Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике

Рабочая программа по математике


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика

Поделитесь материалом с коллегами:

ФЗ-УР-МК-08


ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ЛЫСЬВЕНСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

















Рабочая программа учебной дисциплины


математика



для профессии 15.01.25 (151902.03) Станочник (металлообработка)




















2014


РАССМОТРЕНО

Цикловой комиссией

математических и общих естественнонаучных дисциплин по подготовке квалифицированных рабочих и служащих

Председатель ЦК

___________ _______________

«_____»________________ 2014 г.


Методист

___________ _______________


«_____»________________ 2014г.



Разработана на основе Примерной программы учебной дисциплины «Математика» для профессий среднего профессионального образования, ФГУ «ФИРО» Минобрнауки России, 2008.


УТВЕРЖДАЮ


Заместитель директора по УПР ППКРС

_________________ ______________


«____»______________________2014г.




















Разработчик: А.А. Резникова- преподаватель ГБПОУ «Лысьвенский политехнический колледж»




Внутренняя экспертиза:



содержательная экспертиза:


техническая экспертиза:

СОДЕРЖАНИЕ



стр.

  1. ПАСПОРТ рабочей ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ МАТЕМАТИКА


4

  1. СТРУКТУРА и ПРИМЕРНОЕ содержание УЧЕБНОЙ ДИСЦИПЛИНЫ


9

  1. условия реализации учебной дисциплины


16

  1. Контроль и оценка результатов Освоения учебной дисциплины


20













1. паспорт рабочей ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

МАТЕМАТИКА


1.1. Область применения рабочей программы

Рабочая программа учебной дисциплины является частью примерной основной профессиональной образовательной программы в соответствии с ФГОС по профессии 15.01.25 ( 151902.03) Станочник ( металлообработка).

Рабочая программа учебной дисциплины может быть использована для изучения математики в учреждениях среднего профессионального образования, реализующих образовательную программу среднего (полного) общего образования, при подготовке квалифицированных рабочих и служащих.


1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы: ОДП. 01 Математика; образовательный цикл, профильный.

1.3. Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения смежных естественнонаучных дисциплин на базовом уровне и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

В результате освоения учебной дисциплины обучающийся должен уметь:

знать:

З1. значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

З2. значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

З3. универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

З4. вероятностный характер различных процессов окружающего мира.

уметь:

У1. алгебра: выполнять арифметические действия над числами, сочетая устные и письменные приемы; находить приближенные значения величин и погрешности вычислений (абсолютная и относительная); сравнивать числовые выражения, находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах, выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;

У2. функции и графики: вычислять значение функции по заданному значению аргумента при различных способах задания функции, определять основные свойства числовых функций, иллюстрировать их на графиках; строить графики изученных функций, иллюстрировать по графику свойства элементарных функций; использовать понятие функции для описания и анализа зависимостей величин;

У3. начала математического анализа: находить производные элементарных функций; использовать производную для изучения свойств функций и построения графиков; применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения; вычислять в простейших случаях площади и объемы с использованием определенного интеграла;

У4. уравнения и неравенства: решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы; использовать графический метод решения уравнений и неравенств; изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными; составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах;

У5. комбинаторика, статистика и теория вероятностей: решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул; вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

У6. геометрия: распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями; описывать взаимное расположение прямых и плоскостей в пространстве, анализировать в простейших случаях взаимное расположение объектов в пространстве; изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач; решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов); использовать при решении стереометрических задач планиметрические факты и методы; проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

Н1. алгебра: для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.

Н2. функции и графики: для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

Н3. начала математического анализа: для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

Н4. уравнения и неравенства: для построения и исследования простейших математических моделей.

Н5. комбинаторика, статистика и теория вероятностей: для анализа реальных числовых данных, представленных в виде диаграмм, графиков; анализа информации статистического характера.

Н6. геометрия: для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.


В результате изучения дисциплины формируются общие компетенции:


ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.

ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.

ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.


1.4. Рекомендуемое количество часов на освоение рабочей программы учебной дисциплины:

максимальная учебная нагрузка обучающегося 480 часа, в том числе:

обязательная аудиторная учебная нагрузка обучающегося 316 часов;

самостоятельная работа обучающегося 164 часа.
















2. СТРУКТУРА И ПРИМЕРНОЕ СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы технического направления



Вид учебной работы

Объем часов

Максимальная учебная нагрузка (всего)

480

Обязательная аудиторная учебная нагрузка (всего)

316

в том числе:


контрольные работы

17

Самостоятельная работа обучающегося (всего)

164

в том числе:


Подготовка к контрольной работе.

Подготовка к экзамену.

Работа по заполнению справочника.

Самостоятельная внеаудиторная работа по выполнению домашнего задания.

Составление кроссворда.

Написание сообщения, мини-сочинения.

Составление ребусов.

Изготовление моделей многогранников, тел вращения и их разверток.

Практическая работа на вычисление площади поверхности, объема многогранников и тел вращения.

23

28

13

81


3

14

2

4


6

Итоговая аттестация в форме тест


2.2 Примерный тематический план и содержание учебной дисциплины математика



Наименование разделов и тем

Содержание учебного материала, лабораторные работы и практические занятия, самостоятельная работа обучающихся, курсовая работа (проект) (если предусмотрены)

Объем часов

Всего=обязат. аудит.+самост

Уровень освоения

1

2

3

4

Раздел 1.

Повторение курса основной школы

21=13+8


Тема 1.1.

Повторение курса основной школы

Содержание учебного материала

13


1

Основные темы программы основной школы: преобразование алгебраических выражений; функция; уравнения и неравенства;

11

2

2

Роль и место математики в начальном профессиональном образовании.

1

1

Контрольная работа по теме: За курс основной школы

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания

  2. работа по заполнению справочника;

  3. подготовка к контрольной работе за курс основной школы.

8

3

3

2


Раздел 2.

Тригонометрические функции

76=46+30


Тема 2.1. Тригонометрические выражения

Содержание учебного материала

20


1

Градусная и радианная мера угловых величин, тригонометрические функции числового аргумента (синус, косинус, тангенс, котангенс).

6

2

2

Соотношения между тригонометрическими функциями одного аргумента,

формулы приведения, формулы сложения и следствия из них.

13

2

Контрольная работа по теме: Преобразование тригонометрических выражений

1

3

Самостоятельная работа обучающихся:

  1. работа по заполнению справочника;

  2. выполнение домашнего задания;

  3. подготовка к контрольной работе;

  4. написание сообщения по теме «Что я знаю о синусе (косинусе, тангенсе)?».

14

2

6

2

4


Тема 2.2.

Функции, их свойства и графики

Содержание учебного материала

26


1

Числовые функции. Понятие. Область определения и множество значений функции.

1

2

2

Свойства функции: непрерывность, монотонность, экстремумы, четность, сохранение знака, нули функции, периодичность.

4

2


3

Тригонометрические функции (синус, косинус, тангенс, котангенс), их графики и свойства.

4

2


2

Обратные тригонометрические функции (арксинус, арккосинус, арктангенс); тригонометрические уравнения.

16

2

Контрольная работа по теме: Решение тригонометрических уравнений

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

  3. работа по заполнению справочника.

  4. составление кроссворда по теме «Свойства числовых функций».

16

11

2

2

1


Раздел 3.

Начала математического анализа

87=60+27


Тема 3.1

Производная функции

Содержание учебного материала

19


1

Понятие о производной функции. Таблица производных элементарных функций. Производные тригонометрических функций (sin x, сos x, tg x, ctg x). Правила дифференцирования суммы, произведения и частного. Производная сложной функции.

18

2

Контрольная работа по теме: Производная функции

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

6

4

2


Тема 3.2

Применение производной



Содержание учебного материала

22


1

Геометрический и физический смысл производной.

5

2

2

Непрерывность функции. Исследование функции с помощью производной на монотонность, экстремумы. Построение графиков функций. Наибольшее и наименьшее значения функции на отрезке.


16

2

Контрольная работа по теме: Применение производной

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

  3. работа по заполнению справочника.

  4. написание мини-сочинения «Решение физических задач с помощью производной»

12

6

2

2

2


Тема 3.3

Первообразная функция

Содержание учебного материала

19


1

Первообразная функция. Основное свойство первообразной. Таблица первообразных элементарных функций. Задача о площади криволинейной трапеции.

18

2

Контрольная работа по теме: Первообразная функция. Применение первообразной

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

  3. работа по заполнению справочника.

  4. составление кроссворда по теме «Производная и первообразная».

9

4

2

1

2


Раздел 4.

Комбинаторика и теория вероятностей

28=20+8


Тема 4.1

Элементы комбинаторики

Содержание учебного материала

8


1

Основные понятия комбинаторики. Задачи на подсчет числа размещений, перестановок, сочетаний. Решение задач на перебор вариантов.

8

2

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

2

2


Тема 4.1

Элементы теории вероятностей

Содержание учебного материала

12


1

Событие, вероятность события, сложение и умножение вероятностей.

11

2

Контрольная работа по теме: Комбинаторика и теория вероятностей

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

  3. составление ребусов «Вероятность – что это?»

6

3

2

1


Раздел 5

Уравнения и неравенства

63=45+18


Тема 5.1

Показательная, логарифмическая и степенная функции


Содержание учебного материала

45


1

Корень степени n.

Степень с рациональным показателем. Правила действий со степенями.

6

2

2

Логарифм (десятичные и натуральные логарифмы). Правила действий с логарифмами.

3

2

3

Показательная и логарифмическая функции, их графики и свойства. Степенная функция. Производная показательной, логарифмической и степенной функций (без вывода).

13

2

4

Иррациональные, показательные, логарифмические уравнения.

Системы показательных и логарифмических уравнений.

Показательные и логарифмические неравенства.

19

2

Контрольные работы по темам:

  1. Показательная функция

  2. Логарифмическая функция

4

3

Самостоятельная работа обучающихся:

  1. работа по заполнению справочника;

  2. выполнение домашнего задания;

  3. подготовка к контрольной работе;

  4. написание мини-сочинения «Показательная функция в природе и технике».

18

2

12

2

2


Раздел 6.

Прямые и плоскости в пространстве

53=35+18


Тема 6.1 Параллельность прямых и плоскостей

Содержание учебного материала

16


1

Формирование понятия геометрии как науки, логическое строение курса геометрии; аксиомы стереометрии; изображение пространственных фигур на плоскости.(По разделу Пограммы основной школы )

4

1

2

Взаимное расположение прямых, прямых и плоскостей, плоскостей в пространстве; параллельность прямых, прямых и плоскостей, плоскостей в пространстве;

12

2

Контрольная работа по теме: Параллельность прямых и плоскостей в пространстве

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

  3. составление ребусов «Геометрия – что это?».

10

8

1

1


Тема 6.2 Перпендикулярность прямых и плоскостей

Содержание учебного материала

19


1

Перпендикулярность прямых, прямой и плоскости, плоскостей;

4

2

2

Перпендикуляр и наклонная; расстояние от точки до плоскости; расстояние между прямой и параллельной ей плоскостью; между скрещивающимися прямыми и параллельными плоскостями;

10

2

3

Углы между прямыми, прямой и плоскостью, плоскостями, двугранный угол.

4

2

Контрольная работа по теме: Перпендикулярность прямых и плоскостей в пространстве

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

  3. написание мини-сочинения «Что мы знаем о Пифагоре?».

8

5

1

2


Раздел 7

Многогранники

26 =17+9


Тема 7.1

Многогранники

Содержание учебного материала

17


1

Многогранники. Правильные многогранники. Изображения многогранников.

3

2

2

Призма (наклонная, прямая, правильная).

Параллелепипед (прямой, прямоугольный, куб).

5

2


3

Пирамида (правильная, усеченная).

8

2


4

Поверхность многогранника. Площадь полной и боковой поверхности.

7

2

Контрольная работа по теме: Многогранники

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

  3. изготовление моделей многогранников и их разверток;

  4. практическая работа на вычисление площади поверхности многогранников.

9

4

1

2

2


Раздел 8

Координаты и векторы в пространстве

24=16+8


Тема 8.1

Координаты и векторы в пространстве

Содержание учебного материала

16


1

Прямоугольная (декартова) система координат в пространстве. Формула расстояния между точками.

4

2

2

Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по направлениям. Угол между двумя векторами. Проекция вектора на ось. Координаты вектора. Скалярное произведение векторов.

11

2

Контрольная работа по теме: Координаты и векторы в пространстве

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

  3. написание мини-сочинения «Координаты и векторы в нашей жизни»

8

5

1

2


Раздел 9

Геометрические тела и их свойства

48=28+20


Тема 9.1

Тела вращения


Содержание учебного материала

14


1

Тела вращения. Сечения тел вращения

Прямой круговой цилиндр. Прямой круговой конус.

Шар и сфера. Касательная плоскость к сфере. Уравнения сферы, плоскости и прямой.

7

2

2

Поверхность тел вращения. Площадь полной и боковой поверхности цилиндра и конуса. Площадь сферы.

6

2

Контрольная работа по теме: Тела вращения

1

3

Самостоятельная работа обучающихся:

  1. выполнение домашнего задания;

  2. подготовка к контрольной работе;

  3. изготовление моделей тел вращения и их разверток;

  4. практическая работа на вычисление площади поверхности тел вращения.

9

4

1

2

2


Тема 9.2

Объёмы многогранников и тел вращения


Содержание учебного материала

14


1

Понятие объёма.

Формулы объёмов многогранников: прямоугольного параллелепипеда, призмы, пирамиды.

7

2

2

Формулы объёмов тел вращения: цилиндра, конуса, шара.

6

2

Контрольная работа по теме: Объем многогранников и тел вращения

1

3

Самостоятельная работа обучающихся:

  1. работа по заполнению справочника;

  2. выполнение домашнего задания;

  3. подготовка к контрольной работе;

  4. практическая работа на вычисление объема многогранников и тел вращения;

  5. написание сообщения «Многогранники и тела вращения вокруг нас».

11

1

4

2

2

2


Раздел 10

Обобщающее повторение

54=36+18


Тема 10.1

Обобщающее повторение


Содержание учебного материала

36


1

Начала математического анализа.

5

2

2

Преобразование алгебраических выражений.

6

2

3

Уравнения и неравенства.

9

2

4

Геометрия в пространстве.

14

2

5

Дифференцированный зачет.

2


Самостоятельная работа обучающихся:

подготовка к экзамену – решение экзаменационных заданий.

18

18


Всего:

480




3. условия реализации УЧЕБНОЙ дисциплины МАТЕМАТИКА

3.1. Требования к минимальному материально-техническому обеспечению

Реализация учебной дисциплины требует наличия учебного кабинета математики.


Оборудование учебного кабинета:

Комплект учебно-методической документации по предмету:

1. Рабочая программа учебной дисциплины

2. Календарно-тематические планы.

3. Контрольно-измерительные материалы.

Оборудование рабочих мест учебного кабинета:

1. Стол для преподавателя

2. Комплекты столов и стульев для студентов

3. Компьютерный стол

Наглядные пособия

  1. Комплект таблиц по алгебре и началам анализа для 10 и 11 классов

  2. Комплект таблиц по геометрии для 10 и 11 классов.

  3. Комплекты пространственных фигур.

Электронные средства

Программное обеспечение общего назначения:

текстовый редактор Microsoft Word,

менеджер презентаций Microsoft Power Point,

электронные таблицы Excel,

графический редактор Paint;





Дидактический раздаточный материал

Карточки – задания

  1. Повторение курса основной школы

  2. Тригонометрические функции числового аргумента.

  3. Решение тригонометрических уравнений.

  4. Производная и её применение.

  5. Первообразная и её применении.

  6. Решение иррациональных уравнений

  7. Понятие логарифма

  8. Свойства логарифмов

  9. Решение показательных уравнений и неравенств

  10. Решение логарифмических уравнений и неравенств

  11. Параллельность в пространстве

  12. Перпендикулярность в пространстве

  13. Многогранники

  14. Тела вращения

  15. Объемы многогранников и тел вращения

  16. Итоговое повторение

Карточки – информаторы

  1. Формулы сокращенного умножения

  2. Квадратные уравнения

  3. Соотношения между тригонометрическими ф-ми одного аргумента

  4. Формулы сложения и вычитания аргументов

  5. Преобразование суммы тригонометрических функций в произведение

  6. Соотношения между сторонами и углами в прямоугольном треугольнике

Комплекты тестовых заданий 1 – го уровня (2 варианта)

  1. Производная. Применение производной

  2. Перпендикулярность прямой и плоскости

  3. Перпендикулярность прямых, прямой и плоскости

  4. Перпендикулярность плоскостей

Комплекты разно-уровневых заданий для проведения срезовых

работ (2 варианта)

  1. Курс алгебры основной школы

  2. Дифференцированный зачёт по программе 1 курса

  3. Итоговый тест по программе 2-го курса

Технические средства обучения:

  1. Компьютер

  2. Мультимедийный проектор

  3. Интерактивная приставка

  4. Принтер

  5. Сканер

Комплект чертежных инструментов:

1. линейка метровая,

2. угольники (прямоугольный, равнобедренный),

3. транспортир,

4. циркуль.


3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, интернет-ресурсов, дополнительной литературы

Основные источники:

  1. Алгебра и начала математического анализа. Учебник для 10-11 кл. Колмогоров А.Н. и др.22-е изд. - М.: Просвещение, 2013

  2. Геометрия. Учебник для 10-11классов. Атанасян Л.С. и др. 19-е изд. - М.: Просвещение,2010.

  3. Учебник. Алгебра. 9 класс. Макарычев Ю. Н. и др. 8-е изд.- М.: Просвещение, 2001

  4. Учебник. Алгебра. 9 класс. Макарычев Ю. Н. и др. 21-е изд.- М.: Просвещение, 2014

Дополнительные источники:

  1. И.Ф.Шарыгин «Геометрия. 10-11 кл».:Учебник для общеовразоват. заведений. - М.:Дрофа, 2001.

  2. И.Ф.Шарыгин «Геометрия. 10 кл».:Методическое пособие к учебнику И.Ф.Шарыгина «Геометрия 10 – 11». - М.: Дрофа, 2002.

  3. Б.Г.Зив «Дидактические материалы по геометрии для 11 класса» М.: Просвещение, 2001.

  4. А.Ф.Кожарин «Алгебра и геометрия» Методика и практика преподавания. – Ростов – на - Дону: Феникс, 2002.

  5. А.Н.Земляков «Геометрия в 10 классе» Метод. рекомендации к учебнику А.В.Погорелова. М.: Просвещение, 2002.

  6. Т.Л.Афанасьева «Алгебра и начала анализа 11 кл.»: Поурочные планы к учебнику А.Н.Колмогорова и др. – Волгоград: Учитель, 2007.

  7. В.А.Колемаев «Теория вероятностей и математическая статистика»:Учебник. М.: ИНФРА-М, 2001.

  8. http://www.book.ru/

  9. http://uchebnik.epamp.ru/












4. Контроль и оценка результатов освоения УЧЕБНОЙ Дисциплины МАТЕМАТИКА

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.


Результаты обучения

(освоенные умения, усвоенные знания)

Формы и методы контроля и

оценки результатов обучения

Умения:

  • вычислять значение функции по заданному значению аргумента при различных способах задания функции;

  • определять основные свойства числовых функций, иллюстрировать их на графиках;

  • строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;

  • использовать понятие функции для описания и анализа зависимостей величин;

  • находить производные элементарных функций;

  • использовать производную для изучения свойств функций и построения графиков;

  • применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения;

  • вычислять в простейших случаях площади и объемы с использованием определенного интеграла;

  • находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах;

  • выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;

  • решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы;

  • использовать графический метод решения уравнений и неравенств;

  • изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными;

  • составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах.

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

  • для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

  • для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

  • для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Знания:

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

- вероятностный характер различных процессов окружающего мира.

Формируемые компетенции:

ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.


ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.


ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.


ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.


ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.

ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.


ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

Предварительный контроль

Тестовые задания для проведения срезовых работ по теме:

Курс алгебры и геометрии основной школы.

Текущий контроль

1. Фронтальный устный опрос по отработке новых понятий.

2. Индивидуальный устный опрос.

3. Индивидуальный письменный тестовый опрос:

3.1 Тестовые задания 1 – го уровня по всем темам учебного плана на 2 варианта - 25 комплектов.

3.2 Тестовые задания 2 – го уровня (на 2 варианта) по темам:

Простейшие тригонометрические уравнения;

Решение тригонометрических уравнений;

Решение иррациональных уравнений.

3.3 Разно-уровневые тестовые задания для проведения срезовых работ по темам:

Числовая функция и ее свойства; Тригонометрические функции; Тригонометрические уравнения;

Применение производной;

Понятие степени;

Показательная функция; Логарифмическая функция; Многогранники и тела вращения;

4. Самостоятельные письменные работы.

4.1 По выполнению домашнего задания;

4.2 Математические диктанты по темам:

Понятие функции;

Понятие тригонометрических функций;

Призма;

Цилиндр и конус;

Логическое строение курса геометрии;

Параллельность прямых и плоскостей.

На 2 варианта.

5. Самостоятельные письменные индивидуальные работы по карточкам – заданиям (по всем темам)

Рубежный контроль

1. Задания для комплексного контроля усвоения тем:

Перпендикулярность прямых и плоскостей; (8 вариантов);

Многогранники (8 вариантов).

2. Контрольные работы по темам:

1. Числовая функция

2. Тригонометрические выражения

  1. Тригонометрические функции

  2. Параллельность прямых и плоскостей

  3. Перпендикулярность прямых и плоскостей

  4. Координаты и векторы в пространстве

  5. Комбинаторика и теория вероятностей

  6. Производная функции

  7. Применение производной

  8. Первообразная и ее применение

  9. Многогранники

  10. Тела вращения

  11. Объем многогранников и тел вращения

  12. Показательная функция

  13. Логарифмическая функция

Итоговый контроль

1. Дифференцированный зачет

по программе 1-го курса;

2. Аттестационная работа (экзамен).




1. Решение задач с профессиональной направленностью по темам: Площадь поверхности многогранников и тел вращения; Объем многогранников и тел вращения.

2. Выполнение творческих работ по теме «Математика в моей профессии»: написание мини-сочинений, составление кроссвордов, разработка электронных презентаций.


1. Составление алгоритмов для выполнения алгебраических заданий определенного вида.

2. Выполнение заданий, используя готовые алгоритмы, по темам: Решение тригонометрических, иррациональных, показательных, логарифмических уравнений и неравенств; Нахождение площади криволинейной трапеции; Применение производной функции.

3. Решение задач на оптимизацию.


1. Оформление учебного материала в разных вариантах по темам: Параллелепипед. Пирамида. Конус. Усеченный конус. Шар и сфера.

Первообразная функция. Применение первообразной.


2. Решение математической задачи разными способами, выбор наиболее рационального и эффективного варианта решения.


1. Написание мини-сочинений, сообщений, используя различные источники информации: учебник, справочные материалы, сеть Интернет.

Темы: Что я знаю о синусе (косинусе, тангенсе)?; Показательная функция в природе и технике; Многогранники и тела вращения вокруг нас; Что мы знаем о Пифагоре?; Координаты и векторы в нашей жизни; Решение физических задач с помощью производной


1. Письменный комплексный опрос по темам: Многогранники, Перпендикулярность прямых и плоскостей.

Работа выполняется в мини-группе (или паре).


1. Составление плана решения математического упражнения или задачи по темам учебной программы.

Результаты обучения

(освоенные умения, усвоенные знания)

Формы и методы контроля и

оценки результатов обучения

Умения:

  • вычислять значение функции по заданному значению аргумента при различных способах задания функции;

  • определять основные свойства числовых функций, иллюстрировать их на графиках;

  • строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;

  • использовать понятие функции для описания и анализа зависимостей величин;

  • находить производные элементарных функций;

  • использовать производную для изучения свойств функций и построения графиков;

  • применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения;

  • вычислять в простейших случаях площади и объемы с использованием определенного интеграла;

  • находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах;

  • выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;

  • решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы;

  • использовать графический метод решения уравнений и неравенств;

  • изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными;

  • составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах.

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

  • для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

  • для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

  • для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Знания:

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

- вероятностный характер различных процессов окружающего мира.






























Предварительный контроль

Тестовые задания для проведения срезовых работ по теме:

Курс алгебры и геометрии основной школы.

Текущий контроль

1. Фронтальный устный опрос по отработке новых понятий.

2. Индивидуальный устный опрос.

3. Индивидуальный письменный тестовый опрос:

3.1 Тестовые задания 1 – го уровня по всем темам учебного плана на 2 варианта.

3.2 Тестовые задания 2 – го уровня (на 2 варианта) по темам:

Простейшие тригонометрические уравнения;

Решение тригонометрических уравнений;

Решение иррациональных уравнений.

3.3 Разно-уровневые тестовые задания для проведения срезовых работ по темам:

Числовая функция и ее свойства; Тригонометрические функции; Тригонометрические уравнения;

Применение производной;

Понятие степени;

Показательная функция; Логарифмическая функция; Многогранники и тела вращения;

4. Самостоятельные письменные работы.

4.1 По выполнению домашнего задания;

4.2 Математические диктанты по темам:

Понятие функции;

Понятие тригонометрических функций;

Призма;

Цилиндр и конус;

Логическое строение курса геометрии;

Параллельность прямых и плоскостей в пространстве (на 2 варианта).

5. Самостоятельные письменные индивидуальные работы по карточкам – заданиям (по всем темам)

Рубежный контроль

1. Задания для комплексного контроля усвоения тем:

Перпендикулярность прямых и плоскостей; (2 варианта);

Многогранники (2 варианта).

2. Контрольные работы по темам:

1. Числовая функция

2. Тригонометрические выражения

  1. Тригонометрические функции

  2. Параллельность прямых и плоскостей

  3. Перпендикулярность прямых и плоскостей

  4. Координаты и векторы в пространстве

  5. Комбинаторика и теория вероятностей

  6. Производная функции

  7. Применение производной

  8. Первообразная и ее применение

  9. Многогранники

  10. Тела вращения

  11. Объем многогранников и тел вращения

  12. Показательная функция

  13. Логарифмическая функция

Итоговый контроль

1.Дифференцированный зачет

по программе 1-го курса;

2. Аттестационная работа (экзамен).

1. Решение задач с профессиональной направленностью по темам: Площадь поверхности многогранников и тел вращения; Объем многогранников и тел вращения.

2. Выполнение творческих работ по теме «Математика в моей профессии»: написание мини-сочинений, составление кроссвордов, разработка электронных презентаций.


1. Составление алгоритмов для выполнения алгебраических заданий определенного вида.

2. Выполнение заданий, используя готовые алгоритмы, по темам: Решение тригонометрических, иррациональных, показательных, логарифмических уравнений и неравенств; Нахождение площади криволинейной трапеции; Применение производной функции.

3. Решение задач на оптимизацию.


1. Оформление учебного материала в разных вариантах по темам: Параллелепипед. Пирамида. Конус. Усеченный конус. Шар и сфера.

Первообразная функция. Применение первообразной.


2. Решение математической задачи разными способами, выбор наиболее рационального и эффективного варианта решения.


1. Написание мини-сочинений, сообщений, используя различные источники информации: учебник, справочные материалы, сеть Интернет.

Темы: Что я знаю о синусе (косинусе, тангенсе)?; Показательная функция в природе и технике; Многогранники и тела вращения вокруг нас; Что мы знаем о Пифагоре?; Координаты и векторы в нашей жизни; Решение физических задач с помощью производной


1. Письменный комплексный опрос по темам: Многогранники, Перпендикулярность прямых и плоскостей.

Работа выполняется в мини-группе (или паре).


1. Составление плана решения математического упражнения или задачи по темам учебной программы.

Результаты обучения

(освоенные умения, усвоенные знания)

Формы и методы контроля и

оценки результатов обучения

Умения:

  • вычислять значение функции по заданному значению аргумента при различных способах задания функции;

  • определять основные свойства числовых функций, иллюстрировать их на графиках;

  • строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;

  • использовать понятие функции для описания и анализа зависимостей величин;

  • находить производные элементарных функций;

  • использовать производную для изучения свойств функций и построения графиков;

  • применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения;

  • вычислять в простейших случаях площади и объемы с использованием определенного интеграла;

  • находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах;

  • выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;

  • решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы;

  • использовать графический метод решения уравнений и неравенств;

  • изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными;

  • составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах.

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

  • для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

  • для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

  • для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Знания:

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

- вероятностный характер различных процессов окружающего мира.






























Предварительный контроль

Тестовые задания для проведения срезовых работ по теме:

Курс алгебры и геометрии основной школы.

Текущий контроль

1. Фронтальный устный опрос по отработке новых понятий.

2. Индивидуальный устный опрос.

3. Индивидуальный письменный тестовый опрос:

3.1 Тестовые задания 1 – го уровня по всем темам учебного плана на 2 варианта.

3.2 Тестовые задания 2 – го уровня (на 2 варианта) по темам:

Простейшие тригонометрические уравнения;

Решение тригонометрических уравнений;

Решение иррациональных уравнений.

3.3 Разно-уровневые тестовые задания для проведения срезовых работ по темам:

Числовая функция и ее свойства; Тригонометрические функции; Тригонометрические уравнения;

Применение производной;

Понятие степени;

Показательная функция; Логарифмическая функция; Многогранники и тела вращения;

4. Самостоятельные письменные работы.

4.1 По выполнению домашнего задания;

4.2 Математические диктанты по темам:

Понятие функции;

Понятие тригонометрических функций;

Призма;

Цилиндр и конус;

Логическое строение курса геометрии;

Параллельность прямых и плоскостей в пространстве (на 2 варианта).

5. Самостоятельные письменные индивидуальные работы по карточкам – заданиям (по всем темам)

Рубежный контроль

1. Задания для комплексного контроля усвоения тем:

Перпендикулярность прямых и плоскостей; (2 варианта);

Многогранники (2 варианта).

2. Контрольные работы по темам:

1. Числовая функция

2. Тригонометрические выражения

  1. Тригонометрические функции

  2. Параллельность прямых и плоскостей

  3. Перпендикулярность прямых и плоскостей

  4. Координаты и векторы в пространстве

  5. Комбинаторика и теория вероятностей

  6. Производная функции

  7. Применение производной

  8. Первообразная и ее применение

  9. Многогранники

  10. Тела вращения

  11. Объем многогранников и тел вращения

  12. Показательная функция

  13. Логарифмическая функция

Итоговый контроль

1.Дифференцированный зачет

по программе 1-го курса;

2. Аттестационная работа (экзамен).

1. Решение задач с профессиональной направленностью по темам: Площадь поверхности многогранников и тел вращения; Объем многогранников и тел вращения.

2. Выполнение творческих работ по теме «Математика в моей профессии»: написание мини-сочинений, составление кроссвордов, разработка электронных презентаций.


1. Составление алгоритмов для выполнения алгебраических заданий определенного вида.

2. Выполнение заданий, используя готовые алгоритмы, по темам: Решение тригонометрических, иррациональных, показательных, логарифмических уравнений и неравенств; Нахождение площади криволинейной трапеции; Применение производной функции.

3. Решение задач на оптимизацию.


1. Оформление учебного материала в разных вариантах по темам: Параллелепипед. Пирамида. Конус. Усеченный конус. Шар и сфера.

Первообразная функция. Применение первообразной.


2. Решение математической задачи разными способами, выбор наиболее рационального и эффективного варианта решения.


1. Написание мини-сочинений, сообщений, используя различные источники информации: учебник, справочные материалы, сеть Интернет.

Темы: Что я знаю о синусе (косинусе, тангенсе)?; Показательная функция в природе и технике; Многогранники и тела вращения вокруг нас; Что мы знаем о Пифагоре?; Координаты и векторы в нашей жизни; Решение физических задач с помощью производной


1. Письменный комплексный опрос по темам: Многогранники, Перпендикулярность прямых и плоскостей.

Работа выполняется в мини-группе (или паре).


1. Составление плана решения математического упражнения или задачи по темам учебной программы.


57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Краткое описание документа:

Рабочая программа учебной дисциплины является частью примерной основной профессиональной образовательной программы в соответствии с ФГОС по профессии 15.01.25 ( 151902.03) Станочник ( металлообработка).

Рабочая программа учебной дисциплины может быть использована для изучения математики в учреждениях среднего профессионального образования, реализующих образовательную программу среднего (полного) общего образования, при подготовке квалифицированных рабочих и служащих.

Автор
Дата добавления 28.05.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров262
Номер материала 293953
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх