Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии 10-11. УМК Атанасян Л.С.

Рабочая программа по геометрии 10-11. УМК Атанасян Л.С.


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика

Поделитесь материалом с коллегами:

Муниципальное автономное общеобразовательное учреждение гимназия № 26 г. Томска


УТВЕРЖДАЮ

Директор

МАОУ гимназии № 26

Приказ №

от «____» ___________2015 г.

_____________ И.Э. Кашенова


СОГЛАСОВАНО

На заседании научно-методического совета гимназии

Протокол №

от «____» ___________2015 г.

______________ Р.И. Набатова


РАССМОТРЕНО

на заседании кафедры ЕМЦ


Протокол №

от «____» ___________2015 г

__________ Т.Б.Варганова







Рабочая программа

Геометрия (10-11 классы)

УМК: Л. С. Атанасян и др.


















Автор-составитель:

Наумова М.И.,

учитель математики












Томск 2015



  1. Пояснительная записка

Рабочая программа по геометрии для 10-11 класса составлена на основе следующих нормативных документов:

  • Федерального государственного образовательного стандарта основного общего образования, утвержденного Министерством образования науки РФ 17 декабря 2010 года № 1897.

  • Примерной основной образовательной программы образовательного учреждения. Основная школа (стандарты второго поколения), Москва «Просвещение», 2011 г.

  • Закона об образовании в РФ №237

  • Фундаментального ядра содержания общего образования. - М. «Просвещение» 2010 г.

  • Основной образовательной программы основного общего образования МАОУ гимназии № 26 г. Томска.

В основу рабочей программы по геометрии 10-11 классов МАОУ гимназии № 26 положена рабочая программа по геометрии для общеобразовательных учреждений: Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. Программа по геометрии (базовый и профильный уровни). 10-11 классы. - М.: Просвещение, 2011. Программа обеспечена учебно-методическим комплексом по геометрии.

Данный комплекс нацелен на достижение результатов освоения курса геометрии на личностном, метапредметном и предметном уровнях, реализует основные идеи Федерального государственного образовательного стандарта основного общего образования. В нем учитываются основные идеи и положения программы развития и формирования универсальных учебных действий для основного общего образования.

Учебник «Геометрия. 10-11 классы: учебник для общеобразовательных учреждений: базовый и профильный уровни /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 2013» рекомендован Министерством образования и науки Российской Федерации.

Учебник содержит теоретический материал, написанный доступно, на высоком научном уровне, а также систему упражнений, органически связанную с теорией. Большое внимание уделено упражнениям, которые обеспечивают усвоение основных теоретических знаний и формирование необходимых умений и навыков.
Учебник вышеуказанных авторов характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются  внутренние логические связи курса, повышается роль дедукции,  степень абстрактности изучаемого материала. Учащиеся овладевают приёмами аналитико-синтетической деятельности при  доказательстве теорем и решении задач.  Систематическое изложение курса позволяет начать работу  по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности,  использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умение учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.

Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями.

Геометрия – один из важнейших компонентов математического образования, она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры и эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления и формирование понятия доказательства.

Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.




Педагогические технологии обучения:

  • Технология развития критического мышления через организацию творческой деятельности учащихся

  • Технология проектной деятельности учащихся

  • Метод исследования

  • ИКТ - технологии

  • Проблемное обучение

  • Технология дискуссий

  • Технологии групповой работы


Условия и средства формирования универсальных учебных действий:

  • Учебное сотрудничество

  • Совместная деятельность

  • Разновозрастное сотрудничество

  • Проектная деятельность обучающихся как форма сотрудничества

  • Дискуссия

  • Тренинги

  • Общий приём доказательства

  • Рефлексия

  • Педагогическое общение

Формы работы:

  • беседа

  • рассказ

  • лекция

  • диспут

  • экскурсия (путешествие)

  • дидактическая игра

  • творческая работа

  • дифференцированные задания

  • взаимопроверка

  • практическая работа

  • самостоятельная работа

  • фронтальная работа

  • индивидуальная работа

  • групповая работа

  • парная работа.

Методы работы:

  • объяснительно-иллюстративный

  • репродуктивный

  • проблемный

  • эвристический

  • творческо - исследовательский

  • модельный

  • программированный

  • проблемно-поисковый.


Методы контроля усвоения материала:

  • фронтальная устная проверка

  • индивидуальный устный опрос

  • письменный контроль (контрольные, самостоятельные и практические работы, тестирование, письменный зачет).

Учебный процесс осуществляется в классно-урочной форме.


Формы организации учебного процесса:

  • индивидуальные

  • групповые

  • индивидуально-групповые

  • фронтальные

  • классные и внеклассные.

Виды и формы контроля:

  • входной: контрольная работа, тест

  • промежуточный: самостоятельная работа, работа по карточке, математический диктант, зачет

  • тематический: контрольная работа, тест, зачет

  • итоговый: контрольная работа, тест, зачет.

Вводную диагностику, промежуточные контрольные работы и итоговую диагностику предполагается проводить с использованием разноуровневых заданий.


Критерии и нормы оценки знаний, умений и навыков обучающихся:

1. Оценка письменных контрольных работ обучающихся по математике

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Ответ оценивается отметкой «4», если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Ответ оценивается отметкой 3», если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Ответ оценивается отметкой «2», если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Ответ оценивается отметкой «3», если:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Ответ оценивается отметкой «2», если:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Формы организации учебно-исследовательской деятельности на урочных и внеурочных занятиях:

  • урок - исследование

  • урок - творческий отчёт

  • урок - конференция

  • урок - защита исследовательских проектов

  • урок «Патент на открытие»

  • урок открытых мыслей.

Планируется использовать следующие формы учебно-исследовательской деятельности:

  • домашнее задание творческого, исследовательского характера (может сочетать в себе разнообразные виды, причём позволяет провести учебное исследование, достаточно протяжённое во времени)

  • индивидуальный итоговый проект.

Индивидуальный итоговый проект представляет собой учебный проект, выполняемый обучающимся в рамках учебного предмета с целью продемонстрировать свои достижения в самостоятельном освоении содержания и методов избранных областей знаний и/или видов деятельности и способность проектировать и осуществлять целесообразную и результативную деятельность (учебно-познавательную, конструкторскую, социальную, художественно-творческую, иную).


Особенности оценки индивидуального проекта:

Критерии оценки (максимум 3 балла):

1. Способность к самостоятельному приобретению знаний и решению проблем.

2. Сформированность предметных знаний и способов действий.

3. Сформированность регулятивных действий. 

4. Сформированность коммуникативных действий.

3 балла за: Способность к самостоятельному приобретению знаний и решению проблем, сформированность предметных знаний и способов действий, регулятивных действий, коммуникативных действий.

2 балла за: Способность к самостоятельному приобретению знаний и решению проблем, сформированность предметных знаний и способов действий.

1 балл за: Способность к самостоятельному приобретению знаний.

При интегральной системе оценивания оценивается и этап подготовки к проекту и точка защиты проекта.

Результатом (продуктом) проектной деятельности может быть:

а) письменная работа (реферат, аналитические материалы, обзорные материалы, отчёты о проведённых исследованиях, стендовый доклад и др.);

б) материальный объект, мультимедийный продукт, макет, иное конструкторское изделие.


При обучении геометрии предполагается уделить большое внимание творческим работам и проектной деятельности, в ходе выполнения которых учащиеся должны приобрести умения по формированию собственного алгоритма решения познавательных задач, формулированию проблемы и цели своей работы, выбору адекватных способов и методов решения задач; прогнозированию ожидаемого результата.

Методика организации занятий может быть представлена следующим образом: теоретическая часть направлена на актуализацию знаний, составление опорных схем и алгоритмов, а также изучение нестандартных методов решения геометрических задач. Освоение новых методов в основном происходит в процессе практической творческой деятельности. Эффективным методом обучения является такое введение нового теоретического материала, которое вызвано требованиями творческой практики. Ученик должен уметь сам сформулировать задачу, новые знания теории помогут ему в этом процессе. Данный метод позволяет сохранить на занятии высокий творческий тонус при обращении к теории и ведет к более глубокому ее усвоению. Важным условием придания обучению проблемного характера является подбор материала для изучения. Каждый последующий этап должен включать в себя какие-то новые, более сложные темы, задания, требующие теоретического осмысления. Прохождение каждой новой теоретической темы предполагает постоянное повторение пройденных тем, обращение к которым диктует практика. Такие методические приемы, как «забегание вперед», «возвращение к пройденному», придают объемность «линейному», последовательному изложению материала в данной программе, что способствует лучшему ее усвоению. Ученик должен не только грамотно и убедительно решать каждую из возникающих по ходу его работы творческих задач, но и осознавать саму логику их следования. Поэтому важным методом обучения является разъяснение учащимся последовательности действий и операций, в основе чего лежит составление алгоритма. Применяя алгоритм, ученик должен научиться двигаться от самых общих примеров к более частным. Среди методов, направленных на стимулирование творческой деятельности, можно выделить методы, связанные непосредственно с ее содержанием, а также методы, воздействующие на нее извне путем создания на занятиях обстановки, располагающей к творчеству: подбор увлекательных и посильных ребенку заданий, проблемная ситуация, создание на занятиях доброжелательного психологического климата, внимательное и бережное отношение к детскому творчеству, индивидуальный подход. И наконец, необходимо всячески поощрять активность учащихся, их участие в дискуссиях различной формы.



Тематический контроль по геометрии 10-11 классов

УМК Л. С. Атанасяна и др.

10 класс


п/п

Название раздела

Вид контроля

Сроки

1.

Взаимное расположение прямых в пространстве

Контрольная работа №1

ноябрь

2.

Параллельность прямых и плоскостей

Контрольная работа №2

декабрь

3.

Перпендикулярность прямых и плоскостей

Контрольная работа №3

март

4.

Многогранники

Контрольная работа №4

апрель-май


11 класс


п/п

Название раздела

Вид контроля

Сроки

1.

Входной контроль

Контрольная работа №1

сентябрь

2.

Векторы в пространстве

Контрольная работа №2

ноябрь

3.

Цилиндр. Конус. Сфера

Контрольная работа №3

февраль

4.

Объемы тел

Контрольная работа №4

апрель


II. Общая характеристика учебного предмета

При изучении курса математики на базовом уровне продолжается и получает развитие содержательная линия: «Геометрия». В рамках указанной содержательной линии решаются следующие задачи: изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач.

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

  • расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;

  • совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

  • формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.


III. Описание места учебного предмета в учебном плане

Согласно базисному учебному плану основного общего образования МАОУ гимназии №26 г. Томска на изучение геометрии в 10-11 классах отводится не менее 136 часов (по 68 часов в 10 и 11 классах из расчета 2 ч в неделю).


IV. Общеучебные умения, навыки и способы деятельности


В ходе освоения содержания геометрического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

- выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

- самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

- проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

- самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.


V. Содержание учебного предмета


  1. класс

1. Введение.

Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.

Основная цель – познакомить учащихся с содержанием курса стереометрии, с основными понятиями и аксиомами, принятыми в данном курсе, вывести первые следствия из аксиом, дать представление о геометрических телах и их поверхностях, об изображении пространственных фигур на чертеже, о прикладном значении геометрии.


2. Параллельность прямых и плоскостей.

Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.

Основная цель – сформировать представления учащихся о возможных случаях взаимного расположения двух прямых в пространстве (прямые пересекаются, прямые параллельны, прямые скрещиваются), прямой и плоскости (прямая лежит в плоскости, прямая и плоскость пересекаются, прямая и плоскость параллельны), изучить свойства и признаки параллельности прямых и плоскостей.


3. Перпендикулярность прямых и плоскостей.

Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей. Трехгранный угол. Многогранный угол.

Основная цель – ввести понятия перпендикулярности прямых и плоскостей, изучить признаки перпендикулярности прямой и плоскости, двух плоскостей, ввести основные метрические понятия: расстояние от точки до плоскости, расстояние между параллельными плоскостями, между параллельными прямой и плоскостью, расстояние между скрещивающимися прямыми, угол между прямой и плоскостью, угол между двумя плоскостями, изучить свойства прямоугольного параллелепипеда.


4. Многогранники.

Понятие многогранника. Призма. Пирамида. Правильные многогранники.

Основная цель – познакомить учащихся с основными видами многогранников (призма, пирамида, усеченная пирамида), с формулой Эйлера для выпуклых многогранников, с правильными многогранниками и элементами их симметрии.


5. Повторение. Решение задач.


  1. класс

Векторы в пространстве.

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

Основная цель – закрепить известные учащимся из курса планиметрии сведения о векторах и действиях над ними, ввести понятие компланарных векторов в пространстве и рассмотреть вопрос о разложении любого вектора по трем данным некомпланарным векторам.


Метод координат в пространстве. Движения.

Координаты точки и координаты вектора. Скалярное произведение векторов. Уравнение плоскости. Движения. Преобразование подобия.

Основная цель – сформировать умение учащихся применять векторно-координатный метод к решению задач на вычисление углов между прямыми и плоскостями и расстояний между двумя точками, от точки до плоскости.


Цилиндр. Конус. Шар.

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Основная цель – дать учащимся систематические сведения об основных телах и поверхностях вращения – цилиндре, конусе, сфере, шаре.


Объемы тел.

Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.

Основная цель – ввести понятие объема тела и вывести формулы для вычисления объемов основных многогранников и круглых тел, изученных в курсе стереометрии.


Некоторые сведения из планиметрии.

Углы и отрезки, связанные с окружностью. Решение треугольников. Теоремы Менелая и Чевы. Эллипс, гипербола, парабола.

Основная цель – расширить известные учащимся сведения о геометрических фигурах на плоскости: рассмотреть ряд теорем об углах и отрезках, связанных с окружностью, о вписанных и описанных четырехугольниках; вывести формулы для медианы и биссектрисы треугольника, а также формулы площади треугольника, использующие радиусы вписанной т описанной окружностей; познакомить учащихся с такими интересными объектами, как окружность и прямая Эйлера, с теоремами Менелая и Чевы, дать определение эллипса, гиперболы, параболы и вывести их канонические уравнения.


Обобщающее повторение.


VI. Тематическое планирование


10 класс



п/п


Название раздела


Кол-во часов


Базовый уровень освоения.


Знают:


Продуктивный и творческий уровень освоения.


1

Некоторые сведения из планиметрии

12


Умеют:

распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

анализировать взаимное расположение объектов в пространстве;

изображать основные многогранники; выполнять чертежи по условиям задач;

строить простейшие сечения куба, призмы, пирамиды;

решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей);

использовать при решении стереометрических задач планиметрические факты и методы;

проводить доказательные рассуждения в ходе решения задач.

Владеют компетенциями:

учебно-познавательной, ценностно-ориентационной, рефлексивной, коммуникативной, информационной, социально-трудовой.

Способны использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

2

Введение

3

Предмет стереометрии. Основные понятия и аксиомы стереометрии. Первые следствия из теорем

3

Параллельность прямых и плоскостей

16

Параллельные прямые в пространстве. Параллельность трех прямых. Параллельность прямой и плоскости. Скрещивающиеся прямые. Углы с сонаправленными сторонами. Угол между прямыми. Параллельные плоскости. Свойства параллельных плоскостей. Тетраэдр

4

Перпендикулярность прямых и плоскостей

17

Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости. Признак перпендикулярности прямой и плоскости. Теорема о прямой, перпендикулярной к плоскости. Расстояние от точки до плоскости. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Двугранный угол. Признак перпендикулярности двух плоскостей. Прямоугольный параллелепипед

5

Многогранники

14

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, параллелепипеде, призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

6

Повторение курса геометрии 10 класса

6



11 класс


п/п

Название раздела

Кол-во часов


Базовый уровень освоения.


Знают:


Продуктивный и творческий уровень освоения.


1

Повторение курса 10 класса

4


Умеют:

распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

анализировать в простейших случаях взаимное расположение объектов в пространстве;

изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

строить простейшие сечения куба, призмы, пирамиды;

решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

использовать при решении стереометрических задач планиметрические факты и методы;

проводить доказательные рассуждения в ходе решения задач.

Владеют компетенциями:

учебно-познавательной, ценностно-ориентационной, рефлексивной, коммуникативной, информационной, социально-трудовой.

Способны использовать приобретенные знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.


2

Векторы в пространстве

6

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Сумма нескольких векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Разложение вектора по трем некомпланарным векторам.

3

Метод координат в пространстве

15

Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов.

4

Цилиндр. Конус. Шар

16

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

5

Объемы тел

17

Понятие объема тела. Отношение объемов подобных тел

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

6

Заключительное повторение при подготовке к итоговой аттестации по геометрии

10




VII. Учебно-методическое и материально-техническое обеспечение


Учебно-программные материалы

  1. Федеральный государственный образовательный стандарт основного общего образования, утвержденный Министерством образования науки РФ 17 декабря 2010 года № 1897.

  2. Примерная основная образовательная программа образовательного учреждения. Основная школа (стандарты второго поколения), Москва «Просвещение», 2011 г.

  3. Закон об образовании в РФ №237

  4. Фундаментальное ядро содержания общего образования. - М. «Просвещение» 2010 г.

  5. Примерные программы основного общего образования. Математика. (Стандарты второго поколения). – М.: Просвещение, 2010

  6. Учебный и тематический планы


Учебные программы:

  1. Рабочие программы по геометрии. 7-11 классы / Сост. Н.Ф.Гаврилова. М.: ВАКО, 2013

  2. Геометрия. Сборник рабочих программ. 10-11 классы / сост. Т. А. Бурмистрова. – М.: Просвещение, 2009.


Учебно-теоретические материалы

Учебники:

  1. Геометрия. 10-11 классы: учебник для общеобразовательных учреждений: базовый и профильный уровни /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. - М.: Просвещение, 2013.

Учебные пособия:

  1. Зив Б.Г., Мейлер В.М. Дидактические материалы по геометрии для 10 кл. – М.: Просвещение, 2001.

  2. Ковалева Г.И, Мазурова Н.И. геометрия. 10-11 классы: тесты для текущего и обобщающего контроля. – Волгоград: Учитель, 2006.

  3. Б.Г. Зив. Дидактические материалы по геометрии для 11 класса. – М. Просвещение, 2003.

  4. Ю.А. Глазков, И.И. Юдина, В.Ф. Бутузов. Рабочая тетрадь по геометрии для 10 класса. – М.: Просвещение, 2003.

  5. В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. Рабочая тетрадь по геометрии для 11 класса. – М.: Просвещение, 2004.

  6. Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2003.

  7. С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 10 – 11 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2001.


Учебно-практические материалы

Дидактические материалы:

  1. Зив, Б. Г. Задачи по геометрии: пособие для учащихся 7–11 классов общеобразовательных учреждений / Б. Г. Зив, В. М. Мейлер, А. Г. Баханский. – М.: Просвещение, 2003

  2. Левитас Г.Г. Математические диктанты. Геометрия. 7-11 классы. Дидактические материалы. – М.: Илекса, 2006

Контрольные задания

Учебно-методические материалы

Методические рекомендации по изучению курса:

  1. Изучение геометрии в 10-11 классах : метод. рекомендации : кн. для учителя / Л. С. Атанасян [и др.]. – М.: Просвещение, 2011.

  2. Гаврилова Н.Ф. Поурочные разработки по геометрии. 10 класс. М.: ВАКО, 2009

  3. Гаврилова Н.Ф. Поурочные разработки по геометрии. 11 класс. М.: ВАКО, 2009

  4. Статьи из научно-теоретического и методического журнала «Математика в школе»

  5. Статьи из еженедельного учебно-методического приложения к газете «Первое сентября» «Математика»

Учебно-справочные материалы

  1. Энциклопедия для детей: в 15 т. Т. 11. Математика / под ред. М. Д. Аксенова. – М.: Аванта+, 1998

  2. Шуба, М. Ю. Занимательные задания в обучении математике / М. Ю. Шуба. – М., 1997

Учебно-наглядные материалы

  1. Интерактивная доска, проектор, ксерокс-принтер-сканер

  2. Таблицы по геометрии. Треугольники

  3. Таблицы по математике


Информационно-методическое обеспечение учебного процесса

1. Программно-педагогические средства, реализуемые с помощью компьютера.

1. CD «1С: Репетитор. Математика» (КиМ)

2. CD «Уроки геометрии.10-11классы» (в 2 ч.) (КиМ)

3. CD «Геометрия не для отличников» (НИИ экономики авиационной промышленности)

4. CD «Математика. 5–11 классы. Практикум»

5. CD «Большая электронная детская энциклопедия по математике»

2. Цифровые образовательные ресурсы (ЦОР) для поддержки подготовки школьников.

1. Интернет-портал Всероссийской олимпиады школьников. – Режим доступа: http://www.rusolymp.ru

2. Всероссийские дистанционные эвристические олимпиады по математике. – Режим доступа: http://www.eidos.ru/olymp/mathem/index.htm

3. Информационно-поисковая система «Задачи». – Режим доступа: http://zadachi.mccme.ru/easy

4. Задачи: информационно-поисковая система задач по математике. – Режим доступа: http://zadachi.mccme.ru

5. Конкурсные задачи по математике: справочник и методы решения. – Режим доступа: http://mschool.kubsu.ru/cdo/shabitur/kniga/tit.htm

6. Материалы (полные тексты) свободно распространяемых книг по математике. – Режим http://www.mccme.ru/free-books

7. Математика для поступающих в вузы. – Режим доступа: http://www.matematika.agava.ru

8. Выпускные и вступительные экзамены по математике: варианты, методика. – Режим доступа: http://www.mathnet.spb.ru

9. Олимпиадные задачи по математике: база данных. – Режим доступа: http://zaba.ru

10. Московские математические олимпиады. – Режим доступа: http://www.mccme.ru/olympiads/mmo

11. Школьные и районные математические олимпиады в Новосибирске. – Режим доступа: http://aimakarov.chat.ru/school/school.html

12. Виртуальная школа юного математика. – Режим доступа: http://math.ournet.md/indexr.htm

13. Библиотека электронных учебных пособий по математике. – Режим доступа: http://mschool. kubsu.ru

14. Образовательный портал «Мир алгебры». – Режим доступа: http://www.algmir.org/index.html

15. Словари БСЭ различных авторов. – Режим доступа: http://slovari.yandex.ru

16. Этюды, выполненные с использованием современной компьютерной 3D-графики, увлекательно и интересно рассказывающие о математике и ее приложениях. – Режим доступа: http://www.etudes.ru

17. Заочная физико-математическая школа. – Режим доступа: http://ido.tsu.ru/schools/physmat/index.php

18. Министерство образования РФ. – Режим доступа: http://www.ed.gov.ru; http://www.edu.ru

19. Тестирование on-line. 5–11 классы. – Режим доступа: http://www.kokch.kts.ru/cdo

20. Архив учебных программ информационного образовательного портала «RusEdu!». – Режим доступа: http://www.rusedu.ru

21. Мегаэнциклопедия Кирилла и Мефодия. – Режим доступа: http://mega.km.ru

22. Сайты энциклопедий. – Режим доступа: http://www.rubricon.ru; http://www.encyclopedia.ru

23. Вся элементарная математика. – Режим доступа: http://www.bymath.net

24. Презентации


VIII. Планируемые результаты обучения


Требования к уровню подготовки выпускников

В результате изучения математики на базовом уровне ученик должен

знать/понимать1

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира.

Геометрия

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

В результате изучения математики на профильном уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;

  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

Геометрия

уметь

  • соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;

  • изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;

  • решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;

  • проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;

  • вычислять линейные элементы и углы в пространственных конфигурациях, площади поверхностей, изученных многогранников;

  • строить сечения многогранников.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства.


В ходе изучения геометрии обучающиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределённости. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

В ходе планирования и выполнения учебных исследований обучающиеся освоят умение оперировать гипотезами как отличительным инструментом научного рассуждения, приобретут опыт решения интеллектуальных задач на основе мысленного построения различных предположений и их последующей проверки.

В результате целенаправленной учебной деятельности, осуществляемой в формах учебного исследования, учебного проекта, в ходе освоения системы научных понятий у выпускников общей школы будут заложены:

  • потребность вникать в суть изучаемых проблем, ставить вопросы, затрагивающие основы знаний, личный, социальный, исторический жизненный опыт;

• основы критического отношения к знанию, жизненному опыту;

• основы ценностных суждений и оценок;

• уважение к величию человеческого разума, позволяющего преодолевать невежество и предрассудки, развивать теоретическое знание, продвигаться в установлении взаимопонимания между отдельными людьми и культурами;

• основы понимания принципиальной ограниченности знания, существования различных точек зрения, взглядов, характерных для разных социокультурных сред и эпох.


1Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.


57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 14.03.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров360
Номер материала ДВ-527234
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх