Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии 8 класс

Рабочая программа по геометрии 8 класс

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs


Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/

  • Математика

Поделитесь материалом с коллегами:




МБОУ «Веселовская СОШ №1»




РАССМОТРЕНО

на МО учителей математики, физики и информатики

Руководитель МО

____ Голубенко Л.П.

Протокол № 1

от «28» августа 2015 г.


СОГЛАСОВАНО

Зам. директора по УВР

_____С.М.Чуйнушева

«28» августа 2015 г.

УТВЕРЖДАЮ

Директор МБОУ

«Веселовская СОШ № 1»

_____Р.А.Чуйнушева.

Приказ № 01/09 – 18 4

от «01» сентября 2015 г.





Рабочая программа

по предмету «Геометрия»

для 8 класса

Программа составлена на основе Государственного стандарта

основного общего образования и в соответствии

с программой основного общего образования





Учитель

Волоскова Л.Н., учитель математики первой квалификационной категории, стаж – 13 лет.





















Содержание


1.Пояснительная записка.

1.1. Соответствие рабочей программы федеральному компоненту государственного образовательного стандарта общего образования.

1.2. Цели и задачи изучения предмета на конкретной ступени образования (извлечения из стандарта).

1.3. Общая характеристика особенностей предмета.

1.4. Описание места учебного предмета в учебном плане.

1.5. Формы контроля, организации учебно–познавательной деятельности, используемых в курсе технологиях, методах и средствах обучения.

1.6. Используемый учебно-методический комплект.


2.Учебно-тематический план.

3. Содержание тем учебного курса.

4. Перечень обязательных контрольных, практических и (или) лабораторных работ.


5.Планируемые результаты учащихся, обучающихся по данной программе.


6. Критерии оценки по предмету.


7.Программно-методическое обеспечение и материально-техническое обеспечение образовательного процесса.

8. Список литературы.


9. Приложение

9.1. Календарно-тематическое планирование




























  1. Пояснительная записка

    1. Соответствие рабочей программы федеральному компоненту государственного образовательного стандарта общего образования.


Данная рабочая учебная программа составлена в соответствии со следующими нормативно-правовыми документами:

  • Федеральный закон «Об образовании в РФ» от 29.12.12 года №273-ФЗ (с последующими изменениями и дополнениями).

  • Приказ Министерства образования и науки Российской Федерации от 17.12.2010 г. № 1897 «Об утверждении федерального компонента государственных образовательных стандартов основного общего образования» (ред. от 06.08.2015 № 01-21/1742).

  • Постановление Главного государственного санитарного врача Российской Федерации от 29.12.2010 г. № 189 г. Москва «Об утверждении СанПиН 2.4.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях».

  • Федеральный государственный образовательный стандарт основного общего образования – Москва, «Просвещение», 2011 (Стандарты второго поколения).

  • Приказ Министерства образования и науки Российской Федерации от 06.10.2009 № 373 «Об утверждении и введении в действие федерального государственного стандарта начального образования» (ред. от 29.12.2014 № 1643, от 18.05.2015 № 507).

  • Приказ Министерства образования и науки Российской Федерации от 01.02.2012 № 74 «О внесении изменений в федеральный базисный учебный план и примерных учебных планов для образовательных учреждений Российской Федерации, реализующих программы общего образования, утвержденные приказом Министерства образования и науки Российской Федерации от 09.03.2004 № 1312».

  • Примерная программа основного общего образования по математике (Сборник рабочих программ. Геометрия, 7-9 классы, М., «Просвещение», 2011г. Составитель: Т.А.Бурмистрова)

  • Приказ Министерства образования Оренбургской области от 13.08.2014 № 01-21/1063 «Об утверждении регионального базисного учебного плана и примерных учебных планов для общеобразовательных организаций Оренбургской области» (ред. от 06.08.2015 № 01-21/1742).

  • Приказ Минобрнауки России от 31.03.2014 № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования» на 2015-2016 учебный год.

  • Рекомендации по изучению предметных областей: «Основы религиозных культур и светской этики» и «Основы духовно-нравственной культуры народов России» (письмо Минобрнауки России от 25.05.2015 № 08-761).

  • Устав Муниципального бюджетного общеобразовательного учреждения «Веселовская средняя общеобразовательная школа Акбулакского района Оренбургской области».

  • Локальный акт «Положение о рабочей программе МБОУ «Веселовская СОШ № 1 Акбулакского района Оренбургской области»».

  • Образовательная программа МБОУ «Веселовская средняя общеобразовательная школа № 1 Акбулакского района Оренбургской области».

  • Учебный план МБОУ «Веселовская СОШ № 1 Акбулакского района Оренбургской области» на 2015-2016 учебный год.

  • Требования к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного образовательного стандарта.


    1. Цели и задачи изучения предмета на конкретной ступени образования.

Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Курс характеризуется рациональным сочетанием логиче­ской строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширя­ются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Уча­щиеся овладевают приемами аналитико-синтетической дея­тельности при доказательстве теорем и решении задач. Систе­матическое изложение курса позволяет начать работу по формированию представлений учащихся о строении мате­матической теории, обеспечивает развитие логического мыш­ления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием ри­сунков и чертежей на всех этапах обучения и развитием гео­метрической интуиции на этой основе. Целенаправленное об­ращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы, и отношения.

Цели:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственного мышления и воображения, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.


Задачи:

  • Рассмотреть фигуру – четырёхугольник – с различных позиций (виды четырёхугольников, выделить элементы в четырёхугольниках, вывод формул для вычисления площади параллелограмма, квадрата, прямоугольника, ромба, трапеции).

  • Выявить соотношение между гипотенузой и катетами прямоугольного треугольника – теорема Пифагора, а также соотношение между сторонами углами прямоугольного треугольника.

  • Сформировать понятие – подобные треугольники. Научить применять подобие, а также признаки подобия треугольников при доказательстве других теорем и решении задач.

  • Использовать геометрические инструменты для решения задач на построение. Научить проводить анализ геометрических задач на построение.

  • Сформировать понятие окружности и её элементов – касательной, центрального и вписанного углов. Рассмотреть виды окружности – вписанная и описанная.

  • Выделить основные методы доказательств, с целью обоснования (опровержения) утверждений и для решения ряда геометрических задач.

  • Научить проводить рассуждения, используя математический язык, ссылаясь на соответствующие геометрические утверждения.

  • Использовать алгебраический аппарат для решения геометрических задач.


    1. Общая характеристика особенностей предмета.

Геометрия— одна из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор­мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе геометрии 8 класса изучаются наиболее важные виды четы­рехугольников -параллелограмм, прямоугольник, ромб, квад­рат, трапеция; даётся представление о фигурах, обладающих осе­вой или центральной симметрией; расширяются и углубляются полученные в 5—6 классах представления обучающихся об измерении и вычисле­нии площадей; выводятся формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказывается одна из глав­ных теорем геометрии — теорему Пифагора; вводится понятие подобных треугольни­ков; рассматриваются признаки подобия треугольников и их применения; делается первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии; расширяются сведения об окружности, полученные учащимися в 7 классе; изучаются новые факты, связанные с окружностью; знакомятся обучающиеся с четырьмя заме­чательными точками треугольника; знакомятся обучающиеся с выполнением действий над векторами как направленными отрезками, что важно для применения векторов в физике.


    1. Описание места учебного предмета в учебном плане.

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение геометрии в 8 классе отводится 68 часов из расчёта 2 часа в неделю. На изучение курса в соответствии с программой Бурмистровой Т. А. «Программы общеобразовательных учреждений. Геометрия. 7-9 классы.М.: Просвещение, 2011» отводится 68 часов (2 часа в неделю). классе. Количество контрольных работ - 5.


    1. Формы контроля, организации учебно–познавательной деятельности, используемых в курсе технологиях, методах и средствах обучения: индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные.

Технологии обучения:

традиционная классно-урочная

игровые технологии (урок-лаборатория)

элементы проблемного обучения

здоровьесберегающие технологии (физминутки, зарядка для глаз)

ИКТ

Методы:

методы организации и осуществления учебно-познавательной деятельности: словесные (диалог, рассказ и др.); наглядные (опорные схемы, слайды и др.); практические (упражнения, практические работы, решение задач, моделирование и др.); исследовательский; самостоятельной работы; работы под руководством учителя; дидактическая игра;

методы стимулирования и мотивации: интереса к учению; долга и ответственности в учении;

методы контроля и самоконтроля в обучении: фронтальная устная проверка, индивидуальный устный опрос, письменный контроль (контрольные и практические работы, тестирование, письменный зачет и тесты).

Формы текущего и итогового контроля: самостоятельная работа, тестирование, теоретические диктанты, контрольные работы.

В обучении математике используются: технические средства, наглядные пособия, дидактические материалы, ИКТ, интернет-ресурсы.


1.6. Используемый учебно-методический комплект.


  1. Т.А. Бурмистрова Геометрия. 7-9 классы. Рабочая программа по учебнику Л.С. Атанасяна, В.Ф. Бутузова. Издательство «Просвещение», 2011.

Геометрия 7-9 класс:

  1. Атанасян Л.С. и др. Геометрия. 7—9 классы : учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М. : Просвещение, 2012.

  2. Дидактические материалы для 7, 8 и 9 классов, Б.Г. Зив, В.М. Майлер, А.Г. Баханский. – М.: Просвещение, 2007.

  3. Геометрия. 8 класс. Рабочая тетрадь.  Атанасян Л.С. и др.

17-е изд. - М.: 2014

  1. Учебно-тематический план.


п/п

Наименование разделов и тем

Всего ча­сов

Контрольные работы

Четырёхугольники.

14

1

Площадь.

14

1

Подобные треугольники.

19

2

Окружность.

17

1

Повторение. Решение задач

4



Итого:

68

5


  1. Содержание тем учебного курса:


Четырехугольники

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.

Осевая и центральная симметрии. Теорема Фалеса.

Цель: изучить наиболее важные виды четы­рехугольников — параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.

Площадь

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.

Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Теорема Пи­фагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Подобные треугольники

Подобие треугольников; коэффициент подобия. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Цель: ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Окружность

Взаимное расположение прямой и окружности, ДВУХ ОКРУЖНОСТЕЙ. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. МЕТРИЧЕСКИЕ СООТНОШЕНИЯ В ОКРУЖНОСТИ: СВОЙСТВА СЕКУЩИХ, КАСАТЕЛЬНЫХ, ХОРД.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника.

Центральные и вписанные углы. Четыре замечательные точки треугольника.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя заме­чательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треуголь­ник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного че­тырехугольника.

Повторение. Решение задач.

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.

В ходе преподавания геометрии в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


  1. Перечень обязательных контрольных, практических и (или) лабораторных работ.

Название

Дата проведения

По плану

фактич

1

Контрольная работа №1 по теме «Четырехугольники»



2

Контрольная работа №2 по теме «Площадь»



3

Контрольная работа №3 по теме «Признаки подобия треугольников»



4

Контрольная работа №4 по теме «Применение подобия треугольников при решении задач. Соотношения между сторонами и углами прямоугольного треугольника»



5

Контрольная работа №5 по теме « Окружность»





  1. Планируемые результаты учащихся, обучающихся по данной программе

В результате изучения курса геометрии 8 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

  1. Критерии оценки по предмету.

Оценка устных ответов учащихся по математике

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотрен­ном программой и учебником,

изложил материал грамотным языком в определенной логиче­ской последовательности, точно используя математическую термино­логию и символику;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теоретические положения конк­ретными примерами, применять их в новой ситуации при выполне­нии практического задания;

продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при от­работке умений и навыков;

отвечал самостоятельно без наводящих вопросов учителя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по за­мечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворяет в основ­ном требованиям на оценку «5», но при этом имеет один из недо­статков:

в изложении допущены небольшие пробелы, не исказившие ма­тематическое содержание ответа;

допущены один – два недочета при освещении основного содержа­ния ответа, исправленные по замечанию учителя;

допущены ошибка или более двух недочетов при освещении вто­ростепенных вопросов или в выкладках, легко исправленные по замечанию учителя.

Отметка «3» ставится в следующих случаях:

неполно или непоследовательно раскрыто содержание материа­ла, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного ма­териала (определенные «Требованиями к математической подготов­ке учащихся»);

имелись затруднения или допущены ошибки в определении поня­тий, использовании математической терминологии, чертежах, вы­кладках, исправленные после нескольких наводящих вопросов учителя;

ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обя­зательного уровня сложности по данной теме;

при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

не раскрыто основное содержание учебного материала;

обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;

допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Оценка письменных контрольных работ учащихся по математике


Отметка «5» ставится, если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробе­лов и ошибок;

в решении нет математических ошибок (возможна одна неточ­ность, описка, не являющаяся следствием незнания или непо­нимания учебного материала).

Отметка «4» ставится, если:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущена одна ошибка или два-три недочета в выкладках, ри­сунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

Отметка «3» ставится, если:

допущены более одной ошибки или более двух-трех недоче­тов в выкладках, чертежах или графиках, но учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере.


  1. Программно-методическое обеспечение и материально-техническое обеспечение образовательного процесса.

1) Комплект чертежных инструментов (классных и раздаточных): линейка, транспортир, угольник (30°, 60°, 90°), угольник (45°, 90°), циркуль.

2) Комплекты планиметрических и стереометрических тел (демон­страционных и раздаточных).

Интернет – ресурсы учителя

1) Министерство образования РФ. – Режим доступа: www.informika.ru; www.ed.gov.ru; www.edu.ru

2) Тестирование online: 5-11 классы. – Режим доступа: www.kokch.kts.ru/cdo

3) Архив учебных программ информационного образовательного портала «RUSEDU!». – Режим доступа: www.rusedu.ru

4) Мегаэнциклопедия Кирилла и Мефодия. – Режим доступа: www.mega.km.ru

5) Сайты энциклопедий. – Режим доступ: www.rubricon.ru; www.encyclo-pedia.ru

6) Вся элементарная математика. – Режим доступа: www.bymath.net

7) Фестиваль исследовательских и творческих работ учащихся «Портфолио». – Режим доступа: http://portfolio.1september.ru/

Цифровые образовательные ресурсы (ЦОР)

1) Интернет-портал Всероссийской олимпиады школьников. – Режим доступа: www.rusolymp.ru

2) Всероссийские дистанционные эвристические олимпиады по математике. – Режим доступа: www.eidos.ru/olymp/mathem.index.htm

3) Информационно-поисковая система «Задачи». Режим доступа: www.zadachi.mccme.ru.easy

4) Задачи: информационно-поисковая система задач по математике. – Режим доступа: www.zadachi.mccme.ru

5) Конкурсные задачи по математике: справочник и методы решения. – Режим доступа: www.mschool.kubsu.ru/cdo/shabitur/kniga/tit.htm

6) Материалы (полные тексты) свободно распространяемых книг по математике. – Режим доступа: www.mccme.ru/free-books

7) Математика для поступающих в вузы. – Режим доступа: www.matematika .agava.ru

8) Выпускные и вступительные экзамены по математике: варианты, методика. – Режим доступа: www.mathnet.spb.ru

9) Олимпиадные задачи по математике: база данных. Режим доступа – Режим доступа www.zaba.ru

10) Московские математические олимпиады. – Режим доступа: www.mccme.ru/olympiads/mmo

11) Школьные и районные математические олимпиады в Новосибирске. – Режим доступа: www.iamakarov.chat.ru/school/school.html

12) Виртуальная школа юного математика. – Режим доступа: www.math.ournet.md/indexr.htm

13) Библиотека электронных учебных пособий по математике. – Режим доступа: www.mschool.kubsu.ru

14) Образовательный портал «Мир алгебры». – Режим доступа: www.algmir.org/index.html

15) Словари БСЭ различных авторов. – Режим доступа: www.slovari.yandex.ru


8. Список литературы.

    1. Т.А. Бурмистрова Геометрия. 7-9 классы. Рабочая программа по учебнику Л.С. Атанасяна, В.Ф. Бутузова. Издательство «Просвещение», 2011.

    2. Геометрия 7-9 класс: Атанасян Л.С. и др. Геометрия. 7—9 классы : учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. — 20-е изд. — М. : Просвещение, 2012.

    3. Дидактические материалы для 7, 8 и 9 классов, Б.Г. Зив, В.М. Майлер, А.Г. Баханский. – М.: Просвещение, 2007.

    4. Геометрия. 8 класс. Рабочая тетрадь.  Атанасян Л.С. и др.

17-е изд. - М.: 2014

    1. Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков, В.Б. Некрасов, И.И. Юдина Изучение геометрии в 7 - 9 классах. – М.: Просвещение, 2010.



hello_html_13460e79.pnghello_html_m4d466bb7.png



Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Автор
Дата добавления 25.01.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров96
Номер материала ДВ-377902
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх