Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии 8 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по геометрии 8 класс

библиотека
материалов

Пояснительная записка



Геометрия один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими фигурами и их свойствами.

  1. Настоящая программа по геометрии для 8 класса составлена на основе федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерной программы для общеобразовательных учреждений по геометрии 7-9 классы к учебному комплексу для 7-9 классов (составители авторы Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008 – М: «Просвещение», 2008. – с. 19-21).

Учебно-методический комплект по математике издательства «Просвещение» соответствует государственному стандарту и является оптимальным комплектом, наиболее полно обеспечивающим реализацию основных содержательно-методических  линий математики базовой школы. Новое издание этого комплекта является полным и доработанным в соответствии с требованиями нормативных документов,  имеет завершенность учебной линии.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и показывает распределение учебных часов по разделам курса. Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение геометрии в 8 классе отводится 68 часов из расчёта 2 часа в неделю.

На основании требований Государственного образовательного стандарта в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:

  • Продолжить овладение системой геометрических знаний и умений, необходимых для приме­нения в практической деятельности, изучения смежных дисциплин, продолжения образования.

  • Продолжить интеллектуальное развитие, формирование качеств личности, необходимых че­ловеку для полноценной жизни в современном обществе; ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • Воспитание культуры личности, отношение к геометрии как к части общечеловеческой куль­туры, понимание значимости геометрии для научно-технического прогресса.

В ходе преподавания геометрии в 8 классе, работы над формированием у учащихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности. В связи с этим следует выделить следующие цели обучения геометрии:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Курс рационально сочетает логическую строгость и геометрическую наглядность. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса , повышается роль дедукции, степень абстракции изучаемого материала. Учащиеся должны овладеть приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изучение курса позволит начать работу по формированию представлений учащихся о строении математической теории, обеспечит развитие логического мышления учащихся. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

В курсе геометрии 8 класса изучаются наиболее важные виды четы­рехугольников -параллелограмм, прямоугольник, ромб, квад­рат, трапеция; даётся представление о фигурах, обладающих осе­вой или центральной симметрией; расширяются и углубляются представления обучающихся об измерении и вычисле­нии площадей; выводятся формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказывается одна из глав­ных теорем геометрии — теорему Пифагора; вводится понятие подобных треугольни­ков; рассматриваются признаки подобия треугольников и их применения; делается первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии; расширяются сведения об окружности, полученные учащимися в 7 классе; изучаются новые факты, связанные с окружностью; знакомятся обучающиеся с четырьмя заме­чательными точками треугольника; знакомятся обучающиеся с выполнением действий над векторами как направленными отрезками, что важно для применения векторов в физике.

Место предмета в базисном учебном плане

Материалы для рабочей программы составлены на основе:

  • федерального компонента государственного стандарта общего образования,

  • примерной программы по математике основного общего образования,

  • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях,

  • с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,

  • тематического планирования учебного материала,

  • базисного учебного плана,

  • рабочей программы Н.Ф. Гавриловой по геометрии УМК Л.С.Атанасян.

Основная форма организации образовательного процесса – классно-урочная система.

Предусматривается применение следующих технологий обучения:

  1. традиционная классно-урочная

  2. игровые технологии

  3. элементы проблемного обучения

  4. технологии уровневой дифференциации

  5. здоровьесберегающие технологии

  6. ИКТ

Виды и формы контроля: переводная аттестация, промежуточный, предупредительный контроль; контрольные работы.

Учебно-тематическое планирование


по __геометрии___

предмет

Классы __________

Учитель ________________________

Количество часов

Всего _68 час; в неделю __2___ час.

Плановых контрольных уроков 6 час

  • Планирование составлено на основе _ федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерной программы для общеобразовательных учреждений к учебному комплексу для 8 классов Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008.)

Учебно– тематический план

ТЕМА

Кол-во часов

1

Четырехугольники

14

2

Площадь


14

3

Подобные треугольники


19

4

Окружность

17

5

Решение задач. Повторение


4


Итого:

68





Содержание тем учебного курса

Четырехугольники

Многоугольник, выпуклый многоугольник, четырехуголь­ник. Параллелограмм, его свойства и признаки. Трапеция. Пря­моугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четы­рехугольников — параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.

Площадь

Понятие площади многоугольника. Площади прямоуголь­ника, параллелограмма, треугольника, трапеции. Теорема Пи­фагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Подобные треугольники

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Цель: ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометриче­ского аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Окружность

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя заме­чательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треуголь­ник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного че­тырехугольника.

Решение задач

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.



Требования к уровню подготовки обучающихся



В ходе преподавания геометрии в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овла­девали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.







В результате изучения курса геометрии 8 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).





ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ.

Учебно-методический комплект

Учебник. Геометрия. 7-9 классы. Авторы: Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И.
- Рабочие тетради для 7, 8 и 9 классов. Авторы: Атанасян Л. С., Бутузов В.Ф., Глазгов Ю.А., Юдина И.И.
- Дидактические материалы для 7, 8 и 9 классов. Авторы: Зив Б.Г., Майлер В.М., Баханский А.Г.
- Тематические тесты для 7, 8 и 9 классов. Авторы: Мищенко Т.М., Блинков А.Д.
- Самостоятельные и контрольные работы. 7-9 классы. Автор: Иченская М.А.
- Методические рекомендации к учебнику. 7-9 классы. Авторы: Атанасян Л.С., Бутузов В.Ф., Глазгов Ю.А.
- Рабочие программы. 7-9 классы. Автор: Бутузов В.Ф.

Информационно- методическая и интернет поддержка.

  1. Журнал «Математика в школе».

  2. Приложение « Математика» сайт www.prosv.ru (рубрика « Математика»)

  3. Интернет – школа Просвещение.

  4. Газета 1 сентября, приложение «Математика»

  5. Электронная версия журнала «Математика» (проект «Школа цифрового века») изд. дом 1 сентября

УМК «Живая математика», презентации к урокам.

Электронные учебные пособия

  1. Открытая математика. Планиметрия.

  2. Уроки геометрии Кирилла и Мефодия 8 класс

Таблицы демонстрационные

  1. Таблицы демонстрационные «Геометрия 8 класс»

  2. Таблицы демонстрационные «Окружность»

  3. Таблицы демонстрационные «Площади фигур»

  4. Таблицы демонстрационные «Треугольники»



















Список литературы

1. Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).

  1. Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236).

  2. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)

  3. Примерная программа общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008 – М: «Просвещение», 2008. – с. 19-21).

  4. Геометрия: учеб, для 7—9 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2004--2008.

  5. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.

  6. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др.]. -М.: Просвещение, 2003 — 2008.

  7. Гусев В. А. Геометрия: дидакт. материалы для 8 кл. / В. А. Гу­сев, А. И. Медяник. — М.: Просвещение, 2003—2008.

  8. Зив Б. Г. Геометрия: дидакт. материалы для 8 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2004—2008.



Дополнительная литература:

  1. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;

  2. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2005.

  3. Гаврилова Н.Ф. Рабочая программа 7-11 класс. – М.: ВАКО, 2011.



Приложение 1

урока

п\п

урока

в

теме

Содержание

Кол-во часов

в

теме

Домашнее

задание

Дата

проведения

Коррекция

даты

проведения

Четырехугольники

14

 


 

1

1

Многоугольники


 №366,368


 

2

2

Многоугольники


№369,370



3

3

Параллелограмм


 №373,384


 

4

4

Свойства параллелограмма


№379,380



5

5

Трапеция.


№386,393



6

6

Параллелограмм и трапеция


№394



7

7

Параллелограмм и трапеция


№397,398



8

8

Параллелограмм и трапеция


Задачи под запись



9

9

Прямоугольник


№400,402



10

10

Прямоугольник, ромб


№409,411



11

11

Прямоугольник, ромб, квадрат


№421,427



12

12

Прямоугольник, ромб, квадрат


№428,437



13

13

Решение задач на четырехугольники


 Задачи под запись


 

14

14

Контрольная работа № 1 по теме «Четырехугольники»


 


 

Площади фигур

14

 


 

15

1

Площадь многоугольника


 №452


 

16

2

Площадь многоугольника


№450,454



17

3

Площадь параллелограмма


№460,468б


 

18

4

Площадь параллелограмма


№479



19

5

Площадь параллелограмма, треугольника


№482



20

6

Площадь параллелограмма, треугольника и трапеции


Задание под запись



21

7

Площадь параллелограмма, треугольника и трапеции


Задание под запись



22

8

Площадь параллелограмма, треугольника и трапеции


№470,477



23

9

Теорема Пифагора


 №484гд,489


 

24

10

Теорема Пифагора


№491,492



25

11

Теорема Пифагора


№498



26

12

Решение задач на площади


 №516


 

27

13

Решение задач на площади


 №518а,522


 

28

14

Контрольная работа  № 2 по теме «Площади фигур»


 


 

Подобные треугольники

19

 


 

29

1

Определение подобных треугольников


 №542,546


 

30

2

Определение подобных треугольников


№548



31

3

Первый признак подобия треугольников


 №551



32

4

Второй признак подобия треугольников


№553аб,555



33

5

Третий признак подобия треугольников


№561,563а



34

6

Признаки подобия треугольников


Задание под запись



35

7

Признаки подобия треугольников


Задание под запись



36

8

Контрольная работа № 3 по теме

«Признаки подобия треугольников»





37

9

Применение подобия к доказательству теорем


 №565,567


 

38

10

Применение подобия к доказательству теорем


№568а,570



39

11

Применение подобия к решению задач


Задание под запись



40

12

Применение подобия к доказательству теорем и решению задач


№572гд,577



41

13

Применение подобия к доказательству теорем и решению задач


№579



42

14

Применение подобия к доказательству теорем и решению задач


№578,581



43

15

Применение подобия к доказательству теорем и решению задач


№582



44

16

Соотношения между сторонами и углами прямоугольного треугольника


 №592,596


 

45

17

Синус,косинус,тангенс треугольника.


№604



46

18

Значение синуса,косинуса,тангенса.


№609


 

47

19

Контрольная работа № 4  по теме «Подобные треугольники»


 


 

Окружность

17

 


 

48

1

Касательная к окружности


 №632,633


 

49

2

Касательная к окружности


№635,639



50

3

Касательная к окружности


Задание под запись



51

4

Центральные и вписанные углы


 №650,653вгд


 

52

5

Центральные и вписанные углы


№655



53

6

Центральные и вписанные углы


№656,667



54

7

Центральные и вписанные углы


№672



55

8

Четыре замечательные точки треугольника


 №678,682


 

56

9

Четыре замечательные точки треугольника


№684,686



57

10

Четыре замечательные точки треугольника


688



58

11

Вписанная и описанная окружность


 №690,692


 

59

12

Вписанная и описанная окружность


№694,706



60

13

Вписанная и описанная окружность


№708,701



61

14

Вписанная и описанная окружность


№712



62

15

Решение задач с окружностью


 Задание под запись


 

63

16

Решение задач с окружностью


№719,733


 

64

17

Контрольная работа № 5 по теме «Окружность»


 


 

Повторение

4

 


 

65

1

Подготовка к итоговой контрольной работе


 Задание под запись


 

66

2

Итоговая контрольная работа


 


 

67

3

Решение занимательных задач на построение


 Задание под запись


 

68

4

Решение занимательных задач на построение


Задание под запись



Приложение 2

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.


1. Оценка письменных контрольных работ обучающихся по математике.


Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

  • Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

  • Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

  • Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

  • Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.



Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.


2.Оценка устных ответов обучающихся по математике


Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.


Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.



Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.



Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.



Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.


3.2. К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.



12



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 11.02.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров114
Номер материала ДВ-444196
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх