Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по математике
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по математике

библиотека
материалов

РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ

для 5 класса


Пояснительная записка



Рабочая программа по математике в 5 классе составлена на основе:

1. Федерального государственного образовательного стандарта основного общего образования (приказ Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897),

2. Примерной программы (Математика. 5-9 классы: проект. – 3-е изд., перераб. – М.: Просвещение, 2011. – 64с. – (Стандарты второго поколения);

3. Авторской программы «Математика, 5» авт. Н.Я. Виленкина, В.И. Жохова, А.С.Чеснокова, С.И.Шварцбурд с включением тем «Описательная статистика. Вероятность. Комбинаторика» из раздела «Вероятность и статистика» и ориентирована на учебник «Математика. 5 класс: учеб. для общеобразоват. Учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – 27 изд., стер. М. : Мнемозина, 2010. – 280с. : ил.» и учебник «Математика, 5» авт. Н.Я. Виленкина, В.И. Жохова, А.С.Чеснокова, С.И.Шварцбурд с включением тем «Описательная статистика. Вероятность. Комбинаторика» из раздела «Вероятность и статистика» и ориентирована на учебник «Математика. 5 класс: учеб. для общеобразоват. Учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – 30 изд., перер. М. : Мнемозина, 2012. – 280с. : ил.»

Содержание образование по математике в 5 классах определяет следующие задачи:

  • развить представления о натуральном числе, десятичной и обыкновенной дроби и роли вычислений в человеческой практике;

  • сформировать практические навыки выполнения устных, письменных вычислений, развить вычислительную культуру;

  • развить представления об изучаемых понятиях: уравнение, координаты и координатная прямая, процент, упрощение буквенных выражений, угол и треугольник, формула и методах решения текстовых задач как важнейших средствах математического моделирования реальных процессов и явлений;

  • получить представление о статистических закономерностях и о различных способах их изучения, об особенностях прогнозов , носящих вероятностный характер;

  • развить логическое мышление и речь-умение логически обосновывать суждения, проводить несложные систематизации, проводить примеры, использовать словесный и символический языки математики для иллюстрации, аргументации и доказательства;

Изучение математики направлено на достижение следующих целей:

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации примерной программе основного общего образования по математике на изучение предмета отводиться не менее 170 часов из расчета 5 часов в неделю.


Ценностные ориентиры содержания учебного предмета


Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.



Роль предмета в развитии обучающихся.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства. Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.



Содержание учебного предмета «Математика»

Содержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.

Элементы теории множеств и математической логики

Согласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.

Множества и отношения между ними

Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.

Операции над множествами

Пересечение и объединение множеств. Разность множеств, дополнение множества. Интерпретация операций над множествами с помощью кругов Эйлера.

Элементы логики

Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Высказывания

Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).

Содержание курса математики в 5–6 классах

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Делители и кратные

Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.

Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби

Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

Отношение двух чисел

Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты

Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Диаграммы

Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе.

Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур.

История математики

Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему hello_html_m7b15a3b3.gif?

Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.



Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

  • Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

  • использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей

  • Представлять данные в виде таблиц, диаграмм,

  • читать информацию, представленную в виде таблицы, диаграммы.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

  • Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;

  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.

История математики

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.

Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

  • определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания;

  • строить цепочки умозаключений на основе использования правил логики.

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений, обосновывать алгоритмы выполнения действий;

  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;

  • выполнять округление рациональных чисел с заданной точностью;

  • упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;

  • находить НОД и НОК чисел и использовать их при решении зада;.

  • оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

  • извлекать, информацию, представленную в таблицах, на диаграммах;

  • составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Наглядная геометрия

Геометрические фигуры

  • Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников, квадратов, объемы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объемы комнат;

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.

















Тематическое планирование.










































Календарное планирование.

01.09

Все действия с натуральными числами

02.09

Арифметические действия с натуральными числами. Решение задач

05.09

Чтение и запись натуральных чисел

06.09

Десятичная запись натуральных чисел

07.09

Обозначение натуральных чисел

08.09

Отрезок. Длина отрезка

09.09

Сравнение отрезков. Равенство отрезков

12.09

Решение задач на построение отрезков заданной длины

13.09

Решение задач на нахождение длин отрезков

14.09

Плоскость. Прямая

15.09

Луч

16.09

Решение геометрических задач по теме «Плоскость. Прямая. Луч»

19.09

Шкалы

20.09

Координатный луч. Координаты

21.09

Построение точек с заданными координатами

22.09

Сравнение чисел

23.09

Сравнение натуральных чисел

26.09

Задания на сравнение натуральных чисел

27.09

Подготовка к контрольной работе.

28.09

Контрольная работа №1 по теме «Натуральные числа»

29.09

Сложение натуральных чисел и его свойства

30.09

Разложение числа по разрядам. Упрощение выражений

03.10

Сложение натуральных чисел. Зависимость суммы от изменения компонентов

04.10

Решений уравнений и задач

05.10

Вычитание натуральных чисел. Свойства вычитания

06.10

Вычитание чисел в столбик

07.10

Решение задач с использованием действия вычитания

10.10

Вычитание натуральных чисел. Действия с именованными числами

11.10

Упрощение выражений

12.10

Числовые и буквенные выражения

13.10

Составление числовых и буквенных выражений по условию задач

14.10

Формулы. Решение текстовых задач с помощью составления уравнений

17.10

Контрольная работа №2 по теме «Сложение и вычитание натуральных чисел. Числовые и буквенные выражения»

18.10

Уравнение

19.10

Решение уравнений на основании зависимости между компонентами действий сложения и вычитания

20.10

Решение текстовых задач с помощью составления уравнений

21.10

Угол. Обозначение углов. Сравнение углов

24.10

Равенство углов. Построение углов

25.10

Виды углов

26.10

Транспортир. Алгоритм измерения углов

27.10

Сравнение величин углов

28.10

Построение углов заданной градусной меры

07.11

Измерение углов

08.11

Многоугольники

09.11

Равные фигуры

10.11

Треугольник. Виды треугольников

11.11

Решение задач по теме «Треугольники»

14.11

Решение задач на построение треугольников

15.11

Прямоугольник. Свойства прямоугольника

16.11

Решение задач на нахождение периметров прямоугольника и квадрата

17.11

Ось симметрии фигуры. Решение задач

18.11

Повторение и систематизация учебного материала

21.11

Контрольная работа №3 по теме «Уравнение. Угол. Многоугольники. Треугольник. Прямоугольник»

22.11

Умножение натуральных чисел

23.11

Переместительное свойство умножения

24.11

Решение задач на умножение натуральных чисел

25.11

Решение задач на умножение натуральных чисел

28.11

Сочетательное свойство умножения

29.11

Распределительное свойство умножения

30.11

Упрощение выражений

01.12

Деление. Решение уравнений

02.12

Деление. Порядок действий

05.12

Решение уравнений на основе зависимости между компонентами арифметических действий

06.12

Решений задач

07.12

Решений уравнений

08.12

Решений задач

09.12

Нахождение значений выражений

12.12

Деление с остатком

13.12

Нахождение остатка при делении натуральных чисел

14.12

Деление натуральных чисел

15.12

Степень числа.

16.12

Нахождение степени числа по заданному основанию и показателю степени

19.12

Контрольная работа №4 по теме «Умножение и свойства умножения. Деление с остатком. Степень числа»

20.12

Площадь. Площадь прямоугольника

21.12

Площадь квадрата

22.12

Нахождение площади прямоугольника и квадрата с помощью формул

23.12

Выражение одних единиц площади через другие

10.01

Прямоугольный параллелепипед. Решение задач

11.01

Пирамида. Решение задач

12.01

Решение задач по теме «Прямоугольный параллелепипед и пирамида»

13.01

Объём прямоугольного параллелепипеда

16.01

Объём куба

17.01

Нахождение объёмов прямоугольного параллелепипеда и куба с помощью формул

18.01

Выражение одних единиц объёма через другие

19.01

Комбинаторные задачи

20.01

Решение комбинаторных задач с помощью перебора вариантов

23.01

Решение комбинаторных задач

24.01

Повторение и систематизация учебного материала

25.01

Повторение и систематизация учебного материала

26.01

Контрольная работа № 5 по теме «Площадь прямоугольника. Объём прямоугольного параллелепипеда. Комбинаторные задачи»

27.01

Понятие обыкновенной дроби

30.01

Действия с обыкновенными дробями

31.01

Решение задач

01.02

Действия с обыкновенными дробями

02.02

Решение задач

03.02

Правильные и неправильные дроби

06.02

Сравнение обыкновенных дробей с равными знаменателями

07.02

Задания на сравнение дробей

08.02

Сложение дробей с одинаковыми знаменателями

09.02

Вычитание дробей с одинаковыми знаменателями

10.02

Дроби и деление натуральных чисел

13.02

Смешанные числа

14.02

Преобразования неправильной дроби в смешанное число и смешанного числа в неправильную дробь

15.02

Сложение двух смешанных чисел

16.02

Действия со смешанными числами. Решение задач

17.02

Решение уравнений и задач

20.02

Повторение и систематизация учебного материала

21.02

Контрольная работа №6 по теме «Обыкновенные дроби»

22.02

Представление о десятичных дробях

24.02

Чтение и запись десятичных дробей

27.02

Название разрядов десятичных знаков в записи десятичных дробей

28.02

Запись обыкновенных дробей в виде десятичных дробей

01.03

Сравнение десятичных дробей

02.03

Задания на сравнение десятичных дробей

03.03

Сравнение десятичных дробей

06.03

Округление десятичных дробей

07.03

Задания на выполнение прикидки результатов вычислений

09.03

Округление десятичных дробей

10.03

Сложение десятичных дробей

13.03

Вычитание десятичных дробей

14.03

Сложение и вычитание десятичных дробей

15.03

Решение уравнений

16.03

Решение уравнений

17.03

Решение задач на сложение и вычитание десятичных дробей

20.03

Сложение и вычитание десятичных дробей

21.03

Контрольная работа № 7 по теме «Сравнение десятичных дробей. Округление чисел. Сложение и вычитание десятичных дробей»

22.03

Умножение десятичных дробей на 10, 100, 1000 и т.д.

23.03

Умножение двух десятичных дробей

24.03

Умножение двух десятичных дробей

03.04

Умножение десятичных дробей на 0,1; 0,01; 0,001 и т.д.

04.04

Решение задач

05.04

Нахождение значений выражений

06.04

Решение задач

07.04

Деление десятичной дроби на 10. 100, 1000 и т.д.

10.04

Деление десятичной дроби на десятичную

11.04

Решение задач

12.04

Нахождение значений выражений

13.04

Действия на деление десятичных дробей

14.04

Решение уравнений

17.04

Решение задач

18.04

Деление десятичных дробей

19.04

Решение задач

20.04

Контрольная работа №8 по теме «Умножение и деление десятичных дробей»

21.04

Среднее арифметическое

24.04

Нахождение среднего арифметического нескольких чисел

25.04

Среднее значение величины. Приведение примеров средних значений величины

26.04

Проценты

27.04

Представление процентов в виде десятичной дроби и десятичной дроби в виде процентов

28.04

Нахождение процентов от числа

03.05

Решение задач на нахождение процентов от числа

04.05

Нахождение числа по его процентам

05.05

Решение задач на нахождение числа по его процентам

10.05

Решение задач

11.05

Нахождение числа по его процентам

12.05

Повторение и систематизация учебного материала

15.05

Повторение и систематизация учебного материала

16.05

Контрольная работа №9 по теме «Среднее арифметическое. Проценты. Нахождение процентов от числа и числа по его процентам»

17.05

Повторение.

18.05

Повторение.

19.05

Повторение.

22.05

Повторение.

23.05

Повторение.

24.05

Повторение.

25.05

Повторение.

26.05

Повторение.












Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 31.10.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров37
Номер материала ДБ-306161
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх