Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Рабочие программы / Рабочая программа по математике
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Начальные классы

Рабочая программа по математике

библиотека
материалов

Пояснительная записка


Программа по математике разработана в соответствии с требованиями федерального государственного образовательного стандарта начального общего образования (2009г.) к результатам освоения младшими школьниками основ начального курса математики.

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта, примерной программы начального общего образования по математике и авторской программы «Начальная школа XXI века» В. Н. Рудницкой М.: Вентана- Граф, 2011.

Изучение предмета осуществляется по программе УМК «Начальная школа 21 века» под редакцией В,Н,Рудницкой. Учебно-методический комплект допущен Министерством образования РФ и соответствует федеральному компоненту государственных образовательных стандартов начального общего образования.

Учебно-методический комплект:

  1. Математика: 1 класс (в двух частях): учебник для общеобразов. учреждений / В.Н. Рудницкая, Е.Э. Кочурова, О.А.Рыдзе. (1 ч.), В.Н.Рудницкая ( 2 ч.). – М.: Вентана- Граф, 2011.

  2. Математика: 2 класс (в двух частях): учебник для общеобразов. учреждений / В.Н. Рудницкая, Т.В.Юдачева. – М.: Вентана- Граф, 2011.

  3. Математика: 3 класс (в двух частях): учебник для общеобразов. учреждений / В.Н. Рудницкая, Т.В.Юдачева. – М.: Вентана- Граф.

  4. Математика: 4 класс (в двух частях): учебник для общеобразов. учреждений / В.Н. Рудницкая, Т.В.Юдачева. – М.: Вентана- Граф.

  5. Рабочая тетрадь «Математика» 1 класс (№!, №2, №3)/ Е.Э.Кочурова (№1, №2), В.Н. Рудницкая (№3). - М.: Вентана- Граф 2011.

  6. Рабочая тетрадь «Математика» 2 класс (№1, №2)/ В.Н.Рудницкая, Т.В.Юдачева. - М.: Вентана- Граф 2011.

  7. Рабочая тетрадь «Математика» 3 класс (№1, №2)/ В.Н.Рудницкая, Т.В.Юдачева. - М.: Вентана- Граф.

  8. Рабочая тетрадь «Математика» 4 класс (№1, №2)/ В.Н.Рудницкая, Т.В.Юдачева. - М.: Вентана- Граф.

  9. Математика: 1 класс: дидактические материалы (в двух частях) / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф, 2011.

  10. Математика: 2 класс: дидактические материалы (в двух частях) / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф, 2011.

  11. Математика: 3 класс: дидактические материалы (в двух частях) / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф.

  12. Математика: 4 класс: дидактические материалы (в двух частях) / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф.

  13. Математика: 1 класс: методика обучения / В,Н.Рудницкая, Е.Э.Кочурова, О.А.Рыдзе. – М.: Вентана-Граф. 2011.

  14. Математика: 2 класс: методика обучения / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф, 2011.

  15. Математика: 3 класс: методика обучения / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф.

  16. Математика: 4 класс: методика обучения / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф.

  17. Проверочные и контрольные работы. - М.: Вентана- Граф, 2010.-368 с. - (Оценка знаний) Математика как самостоятельный предмет изучается с первого полугодия первого класса.

Программа рассчитана на 540 часов в 1-4 классах: на 132 часа в 1 классе (4 часа в неделю) 33 рабочих недели, первое полугодие: 64 часа, второе полугодие: 68 часов, 136 часов во 2 классе, 136 часов в 3 классе, 136 часов в 4 классе.

Рабочая программа реализует следующие цели обучения:

  • создание благоприятный условий для полноценного интеллектуального развития каждого ребёнка, соответствующих его возрастным особенностям и возможностям;

  • формирование мыслительных процессов, логического мышления, пространственных отношений, творческой деятельности;

  • овладение математическими знаниями и умениями;

  • воспитание интереса к математике, стремления использовать математические знания в повседневной жизни и для решения новых конкретных учебных задач;

  • производить контроль и самоконтроль, уценку и самооценку.

Цели и задачи обучения математике. Обучение математике в начальной школе направлено на достижение следующих целей:

обеспечение интеллектуального развития младших школьников: формирование основ логико-математического мышления, пространственного воображения, овладение учащимися математической речью для описания математических объектов и процессов окружающего мира в количественном и пространственном отношениях, для обоснования получаемых результатов решения учебных задач;

предоставление младшим школьникам основ начальных математических знаний и формирование соответствующих умений: решать учебные и практические задачи; вести поиск информации (фактов, сходств, различий, закономерностей, оснований для упорядочивания и классификации математических объектов); измерять наиболее распространенные в практике величины; применять алгоритмы арифметических действий для вычислений; узнавать в окружающих предметах знакомые геометрические фигуры, выполнять несложные геометрические построения;

реализация воспитательного аспекта обучения: воспитание потребности узнавать новое, расширять свои знания, проявлять интерес к занятиям математикой, стремиться использовать математические знания и умения при изучении других школьных предметов и в повседневной жизни, приобрести привычку доводить начатую работу до конца, получать удовлетворение от правильно и хорошо выполненной работы, уметь обнаруживать и оценивать красоту и изящество математических методов, решений, образов.

Таблица тематического распределения количества часов:

п/п

Разделы, темы

Количество часов

Примерная программа

Рабочая программа

Раб. программа по классам

1 кл.

2 кл.

3 кл.

4 кл.

1.

Множества предметов. Отношения между предметами и между множествами предметов.


5

5




2.

Число и счет.


43

21

7

6

9

3.

Арифметические действия и их свойства.


270

56

75

84

55

4.

Величины.


51

6

8

24

13

5.

Работа с текстовыми задачами.


67

25

10

10

22

6.

Геометрические понятия.


70

10

36

6

18

7.

Логико-математическая подготовка.


20



6

14

8.

Работа с информацией.


14

9



5


Итого


540

132

136

136

136

Важнейшими задачами обучения являются создание благоприятных условий для полноценного математического развития каждого ученика на уровне, соответствующем его возрастным особенностям и возможностям, и обеспечение необходимой и достаточной математической подготовки для дальнейшего успешного обучения в основной школе.

Рабочая программа реализует следующие цели обучения:

  • создание благоприятный условий для полноценного интеллектуального развития каждого ребёнка, соответствующих его возрастным особенностям и возможностям;

  • формирование мыслительных процессов, логического мышления, пространственных отношений, творческой деятельности;

  • овладение математическими знаниями и умениями;

  • воспитание интереса к математике, стремления использовать математические знания в повседневной жизни и для решения новых конкретных учебных задач;

  • производить контроль и самоконтроль, уценку и самооценку.

Рабочая учебная программа имеет некоторые особенности в содержании и структуре предмета.

Формирование первоначальных представлений о натуральном числе:

  • учащиеся знакомятся с название чисел первых двух десятков, учатся называть их в прямом и обратном порядке;

  • используя изученную последовательность слов учатся пересчитывать предметы;

  • учатся выражать результат пересчитывания числом и записывать цифрой.

Новизна данной программы заключается в методах и приёмах используемых при изучении тем:

Работа с задачей:

  • арифметическая задача, как списание практической жизненной ситуации;

  • решение описывается словами;

  • решение задачи с помощью модели (фишек).

Таблица сложения и вычитания изучается в три этапа:

  • на первом рассматриваются случаи прибавления и вычитания 1,2,3 и 4, когда результат действий не превышает 10, при этом вводится основной приём вычислений (вычитание) числа по частям; одновременно внимание обращается на состав чисел 2,3 и 4;

  • на втором выход за пределы десятка: рассматривается прибавление любого однозначного числа к 10 и прибавление к любому однозначному числу каждого из чисел 2,3 и 4, параллельно рассматриваются табличные случаи вычитания 2,3 и 4;

  • на третьем показывается связь между вычитанием и сложением: таблица сложения изучается до конца (прибавление 5,6,7,8 и 9), после сложения рассматриваются соответствующие случаи вычитания;

  • обучение действию классификации по заданным основаниям и проверка правильности по заданным основаниям и проверка правильности выполнения задания;

  • знакомство не только с плоскими, но и пространственными фигурами;

  • вычисления с помощью микрокалькулятора.

Сравнение чисел:

Изображение результатов сравнения в виде графов с цветными стрелками; графы отношений «больше», «меньше», «равно» на множестве целых неотрицательных чисел.

Осевая симметрия:

Большую роль в развитии пространственных представлений играет включение в программу понятия об осевой симметрии. Дети учатся находить(строить):

  • отображение фигур в зеркале;

  • ось симметрии;

  • пары симметричных точек, отрезков, многоугольников;

  • практические приемы построения фигуры, симметричной данной;

  • фигуры, имеющие одну или несколько осей симметрии.

В программе заложена основа для овладения школьниками определенным объемом математических знаний и умений по пяти направлениям:

  • элементы арифметики;

  • величины и их измерения;

  • логико - математические понятия;

  • элементы алгебры;

  • элементы геометрии.

Овладев общими способами действия, ученик применяет полученные при этом знания и умения для решения новых конкретных учебных задач. В связи с этим в основу отбора содержания обучения положены следующие наиболее важные методические принципы:

  • анализ конкретного учебного материала с точки зрения его общеобразовательной ценности и необходимости изучения в начальной школе;

  • возможность широкого применения изучаемого материала на практике;

  • взаимосвязь вводимого материала с ранее изученным;

  • обеспечение преемственности с дошкольной математической подготовкой и содержанием следующей ступени обучения в средней школе;

  • обогащение математического опыта младших школьников за счёт включения в курс новых вопросов, ранее не изучавшихся в начальной школе;

  • развитие интереса к занятиям математикой

Изучение величин распределено по темам программы таким образом, что формирование соответствующих умений производится в течение продолжительных интервалов времени.

С первой из величин ( длинной ) дети начинают знакомиться в 1 классе: они получают первые представления о длинах предметов и о практических способах сравнения длин; вводятся единицы длины – сантиметр и дециметр. Длина предмета измеряется с помощью шкалы обычной ученической линейки. Одновременно дети учатся чертить отрезки заданной длины (в сантиметрах, в дециметрах, в дециметрах и сантиметрах). Во втором классе вводится метр, а в третьем – километр и миллиметр и рассматриваются важнейшие соотношения между изученными единицами длины.

Понятие площади фигуры – более сложное. Подготовительная работа идёт во втором классе. Идея подхода заключается в том, чтобы научить учащихся, используя практические приёмы, находить площадь фигуры, пересчитывая клетки, на которые она разбита. Эта работа довольно естественно увязывается с изучением таблицы умножения. Получается двойной выигрыш: дети приобретают необходимый опыт нахождения площади фигуры (в том числе прямоугольника) и в то же время за счёт дополнительной тренировки

(пересчитывание клеток) быстрее запоминают таблицу умножения.

Этот (первый) этап довольно продолжителен. После того как дети приобретут достаточный опыт, начинается второй этап, на котором вводятся единицы площади: квадратный сантиметр, квадратный дециметр и квадратный метр. На третьем этапе во втором классе правило нахождения площади прямоугольника. Такая методика позволяет

добиться хороших результатов: с полным пониманием сути вопроса учащиеся осваивают понятие «площадь», не смешивая его с понятием «периметр».

Программой предполагается некоторое расширение представлений младших школьников об измерении величин: в программу введено понятие о точном и приближённом значения величины. Суть вопроса состоит в том, чтобы учащиеся понимали, что при измерениях с помощью различных бытовых приборов и инструментов всегда получается приближённый результат; поэтому измерить данную величину можно только с определённой точностью.

В этом курсе созданы условия для организации работы, направленной на подготовку учащихся к освоению в основной школе элементарных алгебраических понятий – переменная, выражение с переменной, уравнение. Эти термины не вводятся, однако рассматриваются разнообразные выражения, равенства и неравенства, содержащие «окошки» (1-2 классы) и буквы латинского алфавита (3-4 классы), вместо которых подставляются те или иные числа.

На первом этапе работы с равенствами неизвестное число, обозначенное буквой, находится подбором, на втором – в ходе специальной игры «в машину», на третьем- с помощью правил нахождения неизвестных компонентов арифметических действий.

Обучение решению арифметических задач с помощью составления равенств, содержащих буквы, ограничивается рассмотрением отдельных их видов, на которых иллюстрируется суть метода.

В соответствии с программой учащиеся овладевают многими важными логико-математическими понятиями. Они знакомятся с математическими высказываниями , с логическими связками «и»; «или»; «если…, то»; «неверно, что …», со смыслом логических слов «каждый», «любой», «все», «кроме», «какой-нибудь», составляющими основу логической формы предложения, используемой в логических выводах. К окончанию начальной школы ученик будет отчетливо представлять, что значит доказать

какое-либо утверждение, овладеет простейшими способами доказательства, приобретет умение подобрать конкретный пример, иллюстрирующий некоторое общее положение, или привести опровергающий пример, научится применять определение для распознавания того или иного математического объекта, давать точный ответ на поставленный вопрос.

Важной составляющей линии логического развития ребёнка является обучение его (уже с 1 класса) действию классификации по заданным основаниям и проверка правильности выполнения задания.

В программе чётко просматривается линия развития геометрических представлений учащихся. Дети знакомятся с наиболее распространёнными геометрическими фигурами (круг, многоугольник, отрезок, луч, прямая, куб, шар и др.), учатся их различать. Большое внимание уделяется взаимному расположению фигур на плоскости, а также формированию графических умений – построению отрезков, ломаных, окружностей, углов, многоугольников и решению практических задач ( деление отрезков пополам, окружности на шесть равных частей и пр.).

Большую роль в развитии пространственных представлений играет включение в программу (уже в 1 классе) понятия об осевой симметрии. Дети учатся находить на картинках и показывать пары симметричных точек, строить симметричные фигуры.

Межпредметные связи:

  • с уроками грамоты: введение школьника в языковую и математическую действительность; формирование умений учиться, а так же навыков письма и счета;

  • с уроками окружающего мира: формирование учебно-интелектуальных умений: классификация обобщение, анализ; объединение объектов в группы; выявление сходства и различия; установление причинных связей; высказывание доказательств проведенной классификации; ориентировка на поиск необходимого (нового способа действия);

  • с уроками труда: перенос полученных знаний по математике в разнообразную самостоятельную трудовую деятельность.

Особенностью организации учебного процесса по математике в 1 классе является использование игрового метода обучения, как метода, помогающего сформировать новую ведущую деятельность - учебную, мотивационную.

Для обеспечения дифференцированного подхода к учащимся при проведении проверочных работ текст каждой представлен в 6 вариантах трех уровней сложности.

Первые два варианта определяют минимальный уровень требований к учащимся (для слабоуспевающих); третий и четвертый варианты даются учащимся с более высоким уровнем; пятый и шестой варианты для самых сильных учащихся.

В тексты проверочных и контрольных работ (во все варианты) включены 1-2 задания повышенной трудности, отмеченные звездочкой. Они не являются обязательными и предлагаются детям по выбору. Ученик, выбрав такое задание, может проверить свои силы в решении нестандартных творческих задач. В 1 классе часть работ имеет целью проверку знаний учащихся таблиц сложения и вычитания. При этом важно знать, сколько времени каждый ученик тратит на эту работу.

Математика как учебный предмет вносит заметный вклад в реализацию важнейших целей и задач начального общего образования младших школьников. Овладение учащимися начальных классов основами математического языка для описания разнообразных предметов и явлений окружающего мира, освоение общего приема решения задач как универсального действия, умения выстраивать логические цепочки рассуждений, алгоритмы выполняемых действий, использование измерительных и вычислительных умений и навыков создают необходимую базу для успешной организации процесса обучения учащихся в начальной школе.

Личностные, метапредметные и предметные результаты освоения курса математики

Личностными результатами обучения учащихся являются:

самостоятельность мышления; умение устанавливать, с какими учебными задачами ученик может самостоятельно успешно справиться;

готовность и способность к саморазвитию;

сформированность мотивации к обучению;

способность характеризовать и оценивать собственные математические знания и умения;

заинтересованность в расширении и углублении получаемых математических знаний;

готовность использовать получаемую математическую подготовку в учебной деятельности и при решении практических задач, возникающих в повседневной жизни;

способность преодолевать трудности, доводить начатую работу до ее завершения;

способность к самоорганизованности;

высказывать собственные суждения и давать им обоснование;

владение коммуникативными умениями с целью реализации возможностей успешного сотрудничества с учителем и учащимися класса (при групповой работе, работе в парах, в коллективном обсуждении математических проблем).

Метапредметными результатами обучения являются:

владение основными методами познания окружающего мира (наблюдение, сравнение, анализ, синтез, обобщение, моделирование);

понимание и принятие u1091 учебной задачи, поиск и нахождение способов ее решения;

планирование, контроль и оценка учебных действий; определение

наиболее эффективного способа достижения результата;

выполнение учебных действий в разных формах (практические

работы, работа с моделями и др.);

создание моделей изучаемых объектов с использованием знаково-символических средств;

понимание причины неуспешной учебной деятельности и способность конструктивно действовать в условиях неуспеха;

адекватное оценивание результатов своей деятельности;

активное использование математической речи для решения разнообразных коммуникативных задач;

готовность слушать собеседника, вести диалог;

умение работать в информационной среде.

Предметными результатами учащихся на выходе из начальной школы являются:

овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи;

умение применять полученные математические знания для решения учебно-познавательных и учебно-практических задач, а также использовать эти знания для описания и объяснения различных процессов и явлений окружающего мира, оценки их количественных и пространственных отношений;

овладение устными и письменными алгоритмами выполнения арифметических действий с целыми неотрицательными числами, умениями вычислять значения числовых выражений, решать текстовые задачи, измерять наиболее распространенные в практике величины, распознавать и изображать простейшие геометрические фигуры;

умение работать в информационном поле (таблицы, схемы, диаграммы, графики, последовательности, цепочки, совокупности); представлять, анализировать и интерпретировать данные.

Содержание курса «Математика. 1-4 классы»

Множества предметов. Отношения между предметами и между множествами предметов*

Сходства и различия предметов. Соотношение размеров предметов (фигур). Понятия: больше, меньше, одинаковые по размерам; длиннее, короче, такой же длины (ширины, высоты).

Соотношения между множествами u1087 предметов. Понятия: больше, меньше, столько же, поровну (предметов), больше, меньше (на несколько предметов).

Универсальные учебные действия:

сравнивать предметы (фигуры) по их форме и размерам;

распределять данное множество предметов на группы по заданным признакам (выполнять классификацию);

сопоставлять множества предметов по их численностям (путем составления пар предметов)

Число и счет

Счет предметов. Чтение и запись чисел в пределах класса миллиардов. Классы и разряды натурального числа. Десятичная система записи чисел. Представление многозначного числа в виде суммы разрядных слагаемых. Сравнение чисел; запись результатов сравнения с использованием знаков >, =, <. * Вводный раздел программы 1 класса.

Римская система записи чисел. Сведения из истории математики: как появились числа, чем занимается арифметика.

Универсальные учебные действия:

пересчитывать предметы; выражать результат натуральным числом;

сравнивать числа;

упорядочивать данное множество чисел.

Арифметические действия с числами и их свойства

Сложение, вычитание, умножение и деление и их смысл. Запись арифметических действий с использованием знаков +, -, •, : .

Сложение и вычитание (умножение и деление) как взаимно обратные действия. Названия компонентов арифметических действий (слагаемое, сумма; уменьшаемое, вычитаемое, разность; множитель, произведение; делимое, делитель, частное).

Таблица сложения и соответствующие случаи вычитания.

Таблица умножения и соответствующие случаи деления.

Устные и письменные алгоритмы сложения и вычитания. Умножение многозначного числа на однозначное, на двузначное и на трехзначное число.

Деление с остатком.

Устные и письменные алгоритмы деления на однозначное, на двузначное и на трехзначное число.

Способы проверки правильности вычислений (с помощью обратного действия, оценка достоверности, прикидка результата, с использованием микрокалькулятора).

Доля числа (половина, треть, четверть, десятая, сотая, тысячная). Нахождение одной или нескольких долей u1095 числа. Нахождение числа по его доле.

Переместительное и сочетательное свойства сложения и умножения; распределительное свойство умножения относительно сложения (вычитания); сложение и вычитание с 0; умножение и деление с 0 и 1. Обобщение: записи свойств действий с использованием букв. Использование свойств арифметических действий при выполнении вычислений: перестановка и группировка слагаемых в сумме, множителей в произведении; умножение суммы и разности на число).

Числовое выражение. Правила порядка выполнения действий в числовых выражениях, содержащих от 2 до 6 арифметических действий, со скобками и без скобок. Вычисление значений выражений. Составление выражений в соответствии с заданными условиями.

Выражения и равенства с буквами. Правила вычисления неизвестных компонентов арифметических действий.

Примеры арифметических задач, решаемых составлением равенств, содержащих букву.

Универсальные учебные действия:

моделировать ситуацию, иллюстрирующую данное арифметическое действие;

воспроизводить устные и письменные алгоритмы выполнения четырех арифметических действий;

прогнозировать результаты вычислений;

контролировать свою деятельность: проверять правильность выполнения вычислений изученными способами;

оценивать правильность предъявленных вычислений;

сравнивать разные способы вычислений, выбирать из них удобный;

анализировать структуру числового выражения с целью определения порядка выполнения содержащихся в нем арифметических действий.

Величины

Длина, площадь, периметр, масса, время, скорость, цена, стоимость и их единицы. Соотношения между единицами однородных величин.

Сведения из истории математики: старинные русские меры длины (вершок, аршин, пядь, маховая и косая сажень, морская миля, верста), массы (пуд, фунт, ведро, бочка). История возникновения месяцев года.

Вычисление периметра многоугольника, периметра и площади прямоугольника (квадрата). Длина ломаной и ее вычисление.

Точные и приближенные значения величины (с недостатком, с избытком). Измерение длины, массы, времени, площади с указанной точностью. Запись приближенных значений величины с использованием знака ≈ (примеры: АВ ≈ 5 см, t ≈ 3 мин, V ≈ 200 км/ч).

Вычисление одной или нескольких долей значения величины. Вычисление значения величины по известной доле ее значения.

Универсальные учебные действия:

сравнивать значения однородных величин;

упорядочивать данные значения величины;

устанавливать зависимость между данными и искомыми величинами при решении разнообразных учебных задач.

Работа с текстовыми задачами

Понятие арифметической задачи. Решение текстовых арифметических задач арифметическим способом.

Работа с текстом задачи: выявление известных и неизвестных величин, составление таблиц, схем, диаграмм и других моделей для представления данных условия задачи.

Планирование хода решения задачи. Запись решения и ответа задачи.

Задачи, содержащие отношения «больше (меньше) на», «больше (меньше) в»; зависимости между величинами, характеризующими процессы купли- продажи, работы, движения тел.Примеры арифметических задач, решаемых разными способами; задач,имеющих несколько решений, не имеющих решения; задач с недостающими и с лишними данными (не использующимися при решении).

Универсальные учебные действия:

моделировать содержащиеся в тексте задачи зависимости;

планировать ход решения задачи;

анализировать текст задачи с целью выбора необходимых арифметических действий для ее решения;

прогнозировать результат решения;

контролировать свою деятельность: обнаруживать и устранять ошибки логического характера (в ходе решения) и ошибки вычислительного характера;

выбирать верное решение задачи из нескольких предъявленных решений;

наблюдать за изменением решения задачи при изменении ее условий.

Геометрические понятия

Форма предмета. Понятия: такой же формы, другой формы. Плоские фигуры: точка, линия, отрезок, ломаная, круг; многоугольники и их виды. Луч и прямая как бесконечные плоские фигуры. Окружность (круг). Изображение плоских фигур с помощью линейки, циркуля и от руки. Угол и его элементы вершина, стороны. Виды углов (прямой, острый, тупой). Классификация треугольников (прямоугольные, остроугольные, тупоугольные). Виды треугольников в зависимости от длин сторон (разносторонние, равносторонние, равнобедренные).

Прямоугольник и его определение. Квадрат как прямоугольник. Свойства противоположных сторон и диагоналей прямоугольника. Оси симметрии прямоугольника (квадрата).

Пространственные фигуры: прямоугольный параллелепипед (куб), пирамида, цилиндр, конус, шар. Их распознавание на чертежах и на моделях.

Взаимное расположение фигур на плоскости (отрезков, лучей, прямых, окружностей) в различных комбинациях. Общие элементы фигур. Осевая симметрия. Пары симметричных точек, отрезков, многоугольников. Примеры фигур, имеющих одну или несколько осей симметрии. Построение симметричных фигур на клетчатой бумаге.

Универсальные учебные действия:

ориентироваться на плоскости и в пространстве (в том числе различать

направления движения);

различать геометрические фигуры;

характеризовать взаимное расположение фигур на плоскости;

конструировать указанную фигуру из частей;

классифицировать треугольники;

распознавать пространственные фигуры (прямоугольный параллелепипед, пирамида, цилиндр, конус, шар) на чертежах и на моделях.

Логико-математическая подготовка

Понятия: каждый, какой-нибудь, один из, любой, все, не все; все, кроме.

Классификация множества предметов по заданному признаку. Определение оснований классификации.

Понятие о высказывании. Примеры истинных и ложных высказываний.

Числовые равенства и неравенства как примеры истинных и ложных высказываний.

Составные высказывания, образованные из двух простых высказываний с помощью логических связок «и»,«или»,«если, то»,«неверно, что» и их истинность. Анализ структуры составного высказывания: выделение в нем простых высказываний. Образование составного высказывания из двух простых высказываний. Простейшие доказательства истинности или ложности данных утверждений. Приведение гримеров, подтверждающих или опровергающих данное утверждение.

Решение несложных комбинаторных задач и других задач логического характера (в том числе задач, решение которых связано с необходимостью перебора возможных вариантов.

Универсальные учебные действия:

определять истинность несложных утверждений;

приводить примеры, подтверждающие или опровергающие данное утверждение;

конструировать алгоритм решения логической задачи;

делать выводы на основе анализа предъявленного банка данных;

конструировать составные высказывания из двух простых высказываний с помощью логических слов-связок и определять их истинность;

анализировать структуру предъявленного составного высказывания; выделять в нем составляющие его высказывания и делать выводы об истинности или ложности составного высказывания;

актуализировать свои знания для проведения простейших математических доказательств (в том числе с опорой на изученные определения, законы арифметических действий, свойства геометрических фигур).

Работа с информацией

Сбор и представление информации, связанной со счетом, с измерением; фиксирование и анализ полученной информации.

Таблица; строки и столбцы таблицы. Чтение и заполнение таблиц заданной информацией. Перевод информации из текстовой формы в табличную. Составление таблиц.

Графы отношений. Использование графов для решения учебных задач.

Числовой луч. Координата точки. Обозначение вида А (5).

Координатный угол. Оси координат. Обозначение вида А (2,3).

Простейшие графики. Считывание информации.

Столбчатые диаграммы. Сравнение данных, представленных на диаграммах.

Конечные последовательности (цепочки) предметов, чисел, фигур, составленные по определенным правилам. Определение правила составления последовательности.

Универсальные учебные действия:

собирать требуемую информацию из указанных источников; фиксировать результаты разными способами;

сравнивать и обобщать информацию, u1087 представленную в таблицах, на графиках и диаграммах;

переводить информацию из текстовой формы в табличную.

Планируемые результаты обучения

1. К концу обучения в первом классе ученик научится:

называть:

предмет, расположенный левее (правее), выше (ниже) данного предмета, над (под, за) данным предметом, между двумя предметами;

натуральные числа от 1 до 20 в прямом и в обратном порядке, следующее (предыдущее) при счете число;

число, большее (меньшее) данного числа (на несколько единиц);

геометрическую фигуру (точку, отрезок, треугольник, квадрат, пятиугольник, куб, шар);

различать:

число и цифру;

знаки арифметических действий;

круг и шар, квадрат и куб;

многоугольники по числу сторон (углов);

направления движения (слева направо, справа налево, сверху вниз, снизу вверх);

читать:

числа в пределах 20, записанные цифрами;

записи вида 3 + 2 = 5, 6 – 4 = 2, 5  2 = 10, 9 : 3 = 3;

сравнивать

предметы с целью выявления в них сходства и различий;

предметы по размерам (больше, меньше);

два числа (больше, меньше, больше на, меньше на);

данные значения длины; отрезки по длине;

воспроизводить:

результаты табличного сложения любых однозначных чисел;

результаты табличного вычитания однозначных чисел;

способ решения задачи в вопросно-ответной форме;

распознавать:

геометрические фигуры;

моделировать:

отношения «больше», «меньше», «больше на», «меньше на» с использованием фишек, геометрических схем (графов) с цветными стрелками;

ситуации, иллюстрирующие арифметические действия (сложение, вычитание, умножение, деление);

ситуацию, описанную текстом арифметической задачи, с помощью фишек или схематического рисунка;

характеризовать:

расположение предметов на плоскости и в пространстве;

расположение чисел на шкале линейки (левее, правее, между);

результаты сравнения чисел словами «больше» или «меньше»;

предъявленную геометрическую фигуру (форма, размеры);

расположение предметов или числовых данных в таблице (верхняя, средняя, нижняя) строка, левый (правый, средний) столбец;

анализировать:

текст арифметической задачи: выделять условие и вопрос, данные и искомые числа (величины);

предложенные варианты решения задачи с целью выбора верного или оптимального решения;

классифицировать:

распределять элементы множеств на группы по заданному признаку;

упорядочивать:

предметы (по высоте, длине, ширине);

отрезки в соответствии с их длинами;

числа (в порядке увеличения или уменьшения);

конструировать:

алгоритм решения задачи;

несложные задачи с заданной сюжетной ситуацией (по рисунку, схеме);

контролировать:

свою деятельность (обнаруживать и исправлять допущенные ошибки);

оценивать:

расстояние между точками, длину предмета или отрезка (на глаз);

предъявленное готовое решение учебной задачи (верно, неверно);

решать учебные и практические задачи:

пересчитывать предметы, выражать числами получаемые результаты;

записывать цифрами числа от 1 до 20, число нуль;

решать простые текстовые арифметические задачи (в одно действие);

измерять длину отрезка с помощью линейки;

изображать отрезок заданной длины;

отмечать на бумаге точку, проводить линию по линейке;

выполнять вычисления (в том числе вычислять значения выражений, содержащих скобки);

ориентироваться в таблице: выбирать необходимую для решения задачи информацию.

К концу обучения в первом классе ученик может научиться:

сравнивать:

разные приемы вычислений с целью выявления наиболее удобного приема;

воспроизводить:

способ решения арифметической задачи или любой другой учебной задачи в виде связного устного рассказа;

классифицировать:

определять основание классификации;

обосновывать:

приемы вычислений на основе использования свойств арифметических действий;

контролировать деятельность:

осуществлять взаимопроверку выполненного задания при работе в парах;

решать учебные и практические задачи:

преобразовывать текст задачи в соответствии с предложенными условиями;

использовать изученные свойства арифметических действий при вычислениях;

выделять на сложном рисунке фигуру указанной формы (отрезок, треугольник и др.), пересчитывать число таких фигур;

составлять фигуры из частей;

разбивать данную фигуру на части в соответствии с заданными требованиями;

изображать на бумаге треугольник с помощью линейки;

находить и показывать на рисунках пары симметричных относительно осей симметрии точек и других фигур (их частей);

определять, имеет ли данная фигура ось симметрии и число осей,

представлять заданную информацию в виде таблицы;

выбирать из математического текста необходимую информацию для ответа на поставленный вопрос.

2. К концу обучения во втором классе ученик научится:

называть:

натуральные числа от 20 до 100 в прямом и в обратном порядке, следующее (предыдущее) при счете число;

число, большее или меньшее данного числа в несколько раз;

единицы длины, площади;

одну или несколько долей данного числа и числа по его доле;

компоненты арифметических действий (слагаемое, сумма, уменьшаемое, вычитаемое, разность, множитель, произведение, делимое, делитель, частное);

геометрическую фигуру (многоугольник, угол, прямоугольник, квадрат, окружность);

сравнивать:

числа в пределах 100;

числа в кратном отношении (во сколько раз одно число больше или меньше другого);

длины отрезков;

различать:

отношения «больше в» и «больше на», «меньше в» и «меньше на»;

компоненты арифметических действий;

числовое выражение и его значение;

российские монеты, купюры разных достоинств;

прямые и непрямые углы;

периметр и площадь прямоугольника;

окружность и круг;

читать:

числа в пределах 100, записанные цифрами;

записи вида 5 · 2 = 10, 12 : 4 = 3;

воспроизводить:

результаты табличных случаев умножения однозначных чисел и соответствующих случаев деления;

соотношения между единицами длины: 1 м = 100 см, 1 м = 10 дм;

приводить примеры:

однозначных и двузначных чисел;

числовых выражений;

моделировать:

десятичный состав двузначного числа;

алгоритмы сложения и вычитания двузначных чисел;

ситуацию, представленную в тексте арифметической задачи, в виде схемы, рисунка;

распознавать:

геометрические фигуры (многоугольники, окружность, прямоугольник, угол);

упорядочивать:

числа в пределах 100 в порядке увеличения или уменьшения;

характеризовать:

числовое выражение (название, как составлено);

многоугольник (название, число углов, сторон, вершин);

анализировать:

текст учебной задачи с целью поиска алгоритма ее решения;

готовые решения задач с целью выбора верного решения,

рационального способа решения;

классифицировать:

углы (прямые, непрямые);

числа в пределах 100 (однозначные, двузначные);

конструировать:

тексты несложных арифметических задач;

алгоритм решения составной арифметической задачи;

контролировать:

свою деятельность (находить и исправлять ошибки);

оценивать:

готовое решение учебной задачи (верно, неверно);

решать учебные и практические задачи:

записывать цифрами двузначные числа;

решать составные арифметические задачи в два действия в различных комбинациях;

вычислять сумму и разность чисел в пределах 100, используя изученные устные и письменные приемы вычислений;

вычислять значения простых и составных числовых выражений;

вычислять периметр и площадь прямоугольника (квадрата);

строить окружность с помощью циркуля;

выбирать из таблицы необходимую информацию для решения учебной задачи;

заполнять таблицы, имея некоторый банк данных.

К концу обучения во втором классе ученик может научиться:

формулировать:

свойства умножения и деления;

определения прямоугольника и квадрата;

свойства прямоугольника (квадрата);

называть:

вершины и стороны угла, обозначенные латинскими буквами;

элементы многоугольника (вершины, стороны, углы);

центр и радиус окружности;

координаты точек, отмеченных на числовом луче;

читать:

обозначения луча, угла, многоугольника;

различать:

луч и отрезок;

характеризовать:

расположение чисел на числовом луче;

взаимное расположение фигур на плоскости (пересекаются, не пересекаются, имеют общую точку (общие точки);

решать учебные и практические задачи:

выбирать u1077 единицу длины при выполнении измерений;

обосновывать выбор арифметических действий для решения задач;

указывать на рисунке все оси симметрии прямоугольника (квадрата);

изображать на бумаге многоугольник с помощью линейки или от руки;

составлять несложные числовые выражения;

выполнять несложные устные вычисления в пределах 100.

3. К концу обучения в третьем классе ученик научится:

называть:

любое следующее (предыдущее) при счете число в пределах 1000, любой отрезок натурального ряда от 100 до 1000 в прямом и в обратном порядке;

компоненты действия деления с остатком;

единицы массы, времени, длины;

геометрическую фигуру (ломаная);

сравнивать:

числа в пределах 1000;

значения величин, выраженных в одинаковых или разных единицах;

различать:

знаки > и <;

числовые равенства и неравенства;

читать:

записи вида 120 < 365, 900 > 850;

воспроизводить:

соотношения между единицами массы, длины, времени;

устные и письменные алгоритмы арифметических действий в пределах 1000;

приводить примеры:

числовых равенств и неравенств;

моделировать:

ситуацию, представленную в тексте арифметической задачи, в виде схемы (графа), таблицы, рисунка;

способ деления с остатком с помощью фишек;

упорядочивать:

натуральные числа в пределах 1000;

значения величин, выраженных в одинаковых или разных единицах;

анализировать:

структуру числового выражения;

текст арифметической (в том числе логической) задачи;

классифицировать:

числа в пределах 1000 (однозначные, двузначные, трехзначные);

конструировать:

план решения составной арифметической (в том числе логической) задачи;

контролировать:

свою деятельность (проверять правильность письменных вычислений с натуральными числами в пределах 1000), находить и исправлять ошибки;

решать учебные и практические задачи:

читать и записывать цифрами любое трехзначное число;

читать и составлять несложные числовые выражения;

выполнять несложные устные вычисления в пределах 1000;

вычислять сумму и разность чисел в пределах 1000, выполнять умножение и деление на однозначное и на двузначное число, используя письменные алгоритмы вычислений;

выполнять деление с остатком;

определять время по часам;

изображать ломаные линии разных видов;

вычислять значения числовых выражений, содержащих 2–3 действия (со скобками и без скобок);

решать текстовые арифметические задачи в три действия.

К концу обучения в третьем классе ученик может научиться:

формулировать:

сочетательное свойство умножения;

распределительное свойство умножения относительно сложения (вычитания);

читать:

обозначения прямой, ломаной;

приводить примеры:

высказываний и предложений, не являющихся высказываниями;

верных и неверных высказываний;

различать:

числовое и буквенное выражение;

прямую и луч, прямую и отрезок;

замкнутую и незамкнутую ломаную линии;

характеризовать:

ломаную линию (вид, число вершин, звеньев);

взаимное расположение лучей, отрезков, прямых на плоскости;

конструировать:

буквенное выражение, в том числе для решения задач с буквенными данными;

воспроизводить:

способы деления окружности на 2, 4, 6 и 8 равных частей;

решать учебные и практические задачи:

вычислять значения буквенных выражений при заданных числовых значениях входящих в них букв;

изображать прямую и ломаную линии с помощью линейки;

проводить прямую через одну и через две точки;

строить на клетчатой бумаге точку, отрезок, луч, прямую, ломаную, симметричные данным фигурам (точке, отрезку, лучу, прямой, ломаной).

4. К концу обучения в четвертом классе ученик научится:

называть:

любое следующее (предыдущее) при счете многозначное число, любой отрезок натурального ряда чисел в прямом и в обратном порядке;

классы и разряды многозначного числа;

единицы величин: длины, массы, скорости, времени;

пространственную фигуру, изображенную на чертеже или представленную в виде модели (многогранник, прямоугольный параллелепипед, куб, пирамида, конус, цилиндр);

сравнивать:

многозначные числа;

значения величин, выраженных в одинаковых единицах;

различать:

цилиндр и конус, прямоугольный параллелепипед и пирамиду;

читать:

любое многозначное число;

значения величин;

информацию, представленную в таблицах, на диаграммах;

воспроизводить:

устные приемы сложения, вычитания, умножения, деления в случаях, сводимых к действиям в пределах сотни;

письменные алгоритмы выполнения арифметических действий с многозначными числами;

способы вычисления неизвестных компонентов арифметических действий (слагаемого, множителя, уменьшаемого, вычитаемого, делимого, делителя);

способы построения отрезка, прямоугольника, равных данным, с помощью циркуля и линейки;

моделировать:

разные виды совместного движения двух тел при решении задач на движение в одном направлении, в противоположных направлениях;

упорядочивать:

многозначные числа, располагая их в порядке увеличения (уменьшения);

значения величин, выраженных в одинаковых единицах;

анализировать:

структуру составного числового выражения;

характер движения, представленного в тексте арифметической задачи;

конструировать:

алгоритм решения составной арифметической задачи;

составные высказывания с помощью логических слов-связок «и», «или», «если, то», «неверно, что»;

контролировать:

свою деятельность: проверять правильность вычислений с многозначными числами, используя изученные приемы;

решать учебные и практические задачи:

записывать цифрами любое многозначное число в пределах класса миллионов;

вычислять значения числовых выражений, содержащих не более шести арифметических действий;

решать арифметические задачи, связанные с движением (в том числе задачи на совместное движение двух тел);

формулировать свойства арифметических действий и применять их при вычислениях;

вычислять неизвестные компоненты арифметических действий.

К концу обучения в четвертом классе ученик может научиться:

называть:

координаты точек, отмеченных в координатном углу;

сравнивать:

величины, выраженные в разных единицах;

различать:

числовое и буквенное равенства;

виды углов и виды треугольников;

понятия «несколько решений» и «несколько способов решения» (задачи);

воспроизводить:

способы деления отрезка на равные час ти с помощью циркуля и линейки;

приводить примеры:

истинных и ложных высказываний;

оценивать:

точность измерений;

исследовать:

задачу (наличие или отсутствие решения, наличие нескольких решений);

читать:

информацию, представленную на графике;

решать учебные и практические задачи:

вычислять периметр и площадь нестандартной прямоугольной фигуры;

исследовать предметы окружающего мира, сопоставлять их с моделями пространственных геометрических фигур;

прогнозировать результаты вычислений;

читать и записывать любое многозначное число в пределах класса миллиардов;

измерять длину, массу, площадь с указанной точностью,

сравнивать углы способом наложения, используя модели.

Поурочное планирование учебного материала

hello_html_m60c28094.jpg

hello_html_m673a499.jpg

hello_html_e7dde5e.jpg



hello_html_m6f4d2414.jpg

hello_html_60561c4d.jpg



hello_html_31723d7.jpg

hello_html_m2be5c957.jpg



hello_html_5295c2f3.jpg



hello_html_2319daa9.jpg



hello_html_27cd86fd.jpg



hello_html_m7a70170b.jpg



hello_html_11555eae.jpg

hello_html_m4919f48c.jpg

hello_html_m524c902d.jpg



hello_html_6b22018d.jpg

hello_html_m35e4f3ca.jpg

hello_html_m5d94b067.jpg

hello_html_434c115d.jpg

hello_html_m7d62974.jpg

hello_html_3eb79ee4.jpg

hello_html_m5387d3e5.jpg

hello_html_254bd11f.jpg

hello_html_4adf9e47.jpg



hello_html_2a367d66.jpg





hello_html_m15873c64.jpg

hello_html_4223cf07.jpg



hello_html_47c0591b.jpg

hello_html_7de73285.jpg

hello_html_378434a3.jpg



hello_html_m6bc3e2d1.jpg

hello_html_72c1cc39.jpg

hello_html_m369982ee.jpg



hello_html_m64f4886.jpg



Материально-техническое обеспечение образовательного процесса.


п/п

Наименование объектов и средств материально-технического обеспечения

Количество


1.Библиотечный фонд (книгопечатная продукция)

1.

2.

Учебно-методические комплекты по математике (УМК) для 1-4 классов (программа, учебники, рабочие тетради)

Программа начального общего образования по математике

К

Д

2. Печатные пособия

1.

2.

Таблицы в соответствии с тематикой, определенной в программе по математике

Дидактические материалы (в двух частях) для 1, 2, 3, 4 классов

Д

Д

3. Технические средства обучения

1.

2.

3.

4.

Классная доска с набором приспособлений для крепления таблиц

Магнитная доска

Персональный компьютер

Мультимедийный проектор

Д

Д

Д/П

Д

4. Экранно-звуковые пособия

1.

2.

Слайды соответствующего содержания

Мультимедийные образовательные ресурсы, соответствующие содержанию обучения

Д

Д

5. Игры и игрушки

1.

2.

Настольные развивающие игры

Математическое домино

Ф

Ф

6. Оборудование класса

1.

2.

3.

4.

5.

Ученические столы двухместные с комплектом стульев

Стол учительский с тумбой

Шкафы для хранения учебников, дидактических материалов, пособий

Настенные доски

Экран

К

Д

Д

Д

Д



Тематическое планирование с определением основных видов деятельности обучающихся начального общего образования (прилагается).

Список рекомендуемой учебно-методической литературы

1. Математика: программа: 1-4 классы / В.Н.Рудницкая. – М.: Вентана-Граф, 2011.

128 с.: ил. – (Начальная школа 21 века).

2. Математика: 1 класс (в двух частях): учебник для общеобразов. учреждений / В.Н.

Рудницкая, Е.Э. Кочурова, О.А.Рыдзе. (1 ч.), В.Н.Рудницкая ( 2 ч.). – М.: Вентана-

Граф, 2011.

  1. Математика: 2 класс (в двух частях): учебник для общеобразов. учреждений / В.Н. Рудницкая, Т.В.Юдачева. – М.: Вентана- Граф, 2011.

  2. Математика: 3 класс (в двух частях): учебник для общеобразов. учреждений / В.Н. Рудницкая, Т.В.Юдачева. – М.: Вентана- Граф.

  3. Математика: 4 класс (в двух частях): учебник для общеобразов. учреждений / В.Н. Рудницкая, Т.В.Юдачева. – М.: Вентана- Граф.

  4. Рабочая тетрадь «Математика» 1 класс (№!, №2, №3)/ Е.Э.Кочурова (№1, №2), В.Н. Рудницкая (№3). - М.: Вентана- Граф 2011.

  5. Рабочая тетрадь «Математика» 2 класс (№1, №2)/ В.Н.Рудницкая, Т.В.Юдачева. - М.: Вентана- Граф 2011.

  6. Рабочая тетрадь «Математика» 3 класс (№1, №2)/ В.Н.Рудницкая, Т.В.Юдачева. - М.: Вентана- Граф.

  7. Рабочая тетрадь «Математика» 4 класс (№1, №2)/ В.Н.Рудницкая, Т.В.Юдачева. - М.: Вентана- Граф.

  8. Математика: 1 класс: дидактические материалы (в двух частях) / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф, 2011.

  9. Математика: 2 класс: дидактические материалы (в двух частях) / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф, 2011.

  10. Математика: 3 класс: дидактические материалы (в двух частях) / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф.

  11. Математика: 4 класс: дидактические материалы (в двух частях) / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф.

  12. Математика: 1 класс: методика обучения / В,Н.Рудницкая, Е.Э.Кочурова, О.А.Рыдзе. – М.: Вентана-Граф. 2011.

  13. Математика: 2 класс: методика обучения / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф, 2011.

  14. Математика: 3 класс: методика обучения / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф.

  15. Математика: 4 класс: методика обучения / В,Н.Рудницкая, Т.В.Юдачева. – М.: Вентана-Граф.

  16. Проверочные и контрольные работы. - М.: Вентана- Граф, 2010.-368 с. - (Оценка знаний) Математика как самостоятельный предмет изучается с первого полугодия первого класса.



Автор
Дата добавления 08.12.2015
Раздел Начальные классы
Подраздел Рабочие программы
Просмотров175
Номер материала ДВ-239651
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх