Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике для 9 класса

Рабочая программа по математике для 9 класса

  • Математика

Поделитесь материалом с коллегами:

hello_html_m2a7690f7.gif
hello_html_m2a7690f7.gif
Муниципальное бюджетное образовательное учреждение «Средняя общеобразовательная школа №3 п.г.т.Актюбинский»

Азнакаевского муниципального района Республики Татарстан

СОГЛАСОВАНО

Руководитель ШМО

___________Л.А.Зарипова

протокол от___.___. ____.№____


СОГЛАСОВАНО

Заместитель директора по УВР

_________________З.В.Зиннатуллина

___.___.___.

УТВЕРЖДАЮ Директор школы

_______________Р.А.Исламов

приказ от___ .___.___.№______






Рабочая программа

по математике

Зариповой Ляйсан Азгамовны

учителя I категории

по учебному курсу «Математика»

9 класс

базовый уровень




РАССМОТРЕНО

на заседании педагогического совета

протокол от___. ___.____ №___



2015-2016 учебный год

Пояснительная записка


Рабочая программа по математике 9 класса составлена на основе:

    1. Федерального компонента государственного стандарта основного общего образования (Приказ МО и Н РФ от 5 марта 2004г. №1089);

  1. Примерной программы основного общего образования по математике (опубликованной в сборнике рабочих программ для общеобразовательных учреждений. М.: «Просвещение», 2011).

  2. Программы общеобразовательных учреждений. Алгебра 7-9 классы. Составитель Бурмистрова Т.А. М.: «Просвещение», 2008.

  3. Программы общеобразовательных учреждений. Геометрия 7-9 классы. Составитель Бурмистрова Т.А. М.: «Просвещение», 2008.

  4. Базисного учебного плана и примерных учебных планов для образовательных учреждений РФ (Приказ МО и Н РФ от 09.03.04. № 1312);

  5. "Стратегии развития воспитания в Российской Федерации на период до 2025 года", утвержденной распоряжением Правительства Российской Федерации от 29 мая 2015 г. N 996-р г. Москва

  6. Учебного плана муниципального бюджетного общеобразовательного учреждения «Средняя общеобразовательная школа №3 п.г.т.Актюбинский» Азнакаевского муниципального района Республики Татарстан.

Учебно-методический комплект:

  • Макарычев Ю.Н., Миндюк Н.Г. учебник Алгебра 9 класс. М.: «Просвещение», 2010.

  • Атанасян Л.С., Бутузов В.Ф. и др. учебник Геометрия 7-9 кл. М.: «Просвещение», 2009.

  • Макарычев Ю.Н., Миндюк Н.Г., Короткова Л.М. Дидактические материалы по алгебре для 9 класса. М.: «Просвещение», 2008.

  • Зив Б.Г. Дидактические материалы по геометрии для 9 класса. М.: «Просвещение», 2008.

Согласно учебного плана МБОУ «СОШ №3 п.г.т.Актюбинский» Азнакаевского муниципального района на изучение математики в 9 классе отводится 170 часов (5 часов в неделю).

Общая характеристика учебного предмета

Математика состоит из следующих содержательных разделов: арифметика, алгебра, геометрия, элементы логики, комбинаторики, статистики и теории вероятности.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Основные развивающие и воспитательные цели

 Развитие:

  • Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • Математической речи;

  • Сенсорной сферы; двигательной моторики;

  • Внимания; памяти;

  • Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

 Воспитание:

  • Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • Волевых качеств;

  •  Коммуникабельности;

  •  Ответственности.





Цели и задачи, решаемые при реализации рабочей программы:

  • расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции, выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной;

  • выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем;

  • дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида;

  • научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач;

  • развить умение применять тригонометрический аппарат при решении геометрических задач;

  • расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы их вычисления;

  • познакомить учащихся с понятием движения и его свойствами, с основными видами движений;

  • дать представление о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • формировать ИКТ компетентность через уроки с элементами ИКТ;

  • формировать навык работы с тестовыми заданиями;

В ходе освоения содержания курса учащиеся получают возможность:

  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

  • систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bх + с > 0 или ах2 + bх + с < 0, где а ≠ 0;

  • выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем;

  • познакомиться с понятиями арифметической и геометрической прогрессий как числовых последовательностей особого вида;

  • познакомиться с начальными сведениями из теории вероятностей;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • развивать логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

  • формирования математического аппарата для решения задач из математики, комбинаторики, смежных предметов, окружающей реальности;

  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений;

  • научиться проводить операции над векторами, научиться вычислять длину и координаты вектора, угол между векторами;

  • научиться решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • научиться проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • нагляднее представить изучаемый материал;

  • освоить проектную деятельность;

  • развивать творческие способности.

Ведущие формы и методы, технологии обучения

Обучение несет деятельностный характер, акцент делается на обучение через практику, продуктивную работу учащихся в малых группах, использование межпредметных связей, развитие самостоятельности учащихся и личной ответственности за принятие решений. Применяются на уроках элементы ИКТ-технологии, личностно-ориентированной технологии, технологии интегрированного обучения, проблемного обучения; проектного обучения.

Механизмы формирования ключевых компетенций

В настоящее время актуальны компетентностный, личностно-ориентированный, деятельностный  подходы, которые определяют задачи обучения:

приобретение математических знаний и умений;

овладение обобщенными способами мыслительной, творческой деятельностей;

освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной,  личностного  саморазвития, ценностно-ориентационной.

Компетентностный подход обеспечивает совершенствование  математических навыков, содержит сведения о способах добывания и практическом применении математических знаний, способствует развитию учебно-познавательной и рефлексивной компетенции. Это содержание обучения является базой для развития коммуникативно - информационной компетенции учащихся. 
Личностная ориентация образовательного процесса выявляет приоритет воспитательных и развивающих целей обучения. Способность учащихся  понимать причины и логику развития математических процессов открывает возможность для осмысленного восприятия всего разнообразия мировоззренческих, социокультурных систем, существующих в современном мире.  Система учебных занятий призвана способствовать развитию личностной самоидентификации, гуманитарной культуры школьников, усилению мотивации к социальному познанию и творчеству, воспитанию личностно и общественно востребованных качеств, в том числе гражданственности, толерантности.
Деятельностный подход отражает стратегию современной образовательной политики: необходимость воспитания человека и гражданина, интегрированного в современное ему общество, нацеленного на совершенствование этого общества. Система уроков сориентирована не столько на передачу «готовых знаний», сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбору, анализу и использованию информации. Это поможет учащимся адаптироваться в мире, где объем информации, растет в геометрической прогрессии, где социальная и профессиональная успешность напрямую зависят от позитивного отношения к новациям, самостоятельности мышления и инициативности, от готовности проявлять творческий подход к делу, искать нестандартные способы решения проблем, от готовности к конструктивному взаимодействию с людьми.

В ходе преподавания математики в основной школе, следует обращать внимание на то, чтобы учащиеся овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В связи с изложенным:

целью предмета становится не процесс, а достижение учащимися определенного результата;

в процедуру оценивания включается рефлексия, наблюдение за деятельностью учащихся;

содержание материала урока подбирается так, чтобы оно было источником для самостоятельного поиска решения проблемы, способствовало развитию у учащихся познавательной активности, мышления, творчества, чтобы позволяло каждому ученику реализовать в процессе обучения свои возможности;

целенаправленно используются межпредметные связи для эффективного достижения целей;

обращение к жизненному опыту учащихся;

практическая применимость выдвигается на первое место не только как критерий обученности, но и как инструмент обучения.

Элементы педагогических технологий: интегрированного обучения; проблемного обучения; проектного обучения являются механизмами формирования ключевых компетенций учащихся.

Планируется использование элементов новых педагогических технологий в преподавании предмета. В течение года возможны коррективы календарно – тематического планирования, связанные с объективными причинами.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

Алгебра

Свойства функций. Квадратичная функция (22 часа)


Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, ее свойства и график. Степенная функция.

Основная цель — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители .

Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + b, у = а (х т)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приемы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Учащиеся знакомятся со свойствами степенной функции у = хп при четном и нечетном натуральном показателе п. Вводится понятие корня n-й степени. Учащиеся должны понимать смысл записей вида hello_html_304961fc.png. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.


Уравнения и неравенства с одной переменной (14 часов)


Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.

Основная цель — систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + bx + с > 0 или ах2 +bх + с < 0, где а 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + bх + с > 0 или ах2 + bх + с < 0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы, ее расположение относительно оси Ох).

Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.


Уравнения и неравенства с двумя переменными (17 часов)


Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.


Прогрессии (15 часов)


Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых п членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых п членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.


Элементы комбинаторики и теории вероятностей (12 часов)


Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Основная цель — ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, которое используется в дальнейшем при выводе формул для подсчета числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внимание учащихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.


Геометрия

Векторы. Метод координат (18 часов)

Понятие вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.


Соотношения между сторонами и углами треугольника (11 часов)


Скалярное произведение векторов

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.


Длина окружности и площадь круга (12 часов)


Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2га-угольника, если дан правильный /г-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

Движения (9 часов)


Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движенцем плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.


Об аксиомах геометрии (2 часа)

Беседа об аксиомах геометрии.

Основная цель — дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

Начальные сведения из стереометрии (8 часов)

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.

Основная цель — дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.

Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Фор мулы для вычисления объемов, указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

Повторение. Решение задач (30 часов)

Календарно тематическое планирование. 9 класс

Содержание учебного материала

Кол-во

часов

Дата

план

факт

Квадратичная функция

22

Функции и их свойства

5

1

Функция.

1

1.09


2

Функция. Область определения и область значений функции

1

2.09


3

Свойства функций

1

3.09


4

График и свойства функций

1

4.09


5

Работа с графиками функций

1

5.09


Квадратный трехчлен

5




6

Квадратный трёхчлен и его корни

1

8.09


7

Решение квадратного уравнения

1

9.09


8

Разложение квадратного трёхчлена на множители. Входной срез.

1

10.09


9

Решение примеров на разложение квадратного трёхчлена на множители

1

11.09


10

Контрольная работа № 1 «Функции и их свойства. Квадратный трехчлен»

1

12.09


Квадратичная функция и ее график

8

11

График функции у=ах2

1

15.09


12

График функции у=ах2 и его свойства.

1

16.09


13

Графики функций у=ах2+n, у=а(xm)2

1

17.09


14

Графики функций у=ах2+n, у=а(x-m)2 и его свойства

1

18.09


15

Графики функций у=ах2+n, у=а(x-m)2 +n . Построение по шаблону

1

19.09


16

Построение графика квадратичной функции

1

22.09


17

Построение графика квадратичной функции различными способами.

1

23.09


18

Обобщение темы «Квадратичная функция и ее график»

1

24.09


Степенная функция. Корень n – й степени

4

19

Функция у=хn

1

25.09


20

Корень n-й степени

1

26.09


21

Степень с рациональным показателем.

1

29.09


22

Контрольная работа № 2 «Квадратичная функция. Степенная функция»

1

30.09


Векторы. Метод координат.

18

Понятие вектора

2

23

Понятие вектора. Равенство векторов.

1

1.10


24

Откладывание вектора от данной точки.

1

2.10


Сложение и вычитание векторов.

3

25

Сумма двух векторов

1

3.10


26

Сумма нескольких векторов. Вычитание векторов

1

6.10


27

Решение задач по теме: «Сложение и вычитание векторов»

1

7.10


Умножение вектора на число. Применение векторов к решению задач.

3

28

Умножение вектора на число

1

8.10


29

Применение векторов к решению задач

1

9.10


30

Средняя линия трапеции

1

10.10


Координаты вектора

2

31

Разложение вектора по двум неколлинеарным векторам

1

8.10


32

Координаты вектора

1

9.10


Простейшие задачи в координатах

2


10.10

33

Простейшие задачи в координатах

1

13.10


34

Простейшие задачи в координатах

1

14.10


Уравнение окружности и прямой

6

35

Уравнение окружности

1

15.10


36

Уравнение прямой

1

16.10


37

Уравнение окружности и прямой. Решение задач.

1

17.10


38

Решение задач по теме: «Метод координат»

1

20.10


39

Обобщение по теме: «Метод координат».

1

21.10


40

Контрольная работа № 3 «Метод координат»

1

22.10


Уравнения и неравенства с одной переменной

14

Уравнения с одной переменной

8

41

Целое уравнение и его корни

1

23.10


42

Решение целых уравнений разложением на множители

1

24.10


43

Уравнения, приводимые к квадратным

1

27.10


44

Решение биквадратных уравнений

1

28.10


45

Дробные рациональные уравнения

1

29.10


46

Подбор корней дробно- рациональных уравнений.

1

30.10


47

Решение дробных рациональных уравнений.

1

31.10


48

Обобщение темы «Дробные рациональные уравнения».

1

10.11


Неравенства с одной переменной

6

49

Неравенства второй степени с одной переменной

1

11.11


50

Решение неравенств второй степени с одной переменной

1

12.11


51

Решение неравенств методом интервалов

1

13.11


52

Решение неравенств методом интервалов при кратных корнях.

1

14.11


53

Обобщающий урок «Уравнения и неравенства с одной переменной»

1

17.11


54

Контрольная работа № 4 «Уравнения и неравенства с одной переменной»

1

18.11


Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

11

Синус, косинус, тангенс угла

3

55

Синус, косинус и тангенс угла

1

19.11


56

Основное тригонометрическое тождество. Формулы приведения.

1

20.11


57

Формулы для вычисления координат точки

1

21.11


Соотношения между сторонами и углами треугольника

4

58

Теорема о площади треугольника

1

24.11


59

Теоремы синусов и косинусов

1

25.11


60

Решение треугольников

1

26.11


61

Измерительные работы

1

27.11


Скалярное произведение векторов

4

62

Скалярное произведение векторов

1

28.11


63

Скалярное произведение в координатах

1

1.12


64

Применение скалярного произведения векторов при решении задач.

1

2.12


65

Контрольная работа № 5 «Соотношения в треугольнике. Скалярное произведение векторов»

1

3.12


Уравнения и неравенства с двумя переменными

17

Уравнения с двумя переменными и их системы

12

66

Уравнение с двумя переменными .

1

4.12


67

Уравнение с двумя переменными и его график

1

5.12


68

Графический способ решения систем уравнений

1

8.12


69

Решения систем уравнений графическим методом.

1

9.12


70

Графический способ решения систем уравнений.

1

10.12


71

Решение систем уравнений второй степени

1

11.12


72

Решение систем уравнений второй степени разными способами

1

12.12


73

Обобщение темы «Решение систем уравнений второй степени»

1

15.12


74

Решение задач с помощью систем уравнений второй степени

1

16.12


75

Решение задач на движение с помощью систем уравнений второй степени

1

17.12


76

Решение задач на производительность с помощью систем уравнений второй степени

1

18.12


77

Решение задач с помощью систем уравнений второй степени

1

19.12


Неравенства с двумя переменными и их системы

5

78

Неравенства с двумя переменными

1

22.12


79

Решение неравенств с двумя переменными.

1

23.12


80

Системы неравенств с двумя переменными

1

24.12


81

Решение системы неравенств с двумя переменными.

1

25.12


82

Контрольная работа № 6 «Уравнения и неравенства с двумя переменными»

1

26.12


Длина окружности и площадь круга.

12

Правильные многоугольники

4

83

Правильный многоугольник

1

12.01


84

Окружность, описанная около правильного многоугольника и вписанная в правильный многоугольник

1

13.01


85

Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности

1

14.01


86

Решение задач по теме: «Правильный многоугольник»

1

15.01


Длина окружности и площадь круга

8

87

Длина окружности, свойства

1

16.01


88

Длина окружности. Решение задач

1

19.01


89

Площадь круга

1

20.01


90

Площадь кругового сектора

1

21.01


91

Площадь круга и кругового сектора.

1

22.01


92

Решение задач по теме: «Длина окружности и площадь круга»

1

23.01


93

Обобщение темы « Длина окружности и площадь круга»

1

26.01


94

Контрольная работа № 7 «Длина окружности и площадь круга»

1

27.01


Арифметическая и геометрическая прогрессии .

15

Арифметическая прогрессия

8

95

Числовые последовательности.

1

28.01


96

Последовательности.

1

29.01


97

Определение арифметической прогрессии. Формула п-го члена арифметической прогрессии

1

30.01


98

Формула п-го члена арифметической прогрессии.

1

2.02


99

Формула суммы п- первых членов арифметической прогрессии

1

3.02


100

Вычисление суммы п- первых членов арифметической прогрессии и ее применение

1

4.02


101

Решение задач на применение формулы суммы п первых членов арифметической прогрессии.

1

5.02


102

Контрольная работа № 8 « Арифметическая прогрессия»

1

6.02


Геометрическая прогрессия

7

103

Определение геометрической прогрессии.

1

9.02


104

Формула п – го члена геометрической прогрессии

1

10.02


105

Формула суммы п первых членов геометрической прогрессии

1

11.02


106

Решение задач на применение формулы суммы п первых членов геометрической прогрессии

1

12.02


107

Формула суммы п первых членов геометрической прогрессии - решение задач.

1

13.02


108

Обобщение темы «Геометрическая прогрессия».

1

16.02


109

Контрольная работа № 9 «Геометрическая прогрессия»

1

17.02


Движения

9

Понятие движения

4

110

Понятие движения

1

18.02


111

Вид движения – гомотетия.

1

19.02


112

Свойства движений.

1

20.02


113

Решение задач по теме «Понятие движения. Осевая и центральная симметрии»

1

23.02


Параллельный перенос и поворот

5

114

Параллельный перенос

1

24.02


115

Поворот

1

25.02


116

Решение задач по теме: «Параллельный перенос. Поворот»

1

26.02


117

Решение задач по теме: «Движения».

1

27.02


118

Контрольная работа № 10 «Движения»

1

2.03


Элементы комбинаторики и теории вероятностей

12

Элементы комбинаторики

8

119

Правила умножения в комбинаторике.

1

3.03


120

Примеры комбинаторных задач

1

4.03


121

Перестановки

1

5.03


122

Перестановки

1

6.03


123

Размещения

1

9.03


124

Сочетания

1

10.03


125

Сочетания

1

11.03


126

Решение комбинаторных задач

1

12.03


Начальные сведения из теории вероятностей

4

127

Относительная частота случайного события

1

13.03


128

Вероятность равновозможных событий

1

16.03


129

Решение задач по теории вероятностей. Представление о геометрической вероятности.

1

17.03


130

Контрольная работа №11 «Комбинаторика и теория вероятностей»

1

18.03


Начальные сведения из стереометрии. Об аксиомах планиметрии.

10

Многогранники

4

131

Предмет стереометрии. Многогранник. Примеры разверток.

1

19.03


132

Призма. Параллелепипед.

1

20.03


133

Объем тела. Свойства прямоугольного параллелепипеда

1

21.03


134

Пирамида. Решение задач на сечения многогранников.

1

1.04


Тела и поверхности вращения

6

135

Цилиндр

1

2.04


136

Конус

1

3.04


137

Сфера и шар

1

6.04


138

Решение задач. Тела и поверхности вращения

1

7.04


139

Об аксиомах планиметрии

1

8.04


140

Обобщение темы «Тела и поверхности вращения»

1

9.04


Итоговое повторение

30

141

Повторение. Графики функций

1

10.04


142

Повторение. Решение задач на свойства функций

1

13.04


143

Повторение. Решение уравнений и систем уравнений.

1

14.04


144

Повторение. Решение неравенств и систем неравенств

1

15.04


145

Повторение. Арифметическая прогрессии

1

16.04


146

Повторение. Геометрическая прогрессия

1

17.04


147

Повторение. Решение задач на арифметическую и геометрическую прогрессии

1

20.04


148-

Повторение. Элементы комбинаторики

1

21.04


149

Повторение. Решение задач на теорию вероятности

1

22.04


150

Повторение. Решение текстовых задач.

1

23.04


151

Повторение. Решение задач на дробно рациональные уравнения

1

24.04


152

Повторение. Параллельные прямые

1

27.04


153

Повторение. Основные соотношения в треугольнике

1

28.04


154

Повторение. Площадь треугольника

1

29.04


155

Повторение. Четырехугольники.

1

30.04


156

Повторение. Векторы.

1

1.05


157

Повторение. Окружность и круг.

1

4.05


158

Повторение. Движения

1

5.05


159

Повторение. Аксиомы планиметрии

1

6.05


160

Повторение. Решение планиметрических задач

1

7.05


161

Итоговая контрольная работа № 12

1

8.05


162

Повторение. Действия с алгебраическими выражениями

1

11.05


163

Повторение. Решение текстовых задач на проценты, на движение,на работу

1

12.05


164

Повторение. Решение задач с помощью линейных уравнений

1

13.05


165

Повторение. Решение задач с помощью квадратных уравнений

1

14.05


166

Повторение. Решение задач с помощью систем уравнений

1

15.05


167

Повторение. Исследование функций и построение графиков

1

18.05


168

Повторение. Преобразования выражений, содержащих действия с многочленами и алгебраическими дробями

1

19.05


169

Повторение. Арифметическая и геометрическая прогрессии


20.05


170

Повторение. комбинаторики и теории вероятности

1

21.05














Требования к уровню подготовки выпускников основной школы

АРИФМЕТИКА

Уметь:

выполнять устный счет с целыми числами, обыкновенными и десятичными дробями;

переходить от одной формы записи чисел к другой, выбирая наиболее подходящую, в зависимости от конкретной ситуации; представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты в виде дроби и дробь в виде процентов; применять стандартный вид числа для записи больших и малых чисел; выполнять умножение и деление чисел, записанных в стандартном виде;

изображать числа точками на координатной прямой;

выполнять арифметические действия с рациональными числами, сравнивать рациональные числа; находить значения степеней с целыми показателями и корней; находить значения числовых выражений;

округлять целые числа и десятичные дроби, находить приближенное значение числового выражения; пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

решать текстовые задачи, включая задачи на движение и работу; задачи, связанные с отношением и с пропорциональностью величин; основные задачи на дроби и на проценты; задачи с целочисленными неизвестными.

Применять полученные знания:

для решения несложных практических расчетных задач, в том числе, с использованием при необходимости справочных материалов и простейших вычислительных устройств; для устной прикидки и оценки результатов вычислений; для проверки результата вычисления на правдоподобие, используя различные приемы; для интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.


АЛГЕБРА

Уметь:

составлять буквенные выражения и формулы по условиям задач, осуществлять подстановку одного выражения в другое, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, выражать из формул одни переменные через другие;

выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы уравнений (линейные и системы, в которых одно уравнение второй, а другое первой степени);

решать линейные неравенства с одной переменной и их системы, квадратные неравенства;

решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, учитывать ограничения целочисленности, диапазона изменения величин;

определять значения тригонометрических выражений по заданным значениям углов;

находить значения тригонометрических функций по значению одной из них;

определять координаты точки в координатной плоскости, строить точки с заданными координатами; решать задачи на координатной плоскости: изображать различные соотношения между двумя переменными, находить координаты точек пересечения графиков;

применять графические представления при решении уравнений, систем, неравенств;

находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу;

строить графики изученных функций, описывать их свойства, определять свойства функции по ее графику;

распознавать арифметические и геометрические прогрессии, использовать формулы общего члена и суммы нескольких первых членов.

Применять полученные знания:

для выполнения расчетов по формулам, понимая формулу как алгоритм вычисления; для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах; при моделировании практических ситуаций и исследовании построенных моделей (используя аппарат алгебры);

при интерпретации графиков зависимостей между величинами, переводя на язык функций и исследуя реальные зависимости;

для расчетов, включающих простейшие тригонометрические формулы;

при решении планиметрических задач с использованием аппарата тригонометрии.


ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

Уметь:

оценивать логическую правильность рассуждений, в своих доказательствах использовать только логически корректные действия, понимать смысл контрпримеров;

извлекать информацию, представленную в таблицах, на диаграммах, на графиках; составлять таблицы; строить диаграммы и графики;

решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;

вычислять средние значения результатов измерений; находить частоту события;

в простейших случаях находить вероятности случайных событий, в том числе с использованием комбинаторики.

Применять полученные знания:

при записи математических утверждений, доказательств, решении задач;

в анализе реальных числовых данных, представленных в виде диаграмм, графиков;

при решении учебных и практических задач, осуществляя систематический перебор вариантов;

при сравнении шансов наступления случайных событий;

для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией.


ГЕОМЕТРИЯ

Уметь:

распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, используя определения, свойства, признаки;

изображать планиметрические фигуры, выполнять чертежи по условиям задач, осуществлять преобразования фигур;

распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их; представлять их сечения и развертки;

вычислять значения геометрических величин (длин, углов, площадей, объемов);

решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

решать основные задачи на построение с помощью циркуля и линейки: угла, равного данному; биссектрисы данного угла; серединного перпендикуляра к отрезку; прямой, параллельной данной прямой; треугольника по трем сторонам;

решать простейшие планиметрические задачи в пространстве.

Применять полученные знания:

при построениях геометрическими инструментами (линейка, угольник, циркуль, транспортир);

для вычисления длин, площадей основных геометрических фигур с помощью формул (используя при необходимости справочники и технические средства).


Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере. .

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.

3.2. К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.






Учебно-тематическое планирование

Математика 9 класс


Тема

Количество

часов

1.

Квадратичная функция.

22

2.

Векторы. Метод координат.

18

3.

Уравнения и неравенства с одной переменной.

14

4.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

11

5.

Уравнения и неравенства с двумя переменными.

17

6.

Длина окружности и площадь круга.

12

7.

Арифметическая и геометрическая прогрессия.

15

8.

Движения.

9

9.

Элементы комбинаторики и теории вероятности.

12

10.

Начальные сведения из стереометрии об аксиомах планиметрии.

10

11.

Итоговое повторение курса математики 5-9 кл.

30

Всего уроков

170












Учебный предмет


математика


Количество часов в неделю по учебному плану____5___

Всего количество часов в году по плану ___170


Класс (параллель классов) _9_

Учитель _Зарипова Ляйсан Азгамовна____


Федеральный государственный образовательный стандарт основного общего образования 2004 г.

Программа по курсу__Математика_________________________________

утверждена на Педагогическом совете (протокол № _____ от «____» _____ 2015 г.)


Количество обязательных контрольных работ _12_

Количество обязательных практических работ __________________

Количество обязательных лабораторных работ_______________________

Количество обязательных уроков по развитию речи___________________


Учебное пособие для учащихся: Макарычев Ю.Н., Миндюк Н.Г. Алгебра 9 класс. М.: «Просвещение», 2010.

Атанасян Л.С., Бутузов В.Ф. и др. учебник Геометрия 7-9 кл. М.: «Просвещение», 2009.


Дополнительная литература: Макарычев Ю.Н., Миндюк Н.Г., Короткова Л.М. Дидактические материалы по алгебре для 9 класса.

М.: «Просвещение», 2008.

Зив Б.Г. Дидактические материалы по геометрии для 9 класса. М.: «Просвещение», 2008.

(рекомендовано/допущено Министерством образования и науки РФ)







Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 21.09.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров150
Номер материала ДВ-000738
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх