольники»

1



49

Работа над ошибками.

1



50

Прямоугольные треугольники и некоторые их свойства.

1



51

Решение задач на применение свойств прямоугольного треугольника.

1



52

Признаки равенства прямоугольных треугольников

1



53

Прямоугольный треугольник .Решение задач.

1



54

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

1



55-56

Построение треугольника по трем элементам

2



57-59

Построение треугольника по трем элементам. Решение задач.

3



60


Контрольная работа №5 по теме: «Соотношение между сторонами и углами треугольника».

1



61

Работа над ошибками.

1




Итоговое повторение курса геометрии 7 класса (6 часов)

62

Повторение по теме «Начальные геометрические сведения».

1



63

Повторение по теме «Признаки равенства прямоугольных треугольников .Равнобедренный треугольник»

1



64

Повторение по теме «Параллельные прямые».

1



65

Повторение по теме «Параллельные прямые»

1



66

Повторение по теме «Соотношения между сторонами и углами треугольника».

1



67

Итоговая административная контрольная работа.




68

Работа над ошибками.







Литература:


1. Л. С. Атанасян, В. Ф. Бутузов. Ю. А. Глазков, В. Б. Некрасов, И. И. Юдина Изучение геометрии в 7-9 классах. Методические рекомендации.- М.: Просвещение 2012 г.


2. Б.Г. Зив. Дидактические материалы по геометрии для 7 класса - М. Просвещение, 2003.


3. Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7-11 классов. – М.Просвещение, 2003.


4. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев Геометрия, 7-9: учеб. Для общеобразовательных учреждений – М.: Просвещение, 2012г.


5. Н.Б. Мельникова Контрольные работы по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7-9» / Н.Б. Мельникова – М.: Издательство «Экзамен», 2012.


6. В.Н. Литвиненко, Г.К. Безрукова и др. Сборник задач по геометрии: 7 кл: к учебнику Л.С. Атанасяна – М.: Издательство «Экзамен», 2004.

11


Автор
Дата добавления 11.10.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров133
Номер материала ДВ-051911
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх