Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 10-11

Рабочая программа по математике 10-11

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Пояснительная записка


Рабочая программа по математике 10-11 классов (базовый уровень) составлена на основе Примерной программы среднего (полного) общего образования по математике (базовый уровень), рекомендованной МО РФ, 2007 г.



Цели учебного предмета для каждой ступени обучения.

Цели обучения математике в общеобразовательной школе определяются её ролью в развитии общества в целом и формировании личности каждого отдельного человека.

Исторически сложились две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определённым методом познания и преобразования мира математическим методом.

Структура целей изучения математики включает освоение знаний, овладение умениями, воспитание, развитие и практическое применение приобретенных знаний и умений. Все представленные цели равноценны.

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:


  • формирование представлений о математике, как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.


При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», «Начала математического анализа».


Данная рабочая программа может быть реализована при использовании традиционной технологии обучения, а также элементов других современных образовательных технологий, передовых форм и методов обучения: развивающее обучение, проблемный метод, тестовый контроль знаний и др.


Организация учебного процесса: классно-урочная

  • Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе среднего (полного) общего образования отводится не менее 280 часов из расчета 4 часа в неделю. При этом предполагается построение курса в форме последовательности тематических блоков с чередованием материала по алгебре, анализу, дискретной математике, геометрии. Но согласно Региональному базисному учебному плану для общеобразовательных учреждений Ленинградской области начального общего, основного общего и среднего (полного) образования математика на старшей ступени образования представлена двумя предметами: алгеброй и началами анализа и геометрией из расчета 2 часа в неделю по алгебре и 2 часа в неделю по геометрии (всего за 10 и 11 классы 136 часа по алгебре и 136 часов по геометрии).




Содержание учебного предмета (основные блоки, модули)


АЛГЕБРА

Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений. Простейшие тригонометрические уравнения и неравенства. Арксинус, арккосинус, арктангенс числа.

Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем1. Свойства степени с действительным показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.

Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.

Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.

Простейшие тригонометрические уравнения. Решения тригонометрических уравнений. Простейшие тригонометрические неравенства.

Арксинус, арккосинус, арктангенс числа.






ФУНКЦИИ

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики; периодичность, основной период.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой у= х, растяжение и сжатие вдоль осей координат.


Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Степенная функция с натуральным показателем, ее свойства и график.

Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики; периодичность, основной период.

Показательная функция (экспонента), ее свойства и график.

Логарифмическая функция, ее свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y = x, растяжение и сжатие вдоль осей координат.



УРАВНЕНИЯ И НЕРАВЕНСТВА

Решение тригонометрических уравнений.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений . Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений.




НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Вторая производная и ее физический смысл.








ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

Табличное и графическое представление данных. Числовые характеристики рядов данных.

Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов



ГЕОМЕТРИЯ

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.

Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Площади поверхностей тел.

Координаты и векторы. Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

. Угол между векторами. Координаты вектора. Скалярное произведение векторов. м.


Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.



Требования к уровню подготовки


В результате изучения математики на базовом уровне ученик должен

знать/понимать2

  • значение математической науки для решения задач, возникающих в теории и в практике; широту и, в то же время, ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира.

АЛГЕБРА

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • практических расчетов по формулам, включая формулы, содержащие тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.

ФУНКЦИИ И ГРАФИКИ

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • решать уравнения, простейшие системы уравнений, используя свойства функций их графики.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА


  • вычислять производные элементарных функций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и

простейших рациональных функций с использованием аппарата математического анализа;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • решения прикладных, в том числе социально-экономических и физических, задач на наибольшие и наименьшие значения, на нахождение скорости и ускорения;



УРАВНЕНИЯ И НЕРАВЕНСТВА

уметь

  • решать рациональные и простейшие тригонометрические уравнения, их системы;

  • составлять уравнения и неравенства по условию задачи;

  • использовать для приближенного решения уравнений и неравенств графический метод;

  • изображать на координатной плоскости множества решений простейших уравнений и их систем.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • построения и исследования простейших математических моделей.





ГЕОМЕТРИЯ

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.





10 класс:

  • Количество учебных часов, на которое рассчитана программа:

по алгебре 68 часов(2 часа в неделю)

в том числе:

на контрольные работы – 6 часов

на административные работы – 3 часа

по геометрии 68 часов (2 часа в неделю)

в том числе:

на контрольные работы – 4 часа

11 класс

  • Количество учебных часов, на которое рассчитана программа –

68 часов (2 часа в неделю) по алгебре и началам анализа

в том числе:

на контрольные работы – 5

на административные работы – 2

68 часов (2 часа в неделю) по геометрии:

в том числе

на контрольные работы – 3 часа

итоговая-1 час








Тематическое планирование по алгебре в 10 классе


Наименование темы

Количество часов по теме

Виды деятельности

Самостоятельные

работы

Тестовые

работы

Контрольные

работы

Действительные числа

9

2

1

1

Степенная функция

9

2

1

1

Показательная функция

10

2

1

1

Логарифмическая функция

14

2

2

1

Тригонометрические

формулы

15

3

2

1

Тригонометрические

уравнения

11

2

2

1

Итого

68

13

9

6






























Тематическое планирование по геометрии в 10 классе




Наименование темы

Количество часов

Виды деятельности

Самостоятельная

работа

Тестовая работа

Контрольная работа

Введение

в стереометрию

7

2

1


Параллельность прямых

и плоскостей

17

3

3

1

Перпендикуляр-

ность

в пространстве

19

5

3

1

Многогранники

14

3

3

1

Повторение

11

3

1

1

Итого

68

16

11

4


Тематическое планирование по алгебре и началам анализа в 11 классе


Наименование темы

Количест

во

часов

Виды деятельности

Самостоятельная

работа

Тестовая работа

Контрольная

работа

Повторение курса алгебры 10 класс


4


1

1

Тригонометрические функции

8

3

1

1

Производная и ее геометрический смысл

16

5

4

1

Применение производной

к исследованию функции

17

4

3

1

Интеграл

10

3

1

1

Элементы комбинаторики

11

2

1

2

Резерв

2




Итого

68

19

11

7




Тематическое планирование по геометрии в 11 классе


Наименование темы

Количество часов

Виды деятельности

Самостоятельная работа

Тестовая работа

Контрольная работа

Векторы в пространстве

6

2



Метод координат в пространстве

15

3


1

Цилиндр. Конус. Шар.

16

3

2

1

Объемы

17

4

2

1

Повторение

12

2


1

Резерв

2




Итого

68

14

4

4




Общеучебные умения, навыки и способы деятельности.


В ходе преподавания математики в основной общей и средней (полной) школе, следует обращать внимание на то, чтобы учащиеся овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии







Система оценки достижений учащихся. Инструментарий для оценивания результатов


Вопрос оценки качества знаний сейчас, как никогда, остро стоит перед всем учительством. ЕГЭ как вид независимого контроля прочно укрепился в Российском образовании. Основной тенденцией последнего десятилетия является введение стандартов, связанных с системой оценки, как ожидаемых, планируемых образовательных достижений или результатов обучения. Причем стандарты достижения рассматриваются как обязательный минимальный уровень достижений. Стандарт это "степень или уровень требований, уровень совершенства или уровень достижений".

Для оценивания результатов достижений учащихся использую тестовую технологию, контрольную работу, самостоятельную и практическую работы, различного рода письменные работы.

И так, проверка знаний – это процесс, в ходе которого устанавливается факт наличия или отсутствия знаний и умений и уровень их овладения. Проверка выполняет три основные функции: контролирующую, обучающую и воспитывающую. В технологии «Развитие критического мышления через чтение и письмо» да и в других тоже, проверка способствует выработке критического отношения к своей работе, помогает правильно оценивать свои силы, воспитывает силу воли, ответственность, трудолюбие и др., умение организовывать своё время.

Результатом проверки знаний является оценка.


Оценка устных ответов обучающихся по математике


Ответ оценивается оценкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается оценкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Оценка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Оценка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Оценка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и негрубые) и недочёты.


Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.

К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.

Оценка письменных контрольных работ обучающихся по математике.


Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но учащийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что учащийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им каких-либо других заданий.


Учебно-методический комплект по алгебре и началам анализа.



1. Настольная книга учителя математики. М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004;

2.Методические рекомендации к учебникам математики для 10-11 классов, журнал «Математика в школе» №7-2001год;

3.Алгебра и начала анализа: Учеб. для 10–11 кл. общеобразоват. учреждений /Ш.А.Алимова и др.; Под. ред. А.Н.Тихонова. – М.: Просвещение, 2003.

4.Методические рекомендации к учебникам математики для 10-11 классов, приложение «Математика» №16-2006год к газете «Первое сентября»;

6.Алгебра и начала анализа: Учеб. для 10 кл. общеобразоват. учреждений /С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. – М.: Просвещение, 2003.

7.Алгебра и начала анализа: Учеб. для 11 кл. общеобразоват. учреждений /С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. – М.: Просвещение, 2003.



8. «Изучение алгебры и начал анализа в 10-11 классах» Н.Е.Федорова, М.Просвещение,2004г.

9. «Система тренировочных задач и упражнений по математике» А.Я.Симонов М.Просвещение,1991г.

10. «Алгебра и начала анализа. Самостоятельные и контрольные работы. 10-11 классы» А.П.Ершова и др.,М. Илекса. 2005г.


«Задачи по алгебре и началам анализа» С.М.Саакян и др.,М. Просвещнние, 2003г


Учебно-методический комплект по геометрии



Л.С. Атанасян. Геометрия 10 – 11 кл. средней школы. – М.: Просвещение,2007.

Б.Г. Зив. Дидактические материалы по геометрии для 11класса. – М.: Просвещение, 2006.

Саакян С.М., Бутузов В.Ф. Изучение геометрии в 10-11 классах. Мето-

дические рекомендации к учебнику. Книга для учителя. - М.: Просвещение, 2001.


Дополнительная литература:


1.Звавич Л.И., Рязановский А.Р. Геометрия в таблицах. 7-11 кл. ч-

Справочное пособие. - М.: Дрофа, 2002.

2.Г.И.Ковалева. Геометрия. 11 класс: поурочные планы по учебнику Л.С. Атанасяна. – Волгоград: Учитель, 2006

3.Саакян С.М. Изучение геометрии в 10 – 11 классах: Методические рекомендации к учебнику. Книга для учителя. – М. Просвещение, 2003.

4.Ю.П. Дудницын, В.Л. Кронгауз. Контрольные работы по геометрии: 11 класс: к учебнику Л.С. Атанасяна «Геометрия, 10-11» - М.: Экзамен, 2007.

5.Е.М.Рабинович. Задачи и упражнения на готовых чертежах. 10-11 классы. Геометрия. М.: ИЛЕКСА, 2008.

6.Яровенко В.А. Поурочные разработки по геометрии: 10 класс -

мощь школьному учителю). – М.: ВАКО, 2007.


Печатные пособия.

1. Демонстрационный материал в соответствии с основными темами программы.

2.Карточки с заданиями по математике.

3.Варианты КИМов по ЕГЭ.

4.Дидактические материалы.


Учебно- практическое и учебно-лабораторное оборудование

1.Комплект чертежных инструментов.

2.Комплект стереометрических тел.

3. Комплект планиметрических фигур.


Перечень таблиц


Наименование

1

Аксиомы стереометрии и некоторые следствия из них

2

Параллельность в пространстве

3

Перпендикулярность в пространстве

4

Сечение параллелепипедов плоскостью

5

Сечение тетраэдра

6

Цилиндр и конус

7

Вписанные (описанные) многогранники

8

Векторы в пространстве

9

Метод координат в пространстве

10

Латинский алфавит

11

Квадраты натуральных чисел

12

Простые числа

13

Формулы сокращённого умножения

14

Условные обозначения в алгебре

15

Условные обозначения в геометрии

16

Формулы площадей и объёмов фигур

17

Формулы площадей фигур (планиметрия)

18

Формулы тригонометрии

19

Перпендикулярные прямые

20

Смежные углы

21

Углы, вписанные в окружность

22

Углы, вписанные в окружность (плакат 2)

23

Признаки равенства треугольников

25

Прямоугольный треугольник

25

Равнобедренный треугольник

26

Высота, медиана, биссектриса треугольника

27

Сумма углов треугольника

28

Построение треугольников

29

Решение треугольников

30

Площадь круга

31

Параллелограмм и его свойства

32

Средняя линия треугольника

33

Признаки равенства прямоугольных треугольников

34

Свойство медианы равнобедренного треугольника

35

Окружность и круг


1.

2 Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются и знания, необходимые для применения перечисленных ниже умений.

Общая информация

Номер материала: ДВ-133042

Похожие материалы