Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии 8 класс
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Законы экологии», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 21 ОКТЯБРЯ!

Конкурс "Законы экологии"

Рабочая программа по геометрии 8 класс

библиотека
материалов

РЕСПУБЛИКА КРЫМ

КРАСНОГВАРДЕЙСКИЙ РАЙОН

МБОУ «АМУРСКАЯ ШКОЛА


«Рассмотрено» «Согласовано» «Утверждаю»

Руководитель МО Зам.директора по УВР Директор ______ /ВеличкоС.В./ ­­_________/Блинова Т.И./ ______/Исмаилова М.А/ Протокол № ___ от «__» ________2015г. Приказ №_____ от

«__» ________2015г «__» ________2015г




РАБОЧАЯ ПРОГРАММА ПЕДАГОГА


Блиновой Тамары Ивановны, учителя I категории


ПО ГЕОМЕТРИИ(базовый)

8 класс



Рассмотрено на заседании

педагогического совета

протокол № _________ от

«___»____________2015г.






2015-2016 учебный год

с.Амурское

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная программа предназначена для общеобразовательных учреждений основного общего образования в 8 классе.

Программа рассчитана на 68 учебных часа.

Нормативные документы для составления рабочей программы :

1. Стандарт основного общего образования по математике.

Стандарт основного общего образования по математике //Сборник нормативно-правовых документов и методических материалов, Москва: «Вентана-Граф», 2008.

2. Геометрия. Сборник рабочих программ 7 – 9 классы/Сост. Т.А. Бурмистрова – Москва: «Просвещение», 2014.

3. Федерального компонента государственного образовательного стандарта (Приказ Минобразования РФ от 05.03.2004 года № 1089)

4. Федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на текущий учебный год;

  1. С учетом требований к оснащению образовательного процесса в соответствии с содержанием учебных предметов компонента государственного стандарта общего образования;

  2. Учебник «Геометрия 7-9» для образовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина. – М.: Просвещение, 2014 г.

  3. Учебного плана МБОУ «Амурская школа» на 2015-2016 учебный год

  4. Рабочей программой МБОУ «Амурская школа» на 2015-2016 учебный год

  5. Сборник рабочих программ «Геометрия 7-9 классы», Бурмистрова, Москва, « Просвещение» 2011 год., пособие для учителя.

Геометрия— один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор­мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.

Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.

Line 4Цели и задачи учебного предмета:

Изучение геометрии на ступени основного общего образования направлено на достижение следующих целей:

• овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

• интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственного мышления и воображения, способности к преодолению трудностей;

• формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

• воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии; приобретение опыта планирования и осуществления алгоритмической деятельности;

освоение навыков и умений проведения доказательств, обоснования выбора решений; приобретение умений ясного и точного изложения мыслей;

развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии; научить пользоваться геометрическим языком для описания предметов

Цели

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

Учебный процесс ориентирован на: рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач; сбалансированное сочетание традиционных и новых методов обучения; оптимизированное применение объяснительно-иллюстративных и эвристических методов; использование современных технических средств обучения.

Задачи курса:

- научить пользоваться геометрическим языком для описания предметов;

- начать изучение многоугольников и их свойств, научить находить их площади;

- ввести теорему Пифагора  и научить применять её при решении прямоугольных треугольников;

- ввести тригонометрические понятия синус, косинус и тангенс угла в прямоугольном треугольнике научить применять эти понятия при решении прямоугольных треугольников;

- ввести понятие подобия и признаки подобия треугольников, научить решать задачи на применение признаков подобия;

- ознакомить с понятием касательной к окружности.

Данная рабочая программа ориентирована на использование следующего учебно – методического комплекта «Геометрия 7-9» для образовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина. – М.: Просвещение, 2014 г.


Общая характеристика учебного предмета

Согласно учебному плану для образовательных учреждений Российской Федерации на изучение геометрии в 8 классе отводится 68 часов из расчёта 2 часа в неделю. На изучение курса в соответствии с программой Бурмистровой Т. А. «Программы общеобразовательных учреждений. Геометрия. 7-9 классы. М.: Просвещение, 2014 отводится 68 часов (2 часа в неделю).

Line 4Основные цели курса:

В курсе геометрии 8 класса условно выделены четыре основных раздела: четырёхугольники, площадь, подобные треугольники, окружность.

Цели изучения курса геометрии в 8 классе:

  • создание условий для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки;

  • создание условий для умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи;

  • формирование умения использовать различные языки математики: словесный, символический, графический;

  • формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства;

  • создание условий для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность;

  • формирование умения использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных;

  • сформировать понятие основных плоских геометрических фигур и их свойств.

Задачи изучения курса геометрии в 8 классе:

  • подготовить учащихся к изучению курса геометрии в 8 классе;

  • систематизировать сведения о четырёхугольниках;

  • сформировать представления о фигурах, симметричных относительно точки и прямой;

  • сформировать понятие площади многоугольника;

  • развить умение вычислять площади фигур;

  • сформировать понятие подобных треугольников;

  • выработать умение применять признаки подобия в процессе доказательства теорем и решении задач;

  • сформировать навыки решения прямоугольных треугольников;

  • расширить сведения об окружности.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических фактов. Теорема о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируются практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Вводятся первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Систематизируются сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, выполнять простые доказательства, давать обоснования выполняемых действий.


Место учебного предмета в учебном плане МБОУ «Амурская школа»

Учебный предмет относится к образовательной области: Математика. Реализуется за счет инвариантной части учебного плана. Изучается на базовом уровне в8 классе 2 часа в неделю: 68ч. в год.

Требования к уровню подготовки учащихся

В результате изучения курса геометрии 8 класса обучающиеся должны:

знать

  • существо понятия математического доказательства; примеры доказательств;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: для углов от 0 до 90 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие формулы;

  • решения геометрических задач с использованием тригонометрии;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Общеучебные умения, навыки и способы деятельности

В ходе преподавания геометрии в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овла­девали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;


Содержание учебного курса

Раздел 1. Четырёхугольники.

Доказательства большинства теорем данного раздела и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить в начале изучения темы. Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

Цели изучения раздела:

• изучить наиболее важные виды четырехугольников - параллелограмм, прямоугольник, ромб, квадрат, трапецию;

• дать представление о фигурах, обладающих осевой или центральной симметрией;


Раздел 2. Площадь.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для учащихся. Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Цели изучения раздела:

• расширить и углубить полученные в 5 - 6 классах представления учащихся об измерении и вычислении площадей;

• вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции;

• доказать одну из главных теорем геометрии - теорему Пифагора.


Раздел 3. Подобные треугольники.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон. Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу. На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение. В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Цели изучения раздела:

• ввести понятие подобных треугольников;

• рассмотреть признаки подобия треугольников и их применения к доказательству теорем и решению задач;

• сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.


Раздел 4. Окружность.

В данном разделе вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров. Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.

Цели изучения раздела:

• расширить сведения об окружности, полученные учащимися в 6 классе;

• изучить новые факты, связанные с окружностью;

• познакомить учащихся с четырьмя замечательными точками треугольника.



СОДЕРЖАНИЕ УЧЕБНОГО КУРСА


Содержание материала

Количество часов

Характеристика основных видов деятельности обучающегося (на уровне учебных действий)

  1. Четырёхугольники

14


Многоугольники. Параллелограмм и трапеция. Прямоугольник, ромб квадрат.


Объяснять, что такое ломаная, многоугольник, его вершины, смежные стороны, диагонали, изображать и распознавать многоугольники на чертежах; показывать элементы многоугольника, его внутреннюю и внешнюю области; формулировать определение выпуклого многоугольника; изображать и распознавать выпуклые и невыпуклые многоугольники; формулировать и доказывать утверждения о сумме углов выпуклого многоугольника и сумме его внешних углов; объяснять, какие стороны (вершины) четырёхугольника называются противоположными; формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеции, прямоугольника, ромба, квадрата; изображать и распознавать эти четырёхугольники; формулировать и доказывать утверждения об их свойствах и признаках; решать задачи на вычисление, доказательство и построение, связанные с этими видами четырёхугольников; объяснять, какие две точки называются симметричными относительно точки (прямой), в каком случае фигура называется симметричной относительно прямой (точки) и что такое ось (центр) симметрии фигуры; приводить примеры фигур, обладающих осевой (центральной) симметрией, а также примеры осевой и центральной симметрии в окружающей нас обстановке.

  1. Площадь

14


Площадь многоугольника. Площади параллелограмма, треугольника и трапеции. Теорема Пифагора.


Объяснять, как производится измерение площадей многоугольников, какие многоугольники называются равновеликими и какие равносоставленными; формулировать основные свойства площадей и выводить с их помощью формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; формулировать и доказывать теорему об отношении площадей треугольников, имеющих по равному углу; формулировать и доказывать теорему Пифагора и обратную ей; выводить формулу Герона для площади треугольника; решать задачи на вычисление и доказательство, связанные с формулами площадей и теоремой Пифагора.

  1. Подобные треугольники

19


Определение подобных треугольников. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Соотношения между сторонами и углами прямоугольного треугольника.


Объяснять понятие пропорциональности отрезков; формулировать определения подобных треугольников и коэффициента подобия; формулировать и доказывать теоремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о пропорциональных отрезках в прямоугольном треугольнике ; объяснять, что такое метод подобия в задачах на построение, и приводить примеры применения этого метода; объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности; объяснять, как ввести понятие подобия для произвольных фигур; формулировать определение и иллюстрировать понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника; выводить основные тригонометрическое тождество и значения синуса, косинуса и тангенса для углов hello_html_m1121fb19.gif; решать задачи, связанные с подобием треугольников, для вычисления значений тригонометрических функций использовать компьютерные программы.

  1. Окружность.

17


Касательная к окружности. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.


Исследовать взаимное расположение прямой и окружности; формулировать определение касательной к окружности; формулировать и доказывать теоремы: о свойстве касательной, о признаке касательной, об отрезках касательных, проведённых к окружности из одной точки; формулировать понятие центрального угла и градусной меры дуги окружности; формулировать и доказывать теоремы: о вписанном угле, о произведении отрезков пересекающихся хорд; формулировать и доказывать теоремы , связанные с замечательными точками треугольника: о биссектрисе угла и, как следствие, о пересечении биссектрис треугольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикуляров к сторонам треугольника; о пересечении высот треугольника; формулировать определения окружностей, вписанной в многоугольник и описанной около многоугольника;формулировать и доказывать теоремы: об окружности, вписанной в треугольник; об окружности, описанной около треугольника; о свойстве сторон описанного четырёхугольника; о свойстве углов вписанного четырёхугольника; решать задачи на вычисление, доказательство и построение, связанные с окружностью, вписанными и описанными треугольниками и четырёхугольниками; исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

  1. Повторение

2



Тематический план

На изучение геометрии в 8классе выделено в учебном плане 2 ч, 68 ч в год.

Предусмотрено проведение плановых контрольных работ

Итоговая и промежуточная аттестация проводится в форме контрольной работы, тестов, самостоятельных работ, зачётов.

Содержание обучения, перечень контрольных работ, требования к подготовке учащихся по предмету в полном объеме совпадают с авторской программой по предмету. Программа рассчитана на один год.


содержание учебного материала

Кол-во часов


1.

Четырехугольники

14

2.

Площадь

14

3.

Подобные треугольники

19

4.

Окружность

17

5.

Повторение

4


Итого:

68





Календарно-тематическое планирование учебного материала

(2 часа в неделю. Всего 68 часов)

урока

пункта

учебника

Тема урока

Кол-во

часов

Дата проведения урока

Повторение

по плану

примечание

1


Урок вводного повторения.

1




2


Диагностическая работа.

1




3-16


Четырёхугольники

14




3

40,41

Многоугольник. Выпуклый многоугольник.

1




4


Сумма внутренних углов многоугольника.

1




5-6

42,43

Четырёхугольник. Параллелограмм и его свойства.

2




7-8

44

Признаки параллелограмма.

2




9


Самостоятельная работа.

1




10

45

Трапеция.

1




11

46

Прямоугольник.

1




12-13

47

Ромб, квадрат.

2




14


Решение задач по теме повышенной сложности.

1




15


Самостоятельная работа.

1




16


Контрольная работа №1 «Четырёхугольники»

1




17-30


Площадь

14




17

49

Понятие площади многоугольника.

1




18

51

Площадь прямоугольника.

1




19-20

52

Площадь параллелограмма.

2




21-22

53

Площадь треугольника.

2




23

54

Площадь трапеции.

1




24


Самостоятельная работа.

1




25-27

55,56

Теорема Пифагора. Теорема, обратная теореме Пифагора.

3




28

57

Формула Герона.

1




29


Самостоятельная работа.

1




30


Контрольная работа № 2 «Площадь»

1




31-49


Подобные треугольники

19




31

58,59

Пропорциональные отрезки. Определение подобных треугольников.

1




32

60

Отношение площадей подобных треугольников. Решение задач.

1




33

61

Первый признак подобия треугольников.

1




34

62

Второй признак подобия треугольников.

1




35

63

Третий признак подобия треугольников.

1




36


Самостоятельная работа.

1




37


Анализ самостоятельной работы. Решение задач.

1




38


Контрольная работа №3 «Подобие треугольников»

1




39

64

Средняя линия треугольника.

1




40-42

65, 66

Пропорциональные отрезки в прямоугольном треугольнике.

3




43


Самостоятельная работа.

1




44-47

68

Синус, косинус и тангенс острого угла прямоугольного треугольника. Проверочная работа.

4




48

69

Значения синуса, косинуса и тангенса стандартных углов.

1




49


Контрольная работа №4 «Решение прямоугольных треугольников»

1




50-66


Окружность

17




50

70

Взаимное расположение прямой и окружности.

1




51

71

Касательная к окружности.

1




52-55

72-73

Градусная мера дуги окружности. Теорема о вписанном угле.

4




56


Самостоятельная работа.

1




57-59

74-76

Четыре замечательные точки треугольника.

3




60-63

77-78

Вписанная и описанная окружности.

4




64


Самостоятельная работа.

1




65


Анализ самостоятельной работы. Решение задач.

1




66


Контрольная работа №5 «Окружность »

1




67-68


Повторение

2





Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике.

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.




Литература:


  1. Атанасян Л.С., Бутузов В.Ф. и др. Геометрия 7 – 9. Учебник для общеобразовательных учреждений. М.: Просвещение, 2014.

  2. Геометрия:Рабочая тетрадь:8 кл./Л.С.Атанасян, В.Ф.Бутузов, Ю.А.Глазков, И.И.Юдина.- М.:Просвещение,2011

  3. Зив Б.Г. Геометрия:дидакт.материалы:8 кл./Б.Г.Зив, В.М.Мейлер.- М.:Просвещение,2011

  4. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2003 — 2011

  5. Электронное приложение к учебнику




Общая информация

Номер материала: ДA-003062

Похожие материалы