Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии, 7 класс

Рабочая программа по геометрии, 7 класс


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика

Поделитесь материалом с коллегами:

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ЗАОЗЕРНАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ

ШКОЛА С УГЛУБЛЕННЫМ ИЗУЧЕНИЕМ ОТДЕЛЬНЫХ ПРЕДМЕТОВ

16 г. ТОМСКА

634009, г.Томск,

пер.Сухоозерный,6

тел./факс 402519,405974

zaozerom@mail.tomsknеt.ru




Рассмотрено

на заседании МО

Протокол № 2 от _______2014г.

Рук.МО ___________________

Согласовано

На научно-методическом совете МАОУ Заозерной СОШ №16 г.Томска

Протокол №2 от _________2014г.

Утверждаю:


________________2014г.

Директор МАОУ Заозерной СОШ №16 г.Томска

________/Астраханцева Е.В.





Рабочая программа

по геометрии






База реализации:

Обучающиеся 7 «Д», 7 «Е» классов



Составитель: Савошкина О.В.,

учитель математики



Томск - 2015

Пояснительная записка

Статус документа

Рабочая программа по геометрии для 7 класса составлена на основе федерального компонента государственного стандарта основного общего образования, программы по геометрии к учебнику для 7-9 классов общеобразовательных авторов Л.С.Атанасяна, В.Ф.Бутузова, С.Б.Кадомцева, Э.Г.Позняка и И.И.Юдиной. Содержание разных разделов курса геометрии помогает учащимся осознать тесную взаимосвязь математики и естественных дисциплин, природы и общества. Рабочая программа для 7 класса разработана в соответствии с Базисным учебным планом для основного общего образования. Общее число учебных часов в 7 классе 68 часов (2 часа в неделю).В учебно - тематическом плане разделы основного содержания по геометрии разбиты на темы в хронологии их изучения, выделены часы практические, самостоятельные, контрольные работы и тесты.

Обоснование выбора учебно-методического комплекта для реализации рабочей программы по предмету

Для решения основных задач обучения требуются книги, созданные на основе глубокого изучения основ наук, освоения их идей, традиций и конкретного содержания. Программа для средней школы, автором которой являются Бурмистрова Т.А. Учебно-методический комплект (УМК) Геометрия 7-9 классы предназначен для 7-9 классов общеобразовательных учреждений.  УМК выпускает издательство «Просвещение».

Учебники включены в Федеральный перечень учебников, рекомендованных Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях, на 2014/2015 учебный год. Содержание учебников соответствует федеральному государственному образовательному стандарту основного общего образования (ФГОС ООО, 2010 г.).

Состав УМК «Геометрия» для 7 класса:

  1. Геометрия: учебник для 7—9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др. — М.: Просвещение, 2010-2012г

  2. Зив Б.Г. Геометрия: Дидактические материалы для 7 кл. / Б.Г. Зив, В.М.Мейлер. — М.: Просвещение, 2012.

  3. Геометрия: рабочая тетрадь: 7 кл. /Л.С.Атанасян, В.Ф.Бутузов, Ю.А.Глазков, И.И.Юдина. – М.: Просвещение, 2012.

Достоинством учебников данного УМК являются ясность, краткость и доступность изложения, большое количество заданий на отработку полученных знаний, а так же много разобранных примеров. Все главы учебника содержат богатый иллюстративный материал. Учебники рассчитаны на такую структуру, при которой на первой ступени профильное обучение не вводится. Он включает весь необходимый теоретический материал по алгебре для изучения в общеобразовательных учреждениях. Учебник отличается простотой и доступностью изложения материала, предусматривается выполнение упражнений, которые помогают не только закрепить пройденный теоретический материал, но и научиться применять на практике.

Структура программы

Рабочая программа по геометрии для средней школы включает следующие разделы: пояснительную записку с требованиями к результатам обучения; содержание курса с перечнем разделов с указанием числа часов, отводимого на их изучение; тематическое планирование с определением основных видов учебной деятельности школьников; рекомендации по оснащению учебно­го процесса, планируемые результаты.

Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальнотей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках, В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формирова-нии алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:


1) в направлении личностного развития:


    • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;


    • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;


  • формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;


    • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;


    • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;


    • развитие интереса к математическому творчеству и математических способностей;


2) в метапредметном направлении:


  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;


  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;


3) в предметном направлении:


    • овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

    • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Структура документа: Рабочая программа включает следующие разделы: пояснительная записка, общая характеристика программы, общая характеристика курса, место геометрии в учебном плане, результаты освоения курса, содержание учебного курса, тематическое планирование с определением основных видов деятельности, планируемые результаты изучения учебного предмета, оснащённость учебного процесса по предмету, контроль результатов реализации учебной программы

Контроль формирование УУД


Раздел

Общее количество часов

Практические работы

Самостоятельные работы

Контрольные работы

Тесты

1

Начальные геометрические сведения

13


1

1

1

2

Треугольники

17

2

2

1


3

Параллельные прямые

11

-

1

1

1

4

Соотношения между сторонами и углами треугольника

20

1

1

2

1

5

Повторение курса геометрии класса

7


1

1



Итого

68

3

6

6

3

Личностные, метапредметные и предметные результаты освоения учебного предмета

Личностным результатом обучения математике в основной школе является формирование всесторонне образованной, инициативной и успешной личности, обладающей системой современных мировоззренческих взглядов, ценностных ориентаций, идейно-нравственных, культурных и этических принципов и норм поведения.

Личностные результаты обучения:формирование ответственного отношения к учению,готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию,формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  • формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками в различных других видах деятельности;

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • креативность мышления, инициатива, находчивость, активность при решении геометрических задач;

  • умение контролировать процесс и результат учебной математической деятельности;

  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

Метапредметные результаты освоения обучающимися основной школы программы по геометрии заключаются в формировании и развитии посредством геометрических знаний:

  • познавательных интересов, интеллектуальных и творческих способностей учащихся;

  • гуманистических и демократических ценностных ориентаций, готовности следовать этическим нормам поведения в повседневной жизни и производственной деятельности;

  • способности к самостоятельному приобретению новых знаний и практических умений, умения управлять своей познавательной деятельностью;

  • готовности к осознанному выбору дальнейшей профессиональной траектории в соответствии с собственными интересами и возможностями.

Кроме того, к метапредметным результатам относятся универсальные способы деятельности, формируемые и применяемые как в рамках образовательного процесса, так и в реальных жизненных ситуациях:

  • умения организовывать свою деятельность, определять ее цели и задачи, выбирать средства реализации цели и применять их на практике, оценивать достигнутые результаты;

  • умения вести самостоятельный поиск, анализ, отбор информации, ее преобразование, сохранение, передачу и презентацию с помощью технических средств и информационных технологий;

  • организация своей жизни в соответствии с общественно значимыми представлениями о здоровом образе жизни, правах и обязанностях гражданина, ценностях бытия и культуры, социального взаимодействия;

  • умение оценивать с позиций социальных норм собственные поступки и поступки других людей;

  • умения взаимодействовать с людьми, работать в коллективах с выполнением различных социальных ролей, представлять себя, вести дискуссию,

  • умения ориентироваться в окружающем мире, выбирать целевые и смысловые установки в своих действиях и поступках, принимать решения.

Предметными результатами освоения программы по геометрии являются:

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры;

  • выполнять чертежи по условию задач;

  • осуществлять преобразования фигур;

  • вычислятьз начения геометрических величин (длин, углов, площадей, объемов), находить стороны, углы треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

Применять полученные знания при:

  • описание реальных ситуаций на языке геометрии;

  • расчеты включающих простейшие формулы;

  • решении практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

  • при необходимости справочных материалов, калькулятора, компьютера.


Содержание учебного курса

1. Начальные геометрические сведения (13 ч).

Начальные понятия планиметрии. Геометрические фигуры. Понятие о равенстве фигур. Отрезок. Равенство отрезков. Длина отрезка и ее свойства. Угол. Равенство углов. Величина угла и ее свойства. Смежные и вертикальные углы и их свойства. Перпендикулярные прямые.

Основная цель — систематизировать знания учащих­ся об основных свойствах простейших геометрических фигур, ввести понятие равенства фигур.

2. Треугольники (17 ч).

Треугольник. Признаки равенства треугольников. Перпен­дикуляр к прямой. Медианы, биссектрисы и высоты треуголь­ника. Равнобедренный треугольник и его свойства. Основные задачи на построение с помощью циркуля и линейки.

Основная цель — сформировать умение доказывать равенство данных треугольников, опираясь на изученные признаки; отработать навыки решения простейших задач на построение с помощью циркуля и линейки.

3. Параллельные прямые (11 ч).

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель — дать систематические сведения о параллельности прямых; ввести

аксиому параллельных прямых.

4. Соотношения между сторонами и углами треугольника (20 ч).

Сумма углов треугольника. Соотношения между сторонами и углами треугольника. Неравенство треугольника. Некоторые свойства прямоугольных треугольников. Признаки равенства прямоугольных треугольников. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Задачи на пост­роение.

Основная цель — расширить знания учащихся о тре­угольниках.

5. Повторение курса геометрии 7 класса (7 ч).


Учебно-тематическое планирование

Формы контроля:

ФО — фронтальный опрос. ИРД — индивидуальная работа у доски.

ИРК — индивидуальная работа по карточкам. СР — самостоятельная работа.

ПР — проверочная работа. МД — математический диктант.

Т – тестовая работа КР – контрольная работа


Название раздела

Название темы

Кол-во часов

Формируемые УУД. Характеристика деятельности обучающихся

Формы контроля

Начальные геометрические сведения

Знакомства с понятиями прямая, точка и отрезок, луч и угол. Смежные, вертикальные углы.

13

Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки, углы, сто такое градус, градусная мера угла, какой угол называется прямым, тупым, острым, развернутым, что такое середина отрезка, биссектриса угла, какие углы называются смежными и какие вертикальными. Формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять какие прямые называются перпендикулярными, формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами. Изображать и распознавать указанные простейшие фигуры на чертежах;

решать задачи, связанные с этими простейшими фигурами.

МД, , Т, ИРК, ИРД, КР

Треугольники


Признаки равенства треугольников

17

Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какие треугольники называются равными; изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать первый признак равенства треугольников; решать задачи, связанные с первым признаком равенства треугольников; сопоставлять полученный результат с условием задачи; анализировать возможные случаи. решать задачи на нахождения периметра треугольника, на нахождение равных элементов. объяснять, что называется перпендикуляром, проведенным из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой. объяснять, какой треугольник называется равнобедренным и какой равносторонним; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника. решать задачи, связанные со свойствами равнобедренного треугольника; сопоставлять полученный результат с условием задачи; анализировать возможные случаи. Формулировать и доказывать второй признак равенства треугольников; решать задачи, связанные со вторым признаком равенства треугольников. сопоставлять полученный результат с условием задачи; анализировать возможные случаи. Формулировать и доказывать третий признак равенства треугольников; решать задачи, связанные с третьим признаком равенства треугольников. сопоставлять полученный результат с условием задачи; анализировать возможные случаи. Формулировать определение окружности; объяснять, что такое центр, радиус, диаметр и хорда окружности, .решать простейшие задачи на построение

ФО, ПР, Т,СР, МД, ИРК, ИРД КР

Параллельные прямые

Определение параллельности прямых. Признаки параллельности прямых.

13

Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованнее при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми. Объяснять, что такое аксиомы геометрии, и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё. формулировать и доказывать теоремы о свойствах, обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме;объяснять, в чем заключается метод доказательства от противного; приводить примеры использования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми.

ФО, ПР, Т,СР, МД, ИРК, ИРД КР

Соотношения между сторонами и углами треугольника

Сумма углов треугольника. Прямоугольный треугольник. Построение по 3 элементам

20

Формулировать и доказывать теорему о сумме углов треугольника и её следствие о внешнем угле треугольника; проводить классификацию треугольников по углам; решать задачи на вычисление и доказательство, связанные с теоремой о сумме углов треугольника; сопоставлять полученный результат с условием задачи; анализировать возможные случаи. Формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника;

решать задачи на вычисление, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника, при необходимости проводить по ходу решения дополнительные построения; сопоставлять полученный результат с условием задачи; анализировать возможные случаи. Формулировать и доказывать теоремы о свойствах прямоугольных треугольников, решать задачи на вычисление, связанные с теоремой о свойстве прямоугольных треугольников; сопоставлять полученный результат с условием задачи; анализировать возможные случаи. Формулировать и доказывать теоремы о признаках равенства прямоугольных треугольников; Решать задачи на доказательство и построение, связанные с теоремами о свойствах прямоугольных треугольников, с расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные построения; сопоставлять полученный результат с условием задачи; анализировать возможные случаи, в задачах на построение исследовать возможные случаи

ФО, ПР, СР, МД, ИРК, ИРД КР

Повторение


7


ИРК, ИРД


Планируемые результаты изучения учебного предмета

Рабочая программа обеспечивает достижение следующих результатов:

личностные результаты обучения:

формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • развитие опыта участия в социально значимом труде;

  • формирование целостного мировоззрения;

  • формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению;

  • формирование коммуникативной компетентности в общении и  сотрудничестве со сверстниками,в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой и других видов деятельности;

  • умению ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры.

метапредметные результаты обучения:

  • умения организовывать свою деятельность, определять ее цели и задачи, выбирать средства реализации цели и применять их на практике, оценивать достигнутые результаты;

  • умения вести самостоятельный поиск, анализ, отбор информации, ее преобразование, сохранение, передачу и презентацию с помощью технических средств и информационных технологий;

  • организация своей жизни в соответствии с общественно значимыми представлениями о здоровом образе жизни, правах и обязанностях гражданина, ценностях бытия и культуры, социального взаимодействия;

  • умение оценивать с позиций социальных норм собственные поступки и поступки других людей;

  • умения взаимодействовать с людьми, работать в коллективах с выполнением различных социальных ролей, представлять себя, вести дискуссию,

  • умения ориентироваться в окружающем мире, выбирать целевые и смысловые установки в своих действиях и поступках, принимать решения.

предметные результаты обучения

  • распознавать на чертежах и моделях геометрические фигуры (треугольники и их частные виды, окружность, круг); изображать указанные геометрические фигуры;

  • выполнять чертежи по условию задачи;

  • владеть практическими навыками использования геометрических инструментов для изображения фигур;

  • уметь решать задачи на вычисление геометрических величин (длин, углов), применяя изученные свойства фигур и формулы и проводя аргументацию в ходе решения задач;

  • уметь решать простейшие задачи на доказательство;

  • владеть алгоритмами решения основных задач на построение;

  • уметь доказывать равенство треугольников, т.е. выделять равенство соответствующих элементов данных треугольников и делать ссылки на изученные признаки;

  • уметь доказывать параллельность прямых с использованием соответствующих признаков;

  • уметь находить равные углы при параллельных прямых и секущей;

  • уметь доказывать теорему о сумме углов треугольника.

В результате изучения геометрии в 7 классе обучающийся должен научится:

Наглядная геометрия

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские геометрические фигуры (точка, прямая, отрезок, луч, угол, треугольник, окружность), распознавать виды углов, виды треугольников;

  • определять по чертежу фигуры её параметры (длина отрезка, градусная мера угла, элементы треугольника, периметр треугольника и т.д.);

получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:углубления и развития представлений о плоских геометрических фигурах (точка, прямая, отрезок, луч, угол, треугольник, окружность);

Геометрические фигуры

  • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  • находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до hello_html_m2fdcb636.gif, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, сравнение);

  • решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

  • решать простейшие задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

  • решать простейшие задачи.

получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • овладения методами решения задач на вычисления и доказательства: методом от противного, методом перебора вариантов;

  • приобретения опыта применения алгебраического аппарата при решении геометрических задач;

  • овладения традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

  • приобретения опыта исследования свойств планиметрических фигур с помощью компьютерных программ.

Измерение геометрических величин

  • использовать свойства измерения длин и углов при решении задач на нахождение длины отрезка и градусной меры угла;

  • вычислять длины линейных элементов треугольника и их углы;

  • вычислять периметры треугольников;

  • решать задачи на доказательство с использованием признаков равенства треугольников и признаков параллельности прямых;

  • решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

получит возможность использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • вычисления градусных мер углов треугольника и периметров треугольников;

  • приобретения опыта применения алгебраического аппарата при решении задач на вычисление.


Система оценки достижения планируемых результатов

При проверке усвоения материала необходимо выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях, формировать компетенции: ключевые образовательные компетенции, коммуникативную компетенцию, интеллектуальную компетенцию, компетенцию продуктивной творческой деятельности, информационную компетенцию, рефлексивную компетенцию.

Проверка усвоения учебного материала по геометрии осуществляется через самостоятельные и практические работы, контрольные работы по разделам учебного предмета, тесты.

Промежуточная аттестация предусмотрена в виде контрольной работы.

Предлагаются учащимся разноуровневые работы, т.е. список заданий делится на две части – обязательную и необязательную. Обязательный уровень обеспечивает базовые знания для любого ученика. Необязательная часть рассчитана на более глубокие знания темы. Цель: способствовать развитию устойчивого умения и знания согласно желаниям и возможностям учащихся.

Задания для устного и письменного опроса учащихся со­стоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись ма­тематически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необ­ходимыми объяснениями,верно выполнены нужные вычис­ления и преобразования, получен верный ответ, последова­тельно   записано решение.

Оценка ответа учащегося при устном и письменном оп­росе проводитсявы­ставляется одна из отметок: 2 (неудовлетвори­тельно), 3   (удовлетворительно), 4 (хорошо), 5 (отлично).


Нормы оценки знаний, умений и компетентностей учащихся 7 класса по геометрии


1. Оценка письменных контрольных работ.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов.

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.





Оснащённость учебного процесса по предмету

Учебная литература (основная):

  1. Геометрия: учебник для 7—9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др. — М.: Просвещение, 2010-2012г

  2. Зив Б.Г. Геометрия: Дидактические материалы для 7 кл. / Б.Г. Зив, В.М.Мейлер. — М.: Просвещение, 2012.

  3. Геометрия: рабочая тетрадь: 7 кл. /Л.С.Атанасян, В.Ф.Бутузов, Ю.А.Глазков, И.И.Юдина. – М.: Просвещение, 2012.

Дополнительная литература для учителя:

  1. Геометрия: учебник для 7—9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.— М.: Просвещение, 2010.

  2. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2008.

  3. Гусев В. А. Геометрия: Дидактические материалы для 7 кл. / В.А. Гу­сев, А.И. Медяник. — М.: Просвещение, 2008.

  4. Зив Б.Г. Геометрия: Дидактические материалы для 7 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2008.

  5. Мищенко Т.М. Тематическое и поурочное планирование по геометрии. 7 класс. М.: Издательство «Экзамен», 2004 – (методическое пособие).

  6. Геометрия: 7 класс: Книга для учителя. М.: Издательство «Первое сентября», 2003 (Я иду на урок).

Дополнительная литература для учащихся:

  1. Энциклопедия. Я познаю мир. Великие ученые. – М.:ООО «Издательство АСТ», 2003.

  2. Энциклопедия. Я познаю мир. Математика. – М.:ООО «Издательство АСТ», 2003.

  3. Черкасов О.Ю. Математика. Справочник / О.Ю.Черкасов, А.Г.Якушев. -М.: АСТ-ПРЕСС ШКОЛА, 2006.

  4. Мантуленко В.Г. Кроссворды для школьников. Математика / В.Г.Мантуленко, О

  5. Гетманенко. – Ярославль: Академия развития, 1998.

  6. Энциклопедия для детей. Т.11. Математика / гл.ред. М.Д.Аксенова. – М.: Аванта+, 2002.

Пособия и оборудование:

5.1. Справочники.

5.2. Печатные пособия (наглядные средства – таблицы).

5.4. Учебно-практическое и учебно-лабораторное оборудование:

а) раздаточный материал для практических и лабораторных работ,

б) модели геометрических плоских и пространственных фигур.

5.5. Медиаресурсы.

5.6. Технические средства обучения:

а) компьютер;

б) медиапроектор;

в) интерактивная доска;

г) магнитная доска.

Multimedia-поддержка предмета

  1. Министерство образования РФ: http://www.informika.ru/; http://www.ed.gov.ru/; http://www.edu.ru/

  2. Тестирование online: 5 - 11 классы: http://www.kokch.kts.ru/cdo/

  3. Педагогическая мастерская, уроки в Интернет и многое другое: http://teacher.fio.ru

  4. Новые технологии в образовании: http://edu.secna.ru/main/

  5. Путеводитель «В мире науки» для школьников: http://www.uic.ssu.samara.ru/~nauka/

  6. МегаэнциклопедияКирилла и Мефодия: http://mega.km.ru

  7. Сайты «Энциклопедий энциклопедий», например: http://www.rubricon.ru/; http://www.encyclopedia.ru/




Приложение 1


Контроль результатов реализации учебной программы

Контрольная работа №1 (1 четверть). "Начальные геометрические сведения"


Вариант I 

1. На отрезке KN отмечены две точки L и M. Найдите длину отрезка LM, если известно, что KN= 12 см, MN = 3,5 см, KL = 4,6 см. Укажите, какая точка лежит на отрезке KM? 

hello_html_m6b2c97d3.jpg
2. На заданном рисунке OM биссектриса угла NOL.
- Найдите угол KON, если угол NOM равен 60°.
- Постройте угол KOP, который будет вертикальный LOM. Рассчитаете его градусную меру.
- Сколько градусов будет в угле LOP?

3. Угол COD равен 135°. Лучами OE и OF, угол разделёна на 3 равных угла. Сколько прямых углов получилось?


Вариант II 

1. На отрезке KM отмечены две точки L и N. Найдите длину отрезка LN, если известно, что KM= 8,6 см, NM = 1,5 см, KL = 2,6 см. Укажите, какая точка лежит на отрезке KN? 


hello_html_1fe343c6.jpg
2. На заданном рисунке OB биссектриса угла AOC.
- Найдите угол DOA, если угол AOB равен 70°.
- Постройте угол DOE, который будет вертикальный COB. Рассчитаете его градусную меру.
- Сколько градусов будет в угле DOE?

3. Угол EOF равен 120°. Лучами OA и OB, угол разделён на 4 равных угла. Сколько углов по 60° получилось?



Вариант III 

1. На отрезке LK отмечены две точки N и M. Найдите длину отрезка NM, если известно, что LK= 13,8 см, LN = 4,5 см, MK = 1,6 см. Укажите, какая точка лежит на отрезке NK? 
Контрольная работа №2 (2 четверть). "Треугольник и окружность"


Вариант I 

hello_html_30f92b30.jpg
1. Задан равнобедренный треугольник ABC. Известно, что угол ABE равен углу CBD.
Докажите, что треугольник DBE является равнобедренным треугольником. Найдите угол AEB, если известно, что угол BDE равен 65°. 

2. Задан отрезок AB равный 4 см и прямой угол. Постройте на биссектрисе угла точку, где расстояние от вершины угла до точки равно длине отрезка. 

3. Задана окружность с центром О и с хордой CD. Радиус OE проведен перпендикулярно хорде CD. Докажите, что хорды CE и DE равны.


Вариант II 

hello_html_2315e423.jpg
1. Задан равнобедренный треугольник MNP. Известно, что угол MND равен углу ENP.
Докажите, что треугольник DNE является равнобедренным треугольником. Найдите угол MDN, если известно, что угол MEN равен 70°. 

2. Задан отрезок AB равный 3 см и острый угол. Постройте на биссектрисе угла точку, где расстояние от вершины угла до точки равно удвоенной длине отрезка. 

3. Задана окружность с центром О и с хордой EF. Радиус OD проведен перпендикулярно хорде EF. Докажите, что хорды DE и DF равны.



Вариант III 

hello_html_10ee9873.jpg
1. Задан равнобедренный треугольник XYZ. Известно, что угол XYD равен углу ZYE.
Докажите, что треугольник DYE является равнобедренным треугольником. Найдите угол XDY, если известно, что угол XEY равен 50°. 

2. Задан отрезок AB равный 4 см и угол равный 50°. Постройте на биссектрисе угла точку, где расстояние от вершины угла до точки равно половине длине отрезка. 

3. Задана окружность с центром О и с хордой LM. Радиус OK проведен перпендикулярно хорде LM. Докажите, что хорды LK и MK равны.

Контрольная работа №3 (3 четверть). "Параллельные прямые"


Вариант I 

hello_html_4913ae44.jpg
1. На данном рисунке угол 1 равен 120°, угол 2 равен 110°, угол 3 равен 65#176;. Найдите, чему равен угол 4 и сколько ещё таких углов есть на рисунке? 

2. Задан острый угол. На одной из сторон отмечены 2 точки K и L. ОТ этих точек проведены перпендикулярные прямые к другой стороне угла, соответственно KM и LN. Докажите, что эти прямые параллельны друг другу. Чему равен угол KLN, если угол MKL равен 120°? 

3. Задан треугольник XYZ. На его двух сторонах XY и YZ, указаны точки A и B соответственно. Докажите, что если угол YAB равен углу YXZ, то угол ABY равен углу XZY. 

Вариант II 

hello_html_33432667.jpg
1. На данном рисунке угол 1 равен 65°, угол 2 равен 105°, угол 3 равен 65°. Найдите, чему равен угол 4 и сколько ещё таких углов есть на рисунке? 

2. Задан острый угол. На одной из сторон отмечены 2 точки С и D. От этих точек проведены перпендикулярные прямые к другой стороне угла, соответственно CE и DF. Докажите, что эти прямые параллельны друг другу. Чему равен угол CDF, если угол ECD равен 135°? 

3. Задан треугольник MNL. На его двух сторонах MN и NL, указаны точки A и B соответственно. Докажите, что если угол NAB равен углу NML, то угол ABN равен углу MNL. 

Вариант III 

hello_html_6813a4.jpg
1. На данном рисунке угол 1 равен 80°, угол 2 равен 110°, угол 3 равен 80°. Найдите, чему равен угол 4 и сколько ещё таких углов есть на рисунке? 

2. Задан острый угол. На одной из сторон отмечены 2 точки E и F. ОТ этих точек проведены перпендикулярные прямые к другой стороне угла, соответственно EG и FI. Докажите, что эти прямые параллельны друг другу. Чему равен угол EFI, если угол GEF равен 105°? 

3. Задан треугольник DEF. На его двух сторонах DE и EF, указаны точки A и B соответственно. Докажите, что если угол EAB равен углу EDF, то угол ABE равен углу DFE. 




Контрольная работа №4 (4 четверть). "Треугольник. Соотношение между углами и сторонами"


Вариант I 

1. Задан треугольник DEF. Угол D меньше угла F на 40°, а угол E меньше угла В в 3 раза. Найдите все углы треугольника. Какая сторона больше DE или EF? 

2. Задан прямоугольный треугольник XYZ, где YZ гипотенуза. Внешний угол при вершине Z равен 120°, сторона XY равна 7 см. Чему равна длина гипотенузы? 

3. В равнобедренном треугольнике KLM, на основании KM указана точка P. От этой точки проведены перпендикуляры к двум боковым сторонам, соответственно PA и PB. Докажите, что эти отрезки PA и PB равны друг другу. 

Вариант II 

1. Задан треугольник KLM. Угол K меньше угла L в 2 раза, а угол М больше угла L на 30°. Найдите все углы треугольника. Какая сторона больше KL или LM? 

2. Задан прямоугольный треугольник CDE, где DE гипотенуза. Внешний угол при вершине E равен 120°, сторона CD равна 5 см. Чему равна длина гипотенузы? 

3. В равнобедренном треугольнике CDE, на основании CE указана точка N. От этой точки проведены перпендикуляры к двум боковым сторонам, соответственно NA и NB. Докажите, что эти отрезки NA и NB равны друг другу. 

Вариант III 

1. Задан треугольник ABC. Угол A меньше угла B в 3 раза, а угол B больше угла C на 70°. Найдите все углы треугольника. Какая сторона больше AB или BC? 

2. Задан прямоугольный треугольник EFD, где FD гипотенуза. Внешний угол при вершине D равен 150°, сторона AB равна 10 см. Чему равна длина гипотенузы? 

3. В равнобедренном треугольнике XYZ, на основании XZ указана точка М. От этой точки проведены перпендикуляры к двум боковым сторонам, соответственно MA и MB. Докажите, что эти отрезки MA и MB равны друг другу.

36



57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 02.12.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров233
Номер материала ДВ-220107
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх