Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии 7-9 класс

Рабочая программа по геометрии 7-9 класс

  • Математика

Поделитесь материалом с коллегами:

hello_html_1f9a18fa.gif

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ

ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 96









Рабочая программа по геометрии

7-9












Кошелева Е.В.,

учитель математики

МАОУ СОШ № 96









г. Краснодар

2015 г.

Пояснительная записка


Рабочая программа составлена на основе Федерального государственного образовательного стандарта основного общего образования, примерной программмы основного общего образования по математике,авторской программы основного общего образования по гео­метрии сост. Т.А.Бурмистрова/- М.: Просвещение, 2014.)

Изучение геометрии на ступени основного общего образования направлено на достижение следующих целей:


овладение системой математических знаний и умений, необходимых для практической деятельности, изучения смежных дисциплин, продолжения образования; воспитание культуры личности.

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе.


  1. Общая характеристика

учебного предмета «Геометрия»


В курсе геометрии можно выделить следующие основные разделы и темы: начальные геометрические сведения, треугольники, параллельные прямые, соотношения между углами и сторонами треугольника, четырехугольники, площадь, подобные треугольники, окружность, векторы, начальные сведения из стереометрии. Наряду с этим в содержание включен раздел: математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся.


  1. Место учебного предмета «Геометрия» в учебном плане

Программа предусматривает изучение геометрии в объеме: 2 часа в неделю начиная со II четверти 7 класса, в течение каждого года обучения, всего 186 уроков.

Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин, таких как предметы естественно-научного цикла, в частности физика. Развитие логического мышления учащихся при обучении геометрии способствует усвоению предметов гуманитарного цикла.


  1. Личностные, метапредметные и предметные результаты освоения учебного предмета «Геометрия»


Программа обеспечивает достижение следующих результа­тов освоения образовательной программы основного общего образования:

личностные:

  1. формирование ответственного отношения к учению, го­товности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и по­знанию, выбору дальнейшего образования на базе ориен­тировки в мире профессий и профессиональных предпо­чтений, осознанному построению индивидуальной образо­вательной траектории с учётом устойчивых познавательных интересов;

  2. формирование целостного мировоззрения, соответствую­щего современному уровню развития науки и обществен­ной практики;

  3. формирование коммуникативной компетентности в обще­нии и сотрудничестве со сверстниками, старшими и млад­шими в образовательной, общественно полезной, учебно­исследовательской, творческой и других видах деятельности;

  4. умение ясно, точно, грамотно излагать свои мысли в уст­ной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  5. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  6. креативность мышления, инициативу, находчивость, актив­ность при решении геометрических задач;

  7. умение контролировать процесс и результат учебной мате­матической деятельности;

  8. способность к эмоциональному восприятию математиче­ских объектов, задач, решений, рассуждений;

метапредметные:

  1. умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эф­фективные способы решения учебных и познавательных задач;

  2. умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить не­обходимые коррективы;

  3. умение адекватно оценивать правильность или ошибоч­ность выполнения учебной задачи, её объективную труд­ность и собственные возможности её решения;

  4. осознанное владение логическими действиями определе­ния понятий, обобщения, установления аналогий, класси­фикации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

  5. умение устанавливать причинно-следственные связи, стро­ить логическое рассуждение, умозаключение (индуктив­ное, дедуктивное и по аналогии) и выводы;

  6. умение создавать, применять и преобразовывать знаково­символические средства, модели и схемы для решения учебных и познавательных задач;

  7. умение организовывать учебное сотрудничество и совмест­ную деятельность с учителем и сверстниками: опреде­лять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: нахо­дить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать парт­нёра; формулировать, аргументировать и отстаивать своё мнение;

  8. формирование и развитие учебной и общепользователь­ской компетентности в области использования информа­ционно-коммуникационных технологий (ИКТ-компетент ности);

  9. формирование первоначальных представлений об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  10. умение видеть математическую задачу в контексте про­блемной ситуации в других дисциплинах, в окружающей жизни;

  11. умение находить в различных источниках информацию, не­обходимую для решения математических проблем, и пред­ставлять её в понятной форме; принимать решение в усло­виях неполной и избыточной, точной и вероятностной информации;

  12. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллю­страции, интерпретации, аргументации;

  13. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  14. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  15. понимание сущности алгоритмических предписаний и уме­ние действовать в соответствии с предложенным алго­ритмом;

  16. умение самостоятельно ставить цели, выбирать и созда­вать алгоритмы для решения учебных математических проблем;

  17. умение планировать и осуществлять деятельность, направ­ленную на решение задач исследовательского характера;

предметные:

  1. овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучае­мых понятиях (число, геометрическая фигура, вектор, ко­ординаты) как важнейших математических моделях, по­зволяющих описывать и изучать реальные процессы и явления;

  2. умение работать с геометрическим текстом (анализиро­вать, извлекать необходимую информацию), точно и гра­мотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символи­ки, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

  3. овладение навыками устных, письменных, инструменталь­ных вычислений;

  4. овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, раз­витие пространственных представлений и изобразитель­ных умений, приобретение навыков геометрических по­строений;

  5. усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематиче­ские знания о них для решения геометрических и практи­ческих задач;

  6. умение измерять длины отрезков, величины углов, исполь­зовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;

  7. умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.


  1. Содержание учебного предмета «Геометрия»


Наглядная геометрия. Наглядные представления о про­странственных фигурах: куб, параллелепипед, призма, пирами­да, шар, сфера, конус, цилиндр. Изображение пространствен­ных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры развёрток многогранников, цилинд­ра и конуса.

Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикуляр­ные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треуголь­ники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника.

Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямо­угольных треугольников. Основное тригонометрическое тожде­ство. Формулы, связывающие синус, косинус, тангенс, котан­генс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треуголь­ника.

Четырёхугольник. Параллелограмм, его свойства и призна­ки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Централь­ный угол, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Каса­тельная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треуголь­ник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фи­гур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Построения с помощью циркуля и линейки. Основные за­дачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трём сто­ронам; построение перпендикуляра к прямой; построение бис­сектрисы угла; деление отрезка на п равных частей.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Рас­стояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной цент­рального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади па­раллелограмма, треугольника и трапеции. Площадь много­угольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с исполь­зованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение век­тора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, ха­рактеристическим свойством. Подмножество. Объединение и пересечение множеств.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обрат­ная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление ло­гических связок если ..., то ..., в том и только в том случае, логические связки и, или.

Геометрия в историческом развитии. От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построе­ние правильных многоугольников. Трисекция угла. Квадрату­ра круга. Удвоение куба. История числа л. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пя­того постулата.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.


  1. Тематическое планирование


Таблица тематического распределения количества часов

п/п

Разделы, темы

Количество часов

Авторская программа

Рабочая программа


7 класс



1

Начальные геометрические сведения

7

7

2

Треугольники

14

14

3

Параллельные прямые

9

9

4

Соотношения между сторонами и углами треугольника

16

16

5

Повторение. Решение задач

4

4


Итого за 7 класс

50

50


8 класс



1

Четырехугольники

14

14

2

Площадь

14

14

3

Подобные треугольники

19

19

4

Окружность

17

17

5

Повторение. Решение задач

4

4


Итого за 8 класс

68

68


9 класс



1

Векторы

8

8

2

Метод координат

10

10

3

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

11

11

4

Длина окружности и площадь круга

12

12

5

Движения

8

8

6

Начальные сведения из стереометрии

8

8

7

Об аксиомах планиметрии

2

2

8

Повторение. Решение задач

9

9


Итого за 9 класс

68

68


Всего по программе

186

186


Основные виды деятельности ученика (на уровне учебных действий) полностью соответствуют основным видам деятельности ученика авторской программы Бурмистрова Т. А. по геометрии к учебнику Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др- М.: Просвещение, 2014.



  1. Учебно-методическое и материально-техническое обеспечение образовательного процесса


  1. Геометрия: 7-9 классы: учебник для общеобразовательных организаций с приложением на электронном носителе / Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – М.: Просвещение, 2014.

  2. Геометрия: рабочая тетрадь: 7 класс / Л.С.Атанасян, В.Ф.Бутузов, Ю.А. Глазков, И.И.Юдина – М.: Просвещение, 2014

  3. Геометрия: рабочая тетрадь: 8 класс / Л.С.Атанасян, В.Ф.Бутузов, Ю.А. Глазков, И.И.Юдина – М.: Просвещение, 2014

  4. Геометрия: рабочая тетрадь: 9 класс / Л.С.Атанасян, В.Ф.Бутузов, Ю.А. Глазков, И.И.Юдина – М.: Просвещение, 2014

  5. Геометрия: дидактические материалы: 7 класс / Б.Г.Зив, В.М.Мейлер. – М.: Просвещение, 2014

  6. Геометрия: дидактические материалы: 8 класс / Б.Г.Зив, В.М.Мейлер. – М.: Просвещение, 2014

  7. Геометрия: дидактические материалы: 9 класс / Б.Г.Зив, В.М.Мейлер. – М.: Просвещение, 2014

  8. Геометрия: тематические тесты: 7 класс / Т.М.Мищенко, А.Д.Блинков. – М.: Просвещение, 2014

  9. Геометрия: тематические тесты: 8 класс / Т.М.Мищенко, А.Д.Блинков. – М.: Просвещение, 2014

  10. Геометрия: тематические тесты: 9 класс / Т.М.Мищенко, А.Д.Блинков. – М.: Просвещение, 2014


  1. Планируемые результаты изучения предмета «Геометрия» в 7-9 классах

Наглядная геометрия

Выпускник научится:

  1. распознавать на чертежах, рисунках, моделях и в окружаю­щем мире плоские и пространственные геометрические фи­гуры;

  2. распознавать развёртки куба, прямоугольного параллелепи­педа, правильной пирамиды, цилиндра и конуса;

  3. определять по линейным размерам развёртки фигуры ли­нейные размеры самой фигуры и наоборот;

  4. вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

  1. вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

  2. углубить и развить представления о пространственных геометрических фигурах;

  3. применять понятие развёртки для выполнения практи­ческих расчётов.

Геометрические фигуры

Выпускник научится:

  1. пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  2. распознавать и изображать на чертежах и рисунках гео­метрические фигуры и их конфигурации;

  3. находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, пово­рот, параллельный перенос);

  4. оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

  5. решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

  6. решать несложные задачи на построение, применяя основ­ные алгоритмы построения с помощью циркуля и ли­нейки;

  7. решать простейшие планиметрические задачи в простран­стве.

Выпускник получит возможность:

  1. овладеть методами решения задач на вычисления и до­казательства: методом от противного, методом подо­бия, методом перебора вариантов и методом геометри­ческих мест точек;

  2. приобрести опыт применения алгебраического и триго­нометрического аппарата и идей движения при реше­нии геометрических задач;

  3. овладеть традиционной схемой решения задач на по­строение с помощью циркуля и линейки: анализ, постро­ение, доказательство и исследование;

  4. научиться решать задачи на построение методом гео­метрического места точек и методом подобия;

  5. приобрести опыт исследования свойств планиметриче­ских фигур с помощью компьютерных программ;

  6. приобрести опыт выполнения проектов по темам: «Гео­метрические преобразования на плоскости», «Построе­ние отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

  1. использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, дли­ны окружности, длины дуги окружности, градусной меры угла;

  2. вычислять длины линейных элементов фигур и их углы, ис­пользуя формулы длины окружности и длины дуги окруж­ности, формулы площадей фигур;

  3. вычислять площади треугольников, прямоугольников, па­раллелограммов, трапеций, кругов и секторов;

  4. вычислять длину окружности, длину дуги окружности;

  5. решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул пло­щадей фигур;

  6. решать практические задачи, связанные с нахождением гео­метрических величин (используя при необходимости спра­вочники и технические средства).

Выпускник получит возможность:

  1. вычислять площади фигур, составленных из двух или бо­лее прямоугольников, параллелограммов, треугольников, круга и сектора;

  2. вычислять площади многоугольников, используя отноше­ния равновеликости и равносоставленности;

  3. приобрести опыт применения алгебраического и триго­нометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

  1. вычислять длину отрезка по координатам его концов; вы­числять координаты середины отрезка;

  2. использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

  1. овладеть координатным методом решения задач на вы­числение и доказательство;

  2. приобрести опыт использования компьютерных про­грамм для анализа частных случаев взаимного располо­жения окружностей и прямых;

  3. приобрести опыт выполнения проектов на тему «При­менение координатного метода при решении задач на вычисление и доказательство».

Векторы

Выпускник научится:

  1. оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, рав­ный произведению заданного вектора на число;

  2. находить для векторов, заданных координатами: длину век­тора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распре­делительный законы;

  3. вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность пря­мых.

Выпускник получит возможность:

  1. овладеть векторным методом для решения задач на вы­числение и доказательство;

  2. приобрести опыт выполнения проектов на тему «При­менение векторного метода при решении задач на вы­числение и доказательство».













СОГЛАСОВАНО

Протокол заседания методического объединения учителей математики, физики, информатики МАОУ СОШ №96

от 26.08.2015г. № 1


___________ Е.В.Кошелева




СОГЛАСОВАНО

Заместитель директора по УМР




______________ А.Н. Силиверстова


26.08. 2015 г.


Автор
Дата добавления 10.11.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров93
Номер материала ДВ-142539
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх