Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии (7 класс учебник Атанасян Л. С.)

Рабочая программа по геометрии (7 класс учебник Атанасян Л. С.)


  • Математика

Поделитесь материалом с коллегами:

  1. Пояснительная записка.


Рабочая программа «Геометрия -7» разработана на базе Федерального Закона «Об образовании в РФ» от 29.12.12 г. № 273-Ф3. Федерального государственного стандарта общего образования, требований к результатам освоения основной образовательной программы основного общего образования , фундаментального ядра содержания образования , примерной программы основного общего образования, основной образовательной программы МАОУ «Гимназия №76», учебного плана МАОУ «Гимназия №76» на 2015-2016 учебный год календарного учебного графика МАОУ «Гимназия №76» на 2015-2016 учебный год . ( Приказ № от )

В рабочей программе учтены идеи и положения Концепции духовно-нравственного развития и воспитания личности гражданина России. Программы развития и формирования универсальных учебных действий, которые обеспечивают формирование российской гражданской идентичности, овладения ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития учащихся , и коммуникативных качеств личности.

Эта программа является основой для организации работы учителя, ведущего преподавание по указанному учебно-методическому комплекту. В ней цели и требования к результатам обучения геометрии в основной школе конкретизированы применительно к этапу 7 класса. Программа задает содержание и структуру курса, последовательность учебных тем , приводится характеристика видов учебной и познавательной деятельности, которые служат достижению поставленных целей.



  1. Общая характеристика предмета


Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор­мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе геометрии 7 класса систематизируются знания обучающихся о простейших геометрических фигурах и их свойствах; вводится понятие равенства фигур; вводится понятие теоремы; вырабатывается умение доказывать равенство треугольников с помощью изученных признаков; вводится новый класс задач - на построение с помощью циркуля и линейки; вводится одно из важнейших понятий - понятие параллельных прямых; даётся первое представление об аксиомах и аксиоматическом методе в геометрии; вводится аксиома параллельных прямых; рассматриваются новые интересные и важные свойства треугольников (в данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников).


  1. Место предмета в учебном плане


Согласно федеральному базисному учебному плану на изучение математики в 7 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии может быть следующим:

алгебра – 3 часа в неделю, всего 102 часа;

геометрия – 2 часа в неделю, всего 68 часов.


Количество учебных часов по геометрии:

В год -68 часов

В том числе:

Контрольных работ-6 (включая итоговую контрольную работу).

Резервное время- 7 ч.


Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ.


Уровень обучения – базовый.


Отличительных особенностей рабочей программы по сравнению с примерной программой нет.


Срок реализации рабочей учебной программы – один учебный год.








  1. Содержание учебного предмета


Глава 1. Начальные геометрические сведения (10 часов)

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики I— 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Глава 2. Треугольники (17 часов)

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изучен­ных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.

Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников.

Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.

Глава 3. Параллельные прямые (13 часов)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Цель: ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широ­ко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

Глава 4. Соотношения между сторонами и углами треугольника (20 часов)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Цель: рассмотреть новые интересные и важные свойства треугольников.

В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.

Повторение. Решение задач. (8 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.






5. Учебно-тематическое планирование


Учитель: Хоружая Наталья Александровна

Всего – 68 часов ( в неделю -2 часа)


п/п

Наименование темы

Кол-во часов

1

Начальные геометрические сведения

10

2

Треугольники

17

3

Параллельные прямые

13

4

Соотношения между сторонами и углами треугольника

20

5

Повторение

8

 

                                                  Итого часов

68








6. КАЛЕНДАРНО – ТЕМАТИЧЕСКИЙ ПЛАН.


КЛАСС__7Д_

Учитель: Хоружая Н. А.

____

Дата

урока

п/п

Темы уроков

Виды контроля


КР


ЗР


СР


ТР


ПР


ДКР


1-10

Глава 1. Начальные геометрические сведения.








1

Прямая и отрезок.








2

Луч и угол.








3

Сравнение отрезков и углов.








4,5

Измерение отрезков.



+





6

Измерение углов.





+



7,8

Перпендикулярные прямые.








9

Решение задач.








10

Контрольная работа № 1.

1
















11-27

Глава 2. Треугольники.








11-13

Первый признак равенства треугольников.








14-16

Медианы, биссектрисы и высоты треугольника.




+




17, 18

Второй признак равенства треугольников.








19, 20

Третий признак равенства треугольников.






+


21-23

Задачи на построение.





+



24-26

Решение задач.


+






27

Контрольная работа № 2.

1
















28-40

Глава 3. Параллельные прямые.








28-31

Признаки параллельности двух прямых.




+




32-36

Аксиомы параллельных прямых..


+






37-39

Решение задач.





+

+


40

Контрольная работа № 3.

1
















41-60

Глава 4. Соотношения между сторонами и углами треугольника.








41, 42

Сумма углов треугольника.








43-45

Соотношения между сторонами и углами треугольника.


+

+





46

Контрольная работа № 4.

1







47-50

Прямоугольные треугольники.


+


+




51-54

Построение треугольника по трем элементам.








55-58

Решение задач.





+



59

Контрольная работа № 5.

1







60-68

Повторение. Решение задач.



+



+


68

Итоговая проверочная работа.

1



+




Примечание:

- количество и виды проверочных работ могут корректироваться по усмотрению учителя.





7. Планируемые результаты изучения курса геометрии 7 класса

знать/понимать1

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).


















8. Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.


1. Оценка письменных контрольных работ обучающихся по математике.


Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.



Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.


2.Оценка устных ответов обучающихся по математике


Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.


Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.



Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.



Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.



Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.


3.2. К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.











9. Материально-техническое обеспечение предмета


Геометрия: учеб, для 7—9 кл. / [Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др.]. — М.: Просвещение, 2014

Зив Б.Г. Геометрия: дидакт. материалы для 7 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2014

Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2013

Учебно-методический комплекс ученика:

Геометрия: учеб, для 7—9 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2014






1


Автор
Дата добавления 31.08.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров211
Номер материала ДA-024375
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх