Инфоурок / Математика / Рабочие программы / Рабочая программа по геометрии к учебнику Атанасяна 7 класс
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Педагогическая деятельность в соответствии с новым ФГОС требует от учителя наличия системы специальных знаний в области анатомии, физиологии, специальной психологии, дефектологии и социальной работы.

Только сейчас Вы можете пройти дистанционное обучение прямо на сайте "Инфоурок" со скидкой 40% по курсу повышения квалификации "Организация работы с обучающимися с ограниченными возможностями здоровья (ОВЗ)" (72 часа). По окончании курса Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Автор курса: Логинова Наталья Геннадьевна, кандидат педагогических наук, учитель высшей категории. Начало обучения новой группы: 27 сентября.

Подать заявку на этот курс    Смотреть список всех 216 курсов со скидкой 40%

Рабочая программа по геометрии к учебнику Атанасяна 7 класс

библиотека
материалов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная рабочая программа курса по геометрии для 7 класса разработана на основе Пример­ной программы основного общего образования с учетом требований федерального компонента государственного стандарта общего образования и с учетом программ для общеобразователь­ных школ, гимназий, лицеев (Бурмистрова Т.А., Геометрия 7-9 кл. – М.: Просвещение, 2011 г.).

Общая характеристика учебного предмета

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Цели

Изучение геометрии направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критического мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математики как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В основе реализации рабочей программы лежит системно-деятельностный подход, который предполагает:

 воспитание и развитие качеств личности, отвечающих требованиям информационного общества, инновационной экономики, задачам построения российского гражданского общества на основе принципов толерантности, диалога культур и уважения его многонационального, поликультурного и поликонфессионального состава;

 формирование соответствующей целям общего образования социальной среды развития обучающихся в системе образования, переход к стратегии социального проектирования и конструирования на основе разработки содержания и технологий образования, определяющих пути и способы достижения желаемого уровня (результата) личностного и познавательного развития обучающихся;

 ориентацию на достижение цели и основного результата образования — развитие на основе освоения универсальных учебных действий, познания и освоения мира личности обучающегося, его активной учебно-познавательной деятельности, формирование его готовности к саморазвитию и непрерывному образованию;

 признание решающей роли содержания образования, способов организации образовательной деятельности и учебного сотрудничества в достижении целей личностного и социального развития обучающихся;

 учёт индивидуальных возрастных, психологических и физиологических особенностей обучающихся, роли, значения видов деятельности и форм общения при построении образовательного процесса и определении образовательно-воспитательных целей и путей их достижения;

 разнообразие индивидуальных образовательных траекторий и индивидуального развития каждого обучающегося, в том числе одарённых детей, детей-инвалидов и детей с ограниченными возможностями здоровья.

В курсе геометрии условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».

Материал, относящийся к линии «Наглядная геометрия» способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических.

Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Осуществление представленной рабочей программы предполагает использование следую­щего учебно-методического комплекта:

  • Атанасян, Л. С. Геометрия: учебник для 7-9 кл. общеобразовательных учреждений [Текст] / Л.С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.-М.: Просвещение, 2007.

  • Атанасян, Л. С. Геометрия: рабочая тетрадь для 7 кл. общеобразовательных учреждений [Текст] / Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков, И. И. Юдина. - М: Просвещение, 2013.

  • Атанасян, Л. С. Изучение геометрии в 7-9 классах; методические рекомендации для учителя [Текст] / Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др. - М.: Просвещение, 2009.

  • Зив, Б. Г. Дидактические материалы по геометрии для 7 кл. [Текст] / Б. Г. Зив, В. М. Мейлер.-М.: Просвещение, 2012.

Выявление итоговых результатов изучения темы завершается контрольной работой. Кон­трольные работы составляются с учетом обязательных результатов обучения.

Учитывая жесткий лимит учебного времени, объяснение материала и фронтальное решение задач проводится по готовым чертежам.

Место учебного предмета

Реализация рабочей программы рассчитана на 105 часов, по 3 часа в неделю в течение 35 учебных недель. В рабочей программе предусмотрено 6 контрольных работ.


Ценностными ориентирами содержания учебного предмета является развитие логического мышления учащихся, формирование умений и навыков умственного труда, расширение кругозора учащихся, развитие творческих способностей школьников. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить четкие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание учащихся. Ее изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления.


Содержание учебного предмета, с указанием планируемых результатов и системы оценки индивидуальных достижений обучающихся


Наглядная геометрия. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; Свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника.

Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямо­угольных треугольников. Основное тригонометрическое тожде­ство. Формулы, связывающие синус, косинус, тангенс, котан­генс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треуголь­ника.

Четырёхугольник. Параллелограмм, его свойства и призна­ки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Централь­ный угол, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Каса­тельная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фи­гур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Построения с помощью циркуля и линейки. Основные за­дачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трём сто­ронам; построение перпендикуляра к прямой; построение бис­сектрисы угла; деление отрезка на п равных частей.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Рас­стояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число пи; длина дуги окружности.

Градусная мера угла, соответствие между величиной цент­рального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади па­раллелограмма, треугольника и трапеции. Площадь много­угольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с исполь­зованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение век­тора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, ха­рактеристическим свойством. Подмножество. Объединение и пересечение множеств.

Элементы логики. Определение. Аксиомы и теоремы.. Доказательство. Доказательство от противного. Теорема, обрат­ная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление ло­гических связок если ..., то ..., в том и только в том случае, логические связки и, или.

Геометрия в историческом развитии. От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построе­ние правильных многоугольников. Трисекция угла. Квадрату­ра круга. Удвоение куба. История числа пи. Золотое сечение. «Начала» Евклида. Л.Эйлер. Н.И.Лобачевский. История пя­того постулата.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

В ходе изучения геометрии в основной школе планируется овладение учащимися умениями общеучебного характера, разнообразными способами деятельности, приобретение опыта:

- планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

- решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

- исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

- ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

- проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

- поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Система оценки индивидуальных достижений обучаемых.

Выявление итоговых результатов изучения темы завершается контрольной работой. Контрольные работы составляются с учетом обязательных результатов обучения.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.



К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.











Календарно-тематическое планирование с определением основных видов учебной деятельности

7 класс, Геометрия

3 ч в неделю, всего – 105 ч

Учебник: «Геометрия, 7-9», автор Л.С. Атанасян, изд. М. «Просвещение», 2010 г.

Содержание материала

Кол-во часов

Класс 7б

Характеристика основных видов деятельности ученика (на уровне учебных действий)

дата

Глава I. Начальные геометрические сведения

13


Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, раз­вёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие верти­кальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять, какие прямые называются перпендикулярными; форму­лировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и рас­познавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигу­рами



Прямая и отрезок

1


Луч и угол

1


Сравнение отрезков и углов

1


Измерение отрезков

1


Измерение углов

1


Углубление Первые шаги в геометрии

1


Перпендикулярные прямые

1


Углубление Пространство и размерность

1


Решение задач

1


Углубление Простейшие геометрические

фигуры

1


Углубление Куб и его свойства

1



Углубление Конструирование из Т

1


Контрольная работа №1

1


Глава II. Треугольники

22


Первый признак равенства треугольников

3


Углубление Задачи на разрезание и

складывание фигур

1


Медианы, биссектрисы и высоты треугольника

3


Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равны­ми; изображать и распознавать на чертежах треуголь­ники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из дан­ной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать за­дачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; формули­ровать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать про­стейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение пер­пендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные про­стейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи

Углубление Треугольник

1


Второй и третий признаки равенства

треугольников

4


Задачи на построение

3


Углубление Правильные многогранники

1


Решение задач

3


Углубление Измерение длины

1


Углубление Геометрические головоломки

1


Контрольная работа № 2

1


Глава III. Параллельные прямые

21


Формулировать определение параллельных прямых; объ­яснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие со­ответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксио­мы уже использовались ранее; формулировать аксио­му параллельных прямых и выводить следствия из неё; формулировать и доказывать теоремы о свойствах па­раллельных прямых, обратные теоремам о признаках па­раллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, ка­кая теорема называется обратной по отношению к дан­ной теореме; объяснять, в чём заключается метод дока­зательства от противного; приводить примеры исполь­зования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллель­ными прямыми

Признаки параллельности двух прямых

5


Аксиома параллельных прямых

6


Углубление Измерение площади и объема

1


Решение задач

4


Углубление Вычисление длины, площади

и объема

1


Углубление Топологические опыты

1


Углубление Окружность

1


Углубление Геометрический тренинг

1


Контрольная работа № 3

1


Глава IV. Соотношения между сторонами и углами треугольника

27


Формулировать и доказывать теорему о сумме углов тре­угольника и её следствие о внешнем угле треугольника, проводить классификацию треугольников по углам; фор­мулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоуголь­ный треугольник с углом 30°, признаки равенства пря­моугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между па­раллельными прямыми; решать задачи на вычисления, доказательство и построение, связанные с соотноше­ниями между сторонами и углами треугольника и рас­стоянием между параллельными прямыми, при необхо­димости проводить по ходу решения дополнительные построения, сопоставлять полученный результат с усло­вием задачи, в задачах на построение исследовать воз­можные случаи

Сумма углов треугольника

2


Углубление Задачи со спичками

1


Соотношения между сторонами и углами

треугольника

5


Углубление Зашифрованная переписка

1


Контрольная работа № 4

1


Углубление Задачи, головоломки, игры

1


Углубление Фигурки из кубиков и их

частей

1


Прямоугольные треугольники

4


Построение треугольника по трем элементам

4


Решение задач

4


Углубление Параллелограммы

1


Углубление Параллельность и перпендикулярность

1


Контрольная работа № 5

1


Повторение. Решение задач

23



Признаки равенства треугольников

2


Углубление Координаты

1


Углубление Оригами

1


Углубление Замечательные кривые

1


Углубление Кривые Дракона

1


Углубление Лабиринты

1


Параллельные прямые

2


Углубление Геометрия клетчатой бумаги

1


Углубление Зеркальное отражение

1


Углубление Симметрия

1


Соотношение между сторонами и углами

треугольника

2


Углубление Бордюры

1


Углубление Орнаменты

1


Углубление Симметрия помогает решать

задачи

1



Признаки равенства прямоугольных

треугольников

2


Углубление Одно важное свойство

окружности

1


Углубление Задачи, головоломки, игры

1


Решение задач

1


Итоговая контрольная работа

1


Всего

105







Материально-техническое обеспечение образовательного процесса.

  1. Краткий очерк истории математики. Д.Я. Стройк- М.: Наука. Главная редакция физико-математической литературы.

  2. Математическая мозаика. Сэм Ллойд-М: Мир, 1980.

  3. Самостоятельные и контрольные работы по алгебре и геометрии для 7 класса / А.П. Ершова, В.В. Голобородько, А.С. Ершова – М. : ИЛЕКСА, -2012, -208с.

  4. Самостоятельные работы для учащихся общеобразовательных учреждений / Л.А. Александрова – М. : Мнемозина, 2013. – 104с

  5. Материалы сайта «Развитие логического мышления» http://www.rcub.ru.

  6. Материалы сайта «Домашнее задание» http://domzadanie.ru.

  7. Материалы сайта «Логические задачи и головоломки» http://www.smekalka.pp.ru

  8. Материалы сайта «Математика: загадки, головоломки и парадоксы» http://gadaika.ru/matematika

  9. Мультимедиа презентации по изучаемым темам;

  10. Демонстрационные модели:

    1. Демонстрационный транспортир

    2. Демонстрационный циркуль

    3. Демонстрационный треугольник


  1. Технические средства обучения:

    1. Компьютер

    2. Мультимедийный проектор

    3. Экран













Требования к уровню подготовки учащихся

Учащиеся должны знать/понимать:

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в тоже время ограниченность применения математических методов к анализу и исследованию процессов и явлен; природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности; вероятностный характер всех процессов окружающего мира;

Учащиеся должны уметь:

  • распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, использовать определения, свойства, признаки;

  • изображать планиметрические фигуры, выполнять чертежи по условию задач, осуществлять преобразование фигур;

  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: для углов от 0˚ до 90˚ определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур отношений между ними, применяя дополнительные построения, алгебраический и простейший тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы;

  • решать основные задачи на построение с помощью циркуля и линейки:

  • решать простейшие планиметрические задачи;



Владеть компетенциями: познавательной, коммуникативной, информационной и рефлексивной.

Учащиеся должны решать следующие жизненно практические задачи:

  • самостоятельно приобретать и применять знания в различных ситуациях, работать в группах;

  • аргументировать и отстаивать свою точку зрения;

  • уметь слушать других, извлекать учебную информацию на основе сопоставительного анализа объектов;

  • пользоваться предметным указателем энциклопедий и справочников для нахождения информации, самостоятельно действовать в ситуации неопределённости при решении актуальных проблем.

Использовать приобретённые знания и умения в практической деятельности и вповседневной жизни для:

  • при построениях геометрическими инструментами (линейка, угольник, циркуль, транспортир);

  • для вычисления длин, площадей основных геометрических фигур с помощью формул, используя при необходимости справочники и технические средства;

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии;

Измерители уровня знаний и умений

Образовательные результаты изучения данного курса могут быть выявлены в рамках следующих форм контроля:

  • Текущий контроль (фронтальный и индивидуальный опрос по изучаемым темам);

  • Тематический контроль в форме текстовых заданий (самостоятельных работ, тестов);

  • Обобщающий (итоговый) контроль в форме текстовых заданий (контрольных работ).

Самостоятельные работы «Дидактические материалы по геометрии для 7 класса». Авторы: Б. Г. Зив, В. М. Мейлер.-М.: Просвещение, 2012.

В течение учебного года планируется провести 6контрольных работ. Продолжительность работы - 1 час.

Тема контрольной работы № 1:« Начальные геометрические сведения».

Тема контрольной работы № 2: «Треугольники».

Тема контрольной работы № 3: «Параллельные прямые».

Тема контрольной работы №4:«Соотношения между сторонами и углами треугольника».

Тема контрольной работы №5: «Соотношения между сторонами и углами треугольника».

Итоговая контрольная работа.

Проведение и оценивание контрольных работ

Контрольные работы даются в двух вариантах. В каждую из них включены задания, соответствующие уровню обязательной подготовки, и более продвинутые по уровню сложности задания (соответствующие уровню возможностей). Задания УОП отмечены знаком °.

Для каждой контрольной работы составлены задания, которые являются дополнительными. За верно выполненное дополнительное задание ставится дополнительная отметка.

Для более подготовленных учащихся составлен третий вариант.

Отметка «3» выставляется если ученик верно выполнил задание УОП;

отметка «5» выставляется, если ученик верно выполнил все задания;

отметка «4» выставляется, если ученик верно выполнил задание УОП, но при выполнении задания УВ допустил одну или две ошибки.

Знания, умения и навыки учащихся по геометрии оцениваются по результатам устного опроса, текущих и итоговых письменных работ, тестов.
Письменная проверка знаний, умений и навыков.
В основе данного оценивания лежат следующие показатели: правильность выполнения и объем выполненного задания. Классификация ошибок и недочетов, влияющих на снижение оценки.

Ошибки:
- незнание или неправильное применение свойств, правил, алгоритмов, существующих зависимостей, лежащих в основе выполнения задания или используемых в ходе его выполнения;
- неправильный выбор действий, операций;
- неверные вычисления в случае, когда цель задания - проверка вычислительных умений и навыков;
- пропуск части математических выкладок, действий, операций, существенно влияющих на получение правильного ответа;
- несоответствие пояснительного текста, ответа задания, наименования величин выполненным действиям и полученным результатам;
- несоответствие выполненных измерений и геометрических построений заданным параметрам.

14


Общая информация

Номер материала: ДA-021385

Похожие материалы