Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по математике
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по математике

библиотека
материалов

1. Пояснительная записка

Программа составлена на основе

  1. Федерального Государственного образовательного стандарта основного общего образования, утверждённого приказом Министерства образования и науки РФ от 17.12. 2010 г. №1897;

  2. Учебного плана МКОУ ХМР «Основная общеобразовательная школа д. Белогорье» на 2015-2016 учебный год;

  3. Примерной программы по математике 5-9 классы разработанной А.А.Кузнецовым, М.В. Рыжаковым, А.М.Кондаковым, обеспечена УМК для 5–го класса авторов Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд.


Математика является одним из основных, системообразующих предметов школьного образования. В ходе её изучения на ступени основного общего образования школьники осваивают основополагающие понятия и идеи, такие, как число, буквенное исчисление, функция, геометрическая фигура, вероятность, дедукция, математическое моделирование, т.е. материал, создающий основу математической грамотности. Вместе с тем подходы к формированию содержания математического школьного образования претерпели существенные изменения, отвечающие требованиям сегодняшнего дня.

Целями изучения курса математики в 5 классе являются систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии.

Изучение математики в направлено на достижение целей не только в предметном направлении, но и:

  1. в направлении личностного развития

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей;

  1. в метапредметном направлении

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

Задачи:

  • овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  • способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

  • воспитывать культуру личности, отношение к математики как части общечеловеческой культуры, играющей особую роль в общественном развитии.

2. Общая характеристика учебного предмета «Математика»

Настоящая программа по математике для 5 класса является логическим продолжением программы для начальной школы. В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям. Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

В курсе математики 5 класса выделены 4 содержательные области: натуральные числа и шкалы, площади и объемы, дроби, инструменты для вычислений и измерений.

Систематизация сведений о натуральных числах позволяет восстановить у учащихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки их табличного сложения и умножения. При изучении геометрического материала основное внимание уделяется формированию навыков измерения и построения отрезков при помощи линейки. В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче. Начиная с этой темы основное внимание, уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями.  В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание). В этой теме проводится целенаправленное развитие и за крепление навыков умножения и деления многозначных чисел. Вводятся понятия квадрата и куба числа.     Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий. Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», а также задачи на известные учащимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений, так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

При изучении темы «Площади и объемы» учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.

В теме «Дроби» изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от учащихся .

При введении десятичных дробей важно добиться у учащихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.  Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам. Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями.  При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда. Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.  

В ходе изучения темы «Инструменты для вычислений и измерений» у учащихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого.  Продолжается работа по распознаванию и изображению геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы. Круговые диаграммы дают представления учащимся о наглядном изображении распределения отдельных составные частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах.

В течение года планируется провести 15 контрольных работ. запланировано 6 самостоятельных работы и 8 тестов по стержневым темам курса математики 5 класса.

В рабочей программе предусмотрено 15 контрольных работ по темам:

  • Стартовая диагностика.

  • «Натуральные числа и шкалы»,

  • «Сложение и вычитание натуральных чисел»,

  • «Уравнение»,

  • «Умножение и деление натуральных чисел»,

  • «Упрощение выражений. Степень числа»,

  • «Площади и объемы»,

  • «Обыкновенные дроби»,

  • «Сложение и вычитание обыкновенных дробей»,

  • «Сложение и вычитание десятичных дробей»,

  • «Умножение и деление десятичных дробей на натуральные числа»,

  • «Умножение и деление десятичных дробей»,

  • «Проценты»,

  • «Инструменты для измерений»,

  • «Итоговое повторение».

Ценностные ориентиры содержания учебного предмета

Исторически сложилось две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом.

Без базовой математической подготовки невозможна постановка образования современного человека.

В школе математика служит опорным предметом для изучения смежных дисциплин.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.



  1. Описание места учебного предмета в учебном плане


Базисный учебный (образовательный) план на изучение математики в 5 классе основной школы отводит 5 учебных часов в неделю в течение всего года обучения, всего 175 уроков. Согласно Базисного учебного (образовательного) плана в 5 классе изучается предмет «Математика» (интегрированный предмет), который включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.


  1. Личностные, метапредметные и предметные результаты

освоения учебного предмета «Математика»

Все результаты (цели) освоения учебно-методического курса образуют целостную систему вместе с предметными средствами. Программа обеспечивает достижение следующих личностных, метапредметных и предметных результатов.

Личностными результатами обучения математике в 5 классе являются:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Метапредметными результатами обучения математике в 5 классе являются:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Предметными результатами обучения математике в 5 классе являются:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;

4) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

5) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

6) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

7) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.




5. Содержание учебного предмета «Математика»


1.Повторение за курс начальной школы. Натуральные числа и шкалы (18 ч). Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч.

Цель: систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.

Систематизация сведений о натуральных числах позволяет восстановить у обучающихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков. Рассматриваются простейшие комбинаторные задачи. В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче.

2. Сложение и вычитание натуральных чисел (20 ч). Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.

Цель: закрепить и развить навыки сложения и вычитания натуральных чисел.

Начиная с этой темы основное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями. В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание).

3. Умножение и деление натуральных чисел (21 ч). Умножение и деление натуральных чисел, свойства умножения. Квадрат и куб числа. Решение текстовых задач.

Цель: закрепить и развить навыки арифметических действий с натуральными числами.

В этой теме проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводятся понятия квадрата и куба числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий. Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», а также задачи на известные обучающимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

4. Площади и объемы (15 ч). Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей.

Цель: расширить представления обучающихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.

При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.

5. Обыкновенные дроби (26 ч). Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.

Цель: познакомить обучающихся с понятием дроби в объеме, достаточном для введения десятичных дробей.

В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от обучающихся.

6. Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч). Десятичная дробь. Сравнение, округление, слежение и вычитание десятичных дробей. Решение текстовых задач.

Цель: выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.

При введении десятичных дробей важно добиться у обучающихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби. Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам. Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями. При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.

7. Умножение и деление десятичных дробей (25 ч). Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.

Цель: выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.

Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.

8. Инструменты для вычислений и измерений (15 ч). Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла. Единицы измерения углов. Измерение углов. Построение угла заданной величины.

Цель: сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.

У обучающихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого. Продолжается работа по распознаванию и изображению и геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы. Китовые диаграммы дают представления обучающимся о наглядном изображении распределения отдельных составных частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах. В классе, обеспеченном калькуляторами, можно научить школьников использовать калькулятор при выполнении отдельных арифметических действий.

9. Повторение. Решение задач (17 ч) +резерв 5 часов

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 5 класса.




  1. Тематическое планирование с определением основных видов учебной деятельности

Содержание учебного

материала

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

Глава 1

Натуральные числа


Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их.

Распознавать на чертежах, рисунках, в окружающем мире отрезок, прямую, луч, плоскость. Приводить примеры моделей этих фигур.

Измерять длины отрезков. Строить отрезки заданной длины. Решать задачи на нахождение длин отрезков. Выражать одни единицы длин через другие. Приводить примеры приборов со шкалами.

Строить на координатном луче точку с заданной координатой, определять координату точки. Сравнивать натуральные числа

Глава 2

Сложение и вычитание

натуральных чисел


Формулировать свойства сложения и вычитания натуральных чисел, записывать эти свойства в виде формул. Приводить примеры числовых и буквенных выражений, формул. Составлять числовые и буквенные выражения по условию задачи. Решать уравнения на основании зависимостей между компонентами действий сложения и вычитания. Решать текстовые задачи с помощью составления уравнений.

Распознавать на чертежах и рисунках углы, многоугольники, в частности треугольники, прямоугольники. Распознавать в окружающем мире модели этих фигур. С помощью транспортира измерять градусные меры углов, строить углы заданной градусной меры, строить биссектрису данного угла. Классифицировать углы. Классифицировать треугольники по количеству равных сторон и по видам их углов. Описывать свойства прямоугольника.

Находить с помощью формул периметры прямоугольника и квадрата. Решать задачи на нахождение периметров прямоугольника и квадрата, градусной меры углов.

Строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Распознавать фигуры, имеющие ось симметрии

Глава 3

Умножение и деление

натуральных чисел


Формулировать свойства умножения и деления натуральных чисел, записывать эти свойства в виде формул. Решать уравнения на основании зависимостей между компонентами арифметических действий.

Находить остаток при делении натуральных чисел. По заданному основанию и показателю степени находить значение степени числа.

Находить площади прямоугольника и квадрата с помощью формул. Выражать одни единицы площади через другие.

Распознавать на чертежах и рисунках прямоугольный параллелепипед, пирамиду. Распознавать в окружающем мире модели этих фигур. Изображать развёртки прямоугольного параллелепипеда и пирамиды.

Находить объёмы прямоугольного параллелепипеда и куба с помощью формул. Выражать одни единицы объёма через другие.

Решать комбинаторные задачи с помощью перебора вариантов

Глава 4

Обыкновенные дроби


Распознавать обыкновенную дробь, правильные и неправильные дроби, смешанные числа. Читать и записывать обыкновенные дроби, смешанные числа. Сравнивать обыкновенные дроби с равными знаменателями. Складывать и вычитать обыкновенные дроби с равными знаменателями. Преобразовывать неправильную дробь в смешанное число, смешанное число в неправильную дробь. Уметь записывать результат деления двух натуральных чисел в виде обыкновенной дроби

Глава 5

Десятичные дроби


Распознавать, читать и записывать десятичные дроби. Называть разряды десятичных знаков в записи десятичных дробей. Сравнивать десятичные дроби. Округлять десятичные дроби и натуральные числа. Выполнять прикидку результатов вычислений. Выполнять арифметические действия над десятичными дробями.

Находить среднее арифметическое нескольких чисел. Приводить примеры средних значений величины. Разъяснять, что такое один процент. Представлять проценты в виде десятичных дробей и десятичные дроби в виде процентов. Находить процент от числа и число по его процентам

Повторение и систематизация учебного материала



7. Описание учебно-методического и материально-технического обеспечения образовательного процесса


  1. ФГОС ООО. Утвержден приказом Министерства образования и науки РФ от 17.12.2010 №1897.

  2. Математика: Учеб. для 5 кл. общеобразоват. учреждений/ Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. -М.: Мнемозина, 2013.

  3. А.С. Чесноков, К.И. Нешков Дидактические материалы по математике 5 класс — М.: Просвещение, 2014 г.

  4. Математика. 5 класс. Рабочая программа по учебнику Н.Я.Виленкина, В.И.Жохова и др. / Т.А.Лопатина, Г.С.Мещерякова., Учитель, 2011.

  5. Примерные программы по учебным предметам. Математика 5-9 классы. - М.: Просвещение, 2011.

  6. Жохов В.И. Математический тренажер. 5 класс. – М.: Мнемозина, 2013.

  7. Жохов В.И. Контрольные работы по математике. Пособие. 5 класс. – М.: Мнемозина, 2012.

  8. Попов М.А. Дидактические материалы по математике. 5 класс. К учебнику Н.Я.Виленкина и др. – Экзамен, 2012.

  9. Математика. 5 класс: рабочая программа по учебнику Н.Я.Виленкина, В.И.Жохова и др. / О.С.Кузнецова, Л.Н. Абознова и др. – Волгоград: Учитель, 2012

Интернет-ресурсы

    1. http://school-collection.edu.ru/ единая коллекция цифровых образовательных ресурсов

    2. http://www.matematika-na.ru/index.php он-лайн тесты по математике

    3. http://www.edu.ru/

    4. http://fcior.edu.ru/

    5. http://urokimatematiki.ru

    6. http://intergu.ru/

    7. http://karmanform.ucoz.ru

    8. http://www.openclass.ru/

    9. http://www.it-n.ru/

    10. Диск «Математика. 5-6 классы»

    11. Презентации, созданные учениками и учителем.

Технические средства обучения и оборудование кабинета:

  1. Классная доска

  2. Мультимедийный проектор

  3. Интерактивная доска

  4. Документ-камера

  5. Компьютер

  6. Принтер (МФУ)

  7. Мобильный класс

  8. Комплект инструментов: линейка, транспортир, угольник (300, 600), угольник (450, 450), циркуль.



8. Планируемые результаты изучения учебного предмета «Математика»

Натуральные числа. Дроби.

Выпускник научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

• познакомиться с позиционными системами счисления с основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.



Измерения, приближения, оценки

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Уравнения

Выпускник научится:

• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Наглядная геометрия

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

• вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

• углубить и развить представления о пространственных геометрических фигурах;

• научиться применять понятие развёртки для выполнения практических расчётов.




Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 07.01.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров149
Номер материала ДВ-313404
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх