Инфоурок / Математика / Рабочие программы / Рабочая программа по математике для 6 класса по ФГОС
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Педагогическая деятельность в соответствии с новым ФГОС требует от учителя наличия системы специальных знаний в области анатомии, физиологии, специальной психологии, дефектологии и социальной работы.

Только сейчас Вы можете пройти дистанционное обучение прямо на сайте "Инфоурок" со скидкой 40% по курсу повышения квалификации "Организация работы с обучающимися с ограниченными возможностями здоровья (ОВЗ)" (72 часа). По окончании курса Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Автор курса: Логинова Наталья Геннадьевна, кандидат педагогических наук, учитель высшей категории. Начало обучения новой группы: 27 сентября.

Подать заявку на этот курс    Смотреть список всех 216 курсов со скидкой 40%

Рабочая программа по математике для 6 класса по ФГОС

библиотека
материалов

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №3

с углубленным изучением отдельных предметов»

городского округа город Кумертау Республики Башкортостан


Рассмотрено

на заседании ШМО

учителей математики, физики,

информатики и ИКТ

Протокол №________

от « » августа 201_г.

Руководитель ШМО

______ __________________


Утверждаю

Директор МБОУ СОШ №3

________ В.А.Чепелюк

Приказ №_____________

от « »________ 201_г.





РАБОЧАЯ ПРОГРАММА КУРСА

МАТЕМАТИКИ

ДЛЯ ОСНОВНОЙ ШКОЛЫ

ДЛЯ 6 КЛАССОВ




Срок реализации данной программы 1 год

Данная Рабочая программа разработана на основе

Сборника рабочих программ.5-9 классы: учеб. пособие для общеобразоват. Организаций/сост. Т.А. Бурмистрова.



Составитель: учитель математики

МБОУ СОШ №3

Клименко Олеся Александровна





СОГЛАСОВАНО

Зам.дир.по УВР

Шайгородская Е.А.

« »___________2016г.



2016г.





1.Пояснительная записка

Рабочая программа по математике составлена на основе Федерального государственного образовательного стандарта основного общего образования. Данная рабочая программа ориентирована на учащихся 5-9 классов.

Программа по математике составлена на основе Фундаментального ядра содержания общего образования, требований к результатам освоения образовательной программы основного общего образования, представленных в федеральном государственном стандарте основного общего образования с учётом преемственности с Примерными программами для начального общего образования по математике. В ней также учитываются доминирующие идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности, и способствуют формированию ключевой компетенции – умению учиться.

Курс математики 5-9 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а также учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса геометрии 7-9 классов состоит в том, что предметом её изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.

Геометрия является одним из опорных школьных предметов. Геометрические знания и умения необходимы для изучения других школьных дисциплин (физика, география, химия, информатика и др.).

Одной из основных целей изучения геометрии является развитие мышления, прежде всего формирование абстрактного мышления. В процессе изучения геометрии формируются логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение геометрии даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

В процессе изучения геометрии школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития геометрии как науки формирует у учащихся представления о геометрии как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, доказательство, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения разнообразных задач прикладного характера. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.


Цели курса:

Изучение математики в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития

развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении

формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
3) в предметном направлении

овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Практическая значимость школьного курса математики 5-9 классов состоит в том, что предметом её изучения являются пространственные формы и количественные отношения реального мира. В современном мире математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.

Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в старших классах, а также для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего формирования абстрактного мышления.

В процессе изучения математики также формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность.

В процессе изучения математики ученики 5-9 классов учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития математики как науки формирует у учащихся представления о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируется содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, например, решение текстовых задач, денежные и процентные расчеты, умение пользоваться количественной информацией, представленной в различных формах, умение «читать» графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определенного типа.

С точки зрения воспитания творческой личности, особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приёмы как общего, так и конкретного характера. Эти приёмы, в частности, формируются при поиске решения задач высших уровней сложности. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математики даёт возможность школьникам научиться планировать свою деятельность, критически оценивать свою деятельность, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

Знакомство с историей развития математики как науки формирует у учащихся представления о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируется содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, например, решение текстовых задач, денежные и процентные расчеты, умение пользоваться количественной информацией, представленной в различных формах, умение «читать» графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определенного типа.


2.Общая характеристика курса математики в 5-9 классах


Содержание математического образования в 5-9 классах представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигуры. Измерение геометрических величин», «Элементы статистики, вероятности. Комбинаторные задачи», «Математика в историческом развитии» «Алгебра», «Числовые множества», «Функции», «Элементы прикладной математики», «Алгебра в историческом развитии»

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе связано с изучением рациональных чисел: натуральных чисел, обыкновенных и десятичных дробей, положительных и отрицательных чисел.

Содержание раздела «Числовые и буквенные выражения. Уравнения» формирует знания о математическом языке. Существенная роль при этом отводится овладению формальным аппаратом буквенного исчисления. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений.

Содержание раздела «Геометрические фигуры. Измерения геометрических величин» формирует у учащихся понятия геометрических фигур на плоскости и в пространстве, закладывает основы формирования геометрической «речи», развивает пространственное воображение и логическое мышление.

Содержание раздела «Элементы статистики, вероятности. Комбинаторные задачи» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор вариантов, в том числе в простейших прикладных задачах.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Раздел»Числовые множества» нацелен на математическое развитие учащихся, формирование у них точно, сжато и ясно излагать мысли в устной и письменной речи.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Содержание раздела «Элементы прикладной математики» раскрывают прикладное и практическое значения математики в современном мире. Материал способствует формированию умения представлять и анализировать информацию.

Раздел «Алгебра в историческом развитии» предназначается для формирования представлений о математике как части человеческойкультуры, для общего развития школьников, создания культурно- исторической среды обучения.

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Содержание курса геометрии в 7-9 классах представлено в виде следующих содержательных разделов: «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Геометрия в историческом развитии».

Содержание раздела «Геометрические фигуры» служит базой для дальнейшего изучения учащимися геометрии. Изучение материала способствует формированию у учащихся знаний о геометрической фигуре как важнейшей математической модели для описания реального мира. Главная цель данного раздела — развить у учащихся воображение и логическое мышление путём систематического изучения свойств геометрических фигур и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности с формально-логическим подходом является неотъемлемой частью геометрических знаний.

Содержание раздела «Измерение геометрических величин» расширяет и углубляет представления учащихся об измерениях длин, углов и площадей фигур, способствует формированию практических навыков, необходимых как при решении геометрических задач, так и в повседневной жизни.

Содержание разделов «Координаты», «Векторы» расширяет и углубляет представления учащихся о методе координат, развивает умение применять алгебраический аппарат при решении геометрических задач, а также задач смежных дисциплин.

Раздел «Геометрия в историческом развитии», содержание которого фрагментарно внедрено в изложение нового материала как сведения об авторах изучаемых фактов и теорем, истории их открытия, предназначен для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.


3.Место курса математики в учебном плане.


Базисный учебный (образовательный) план на изучение математики в5-9классах основной школы отводит 5 учебных часов в неделю в течение каждого года обучения, всего 170 часов. (5-9 классы – 5 часов в неделю, всего 850 часов). Учебное время увеличено до 6 часов в неделю за счёт вариативной части Базисного плана. На изучение математики в 2016-2017 уч.г. отводится 6 часов в неделю, 204 часа.


4.Личностные, метапредметные и предметные результаты освоения учебного предмета.


Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

7) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

8) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

9) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

10) умение контролировать процесс и результат учебной и математической деятельности;

11) критичность мышления, инициатива, находчивость, активность при решении геометрических задач;


в метапредметном направлении:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

10) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

11) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

12) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

13) устанавливать причинно-следственные связи, проводить доказательное рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

14) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;

15) компетентность в области использования информационно-коммуникационных технологий;

16) первоначальные представления об идеях и о методах геометрии как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

17) умение видеть геометрическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

18) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

19) умение понимать и использовать математические средства наглядности (чертежи, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

20) умение выдвигать гипотезы при решении задачи и понимать необходимость их проверки;


в предметном направлении:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;

6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера;

11) осознание значения геометрии для повседневной жизни человека;

12) представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

13) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;

14) владение базовым понятийным аппаратом по основным разделам содержания;

15) систематические знания о фигурах и их свойствах;

16) практически значимые геометрические умения и навыки, умение применять их к решению геометрических и негеометрических задач, а именно:

  • изображать фигуры на плоскости;

  • использовать геометрический язык для описания предметов окружающего мира;

  • измерять длины отрезков, величины углов, вычислять площади фигур;

  • распознавать и изображать равные, симметричные и подобные фигуры;

  • выполнять построения геометрических фигур с помощью циркуля и линейки;

  • читать и использовать информацию, представленную на чертежах, схемах;

  • проводить практические расчёты.


Планируемые результаты обучения

математики в 5-9 классах.

Арифметика

По окончании изучения курса учащийся научится:

  • особенности десятичной системы счисления;

  • использовать понятия, связанные с делимостью натуральных чисел;

  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

  • сравнивать и упорядочивать рациональные числа;

  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

  • использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;

  • анализировать графики зависимостей между величинами (расстояние, время; температура и т.п.).

Учащийся получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;

  • углубить и развить представления о натуральных числах и свойствах делимости;

  • научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

  • выполнять операции с числовыми выражениями;

  • выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);

  • решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

  • развить представления о буквенных выражениях и их преобразованиях;

  • овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых так и практических задач.

Геометрические фигуры.

Измерение геометрических величин

По окончании изучения курса учащийся научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;

  • строить углы, определять их градусную меру;

  • распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

  • определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

  • вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

  • научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

  • углубить и развить представления о пространственных геометрических фигурах;

  • научиться применять понятие развёртки для выполнения практических расчётов.

Элементы статистики, вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

  • использовать простейшие способы представления и анализа статистических данных;

  • решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

  • приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

  • научиться некоторым специальным приемам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

• вычислять объём прямоугольного параллелепипеда.Ученик получит возможность:

• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов.

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• сравнивать и упорядочивать рациональные числа;

• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Ученик получит возможность:

• познакомиться с позиционными системами счисления с основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

• использовать начальные представления о множестве действительных чисел;

• оперировать понятием квадратного корня, применять его в вычислениях.

Ученик получит возможность:

• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Ученик получит возможность:

• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Ученик научится:

• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наимень-шего значения выражения).

Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Ученик получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Ученик научится:

• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разделов курса.

Ученик получит возможность научиться:

• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Ученик научится:

• понимать и использовать функциональные понятия и язык (термины, символические обозначения);

• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Ученик получит возможность научиться:

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

• понимать и использовать язык последовательностей (термины, символические обозначения);

• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Ученик получит возможность научиться:

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.Ученик получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторы

• углубить и развить представления о пространственных геометрических фигурах;

• научиться применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

• научиться решать задачи на построение методом геометрического места точек и методом подобия;

• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

• использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и доказательства;

• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и доказательства;

• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».


Требования к уровню подготовки выпускников

В результате изучения курса математики ученик должен знать/ понимать:

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; приводить примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

Арифметика

Уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты - в виде дроби и дробь – в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближенные числа с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Алгебра

Уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координата точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составление формул, выражающих зависимость между реальными величинами; нахождения нужной формулы в справочных материала;

  • моделирование практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.

Геометрия

Уметь

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для углов от 00 до 1800 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения тригонометрических задач с использованием тригонометрии;

  • решение практических задач, связанных с нахождениемгеометрических величин (используя при необходимости справочники и технические средства);

  • построение геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Элементы логики, комбинаторики, статистики и теории вероятностей

Уметь

  • Проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов и использованием правил умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве и в диалоге;

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.


5.Содержание курса математики 5-9 классов

Арифметика

Натуральные числа

Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел.

Координатный луч.

Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.

Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.

Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

Простые и составные числа. Разложение чисел на простые множители.

Решение текстовых задач арифметическими способами.

Дроби

Обыкновенные дроби. Основное свойство дроби. Нахождение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа.

Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновенной дроби.

Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.

Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.

Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

Решение текстовых задач арифметическими способами.

Рациональные числа

Положительные, отрицательные числа и число 0.

Противоположные числа. Модуль числа.

Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.

Координатная прямая. Координатная плоскость.

Величины. Зависимости между величинами

Единицы длины, площади, объема, массы, времени, скорости.

Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.

Числовые и буквенные выражения. Уравнения

Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.

Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности. Комбинаторные задачи

Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

Среднее арифметическое. Среднее значение величины.

Случайное событие. Достоверное и невозможное события. Вероятность случайного события. Решение комбинаторных задач.

Геометрические фигуры. Измерения геометрических величин

Отрезок. Построение отрезка. Длина отрезка, ломаной. Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.

Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Прямоугольник. Квадрат. Треугольник. Виды треугольников. Окружность и круг. Длина окружности. Число π.

Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось симметрии фигуры.

Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера. Примеры разверток многогранников, цилиндра, конуса. Понятие и свойства объема. Объем прямоугольного параллелепипеда и куба.

Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.

Осевая и центральная симметрии.

Математика в историческом развитии

Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в России, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел.


Алгебра

Алгебраические выражения

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразование выражений.

Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы квадрат разности, куб суммы и куб разности. Формула разности квадратов, формулы суммы кубов и разности кубов. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена.

Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.

Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычитаниях.

Уравнения и неравенства

Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение, формула корней квадратного уравнения. Решение рациональных уравнений. Примеры решения уравнений высших степеней: методы замены переменной, разложение на множители.

Уравнение с двумя переменными; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-рациональных неравенств.

Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом.

Числовые последовательности

Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий.

Сложные проценты.

Числовые функции

Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций.

Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем.

Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост; числовые функции, описывающие эти процессы.

Параллельный перенос графика вдоль осей координат и симметрия относительно осей.

Координаты

Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.

Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.

Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.


Геометрия


Простейшие геометрические фигуры

Точка, прямая. Отрезок, луч. Угол. Виды углов. Смежные и вертикальные углы. Биссектриса угла.

Пересекающиеся и параллельные прямые. Перпендикулярные прямые. Признаки параллельности прямых. Свойства параллельных прямых. Перпендикуляр и наклонная к прямой.


Многоугольники

Треугольники. Виды треугольников. Медиана, биссектриса, высота, средняя линия треугольника. Признаки равенства треугольников. Свойства и признаки равнобедренного треугольника. Серединный перпендикуляр отрезка. Сумма углов треугольника. Внешние углы треугольника. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Теорема Пифагора.

Подобные треугольники. Признаки подобия треугольников. Точки пересечения медиан, биссектрис, высот треугольника, серединных перпендикуляров сторон треугольника. Свойство биссектрисы треугольника. Теорема Фалеса. Метрические соотношения в прямоугольном треугольнике. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников. Теорема синусов и теорема косинусов.

Четырёхугольники. Параллелограмм. Свойства и признаки параллелограмма. Прямоугольник, ромб, квадрат, их свойства и признаки. Трапеция. Средняя линия трапеции и её свойства.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.


Окружность и круг. Геометрические построения

Окружность и круг. Элементы окружности и круга. Центральные и вписанные углы. Касательная к окружности и её свойства. Взаимное расположение прямой и окружности. Описанная и вписанная окружности треугольника. Вписанные и описанные четырёхугольники, их свойства и признаки. Вписанные и описанные многоугольники.

Геометрическое место точек (ГМТ). Серединный перпендикуляр отрезка и биссектриса угла как ГМТ.

Геометрические построения циркулем и линейкой. Основные задачи на построение: построение угла, равного данному, построение серединного перпендикуляра данного отрезка, построение прямой, проходящей через данную точку и перпендикулярной данной прямой, построение биссектрисы данного угла. Построение треугольника по заданным элементам. Метод ГМТ в задачах на построение.


Измерение геометрических величин

Длина отрезка. Расстояние между двумя точками. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности. Длина дуги окружности.

Градусная мера угла. Величина вписанного угла.

Понятия площади многоугольника. Равновеликие фигуры. Нахождение площади квадрата, прямоугольника, параллелограмма, треугольника, трапеции.

Понятие площади круга. Площадь сектора. Отношение площадей подобных фигур.


Декартовые координаты на плоскости

Формула расстояния между двумя точками. Координаты середины отрезка. Уравнение фигуры. Уравнения окружности и прямой. Угловой коэффициент прямой.


Векторы

Понятие вектора. Модуль (длина) вектора. Равные векторы. Коллинеарные векторы. Координаты вектора. Сложение и вычитание векторов. Умножение вектора на число. Скалярное произведение векторов. Косинус угла между двумя векторами.


Геометрические преобразования

Понятие о преобразовании фигуры. Движение фигуры. Виды движения фигуры: параллельный перенос, осевая симметрия, центральная симметрия, поворот. Равные фигуры. Гомотетия. Подобие фигур.


Элементы логики

Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Необходимое и достаточное условия. Употребление логических связок если..., то ..., тогда и только тогда.


Геометрия в историческом развитии

Из истории геометрии, «Начала» Евклида. История пятого постулата Евклида. Тригонометрия — наука об измерении треугольников. Построение правильных многоугольников. Как зародилась идея координат.

Н.И. Лобачевский. Л. Эйлер. Фалес. Пифагор.

6.Тематическое планирование с определением основных видов учебной деятельности обучающихся.

Математика 5-6 классы

Раздел

Основные виды учебной

деятельности обучающихся

1

2

1. Натуральные числа (60 ч)

натуральный ряд. Десятичная система счисления. Позиционные системы счисления. Арифметические действия с натуральными числами. Свойства арифме­тических действий. Понятие о степени с натуральным показателем. Квадрат и куб числа. Числовые выражения, значение числового выра­жения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическим спосо­бом. Делители и кратные. Наибольший общий дели­тель; наименьшее общее кратное. Свойства делимос­ти. Признаки делимости на 2, 3, 5, 9, 10. Другие признаки делимости (например, на 4, на 25). Прос­тые и составные числа. Разложение натурального чи­сла на простые множители. Алгоритмы нахождения НОК и НОД. Деление с остатком. Разбиение множе­ства натуральных чисел на классы по остаткам от де­ления.

Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их. Выполнять вычисления с натуральными числами; вы­числять значения степеней. Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения. Анализировать и осмысливать текст задачи, пере­формулировать условие, извлекать необходимую инфор­мацию, моделировать условие с помощью схем, рисун­ков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответ­ствие условию. Формулировать определения делителя и кратного, простого и составного чисел, свойства и признаки дели­мости. Решать задачи, связанные с делимостью чисел. Доказывать и опровергать с помощью контрприме­ров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от де­ления на 3 и т. п.)

Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с ис­пользованием калькулятора, компьютера)

2. Дроби (140 ч)

обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части. Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Отношение. Пропорция; основное свойство пропорции. Проценты. Нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах. Решение текстовых задач арифметическим спосо­бом.

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби. Формулировать, записывать с помощью букв основное свойство дроби, правила действий с обыкновенными дробями. Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями. Читать и записывать десятичные дроби. Представлять обыкновенные дроби в виде десятичных дробей и десятичные в виде обыкновенных; находить десятичные приближения обыкновенных дробей. Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями. Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях. Выполнять прикидку и оценку в ходе вычислений. Объяснять, что такое процент. Представлять про­центы в виде дробей и дроби в виде процентов. Осуществлять поиск информации (в СМИ), содержа­щей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений на практике. Решать задачи на проценты и дроби (в том числе за­дачи из реальной практики, используя при необходимос­ти калькулятор); использовать понятия отношения и пропорции при решении задач. Анализировать и осмысливать текст задачи, пере­формулировать условие, извлекать необходимую ин­формацию, моделировать условие с помощью схем.

3. Рациональные числа (50 ч)

Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной пря­мой; геометрическая интерпретация модуля числа. Множество целых чисел. Множество рациональ­ных чисел. Сравнение рациональных чисел. Арифме­тические действия с рациональными числами. Свой­ства арифметических действий

Приводить примеры использования в окружающем мире положительных и отрицательных чисел (темпе­ратура, выигрыш — проигрыш, выше — ниже уровня моря и т. п.). Изображать положительные и отрицательные рацио­нальные числа точками на координатной прямой. Характеризовать множество целых чисел, множе­ство рациональных чисел. Формулировать и записывать с помощью букв свойства действий с рациональными числами, приме­нять их для преобразования числовых выражений. Сравнивать и упорядочивать рациональные числа.

4. Измерения, приближения, оценки. Зависимости между величинами (25 ч)


Приближенное значение величины; округление на­туральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

Примеры зависимостей между величинами: ско­рость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представ­ление зависимостей в виде формул.Решение текстовых задач арифметическим спосо­бом






Выражать одни единицы измерения величины в дру­гих единицах (метры в километрах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений.Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.Использовать знания о зависимостях между величи­нами (скорость, время, расстояние; работа, производи­тельность, время и т. п.) при решении текстовых задач; осмысливать текст задачи, извлекать необходимую ин­формацию, строить логическую цепочку рассуждений; критически оценивать полученный ответ


5. Элементы алгебры (25 ч)


Использование букв для обозначения чисел, для записи свойств арифметических действий.

Буквенные выражения. Числовое значение буквен­ного выражения.

Уравнение, корень уравнения. Нахождение неиз­вестных компонентов арифметических действий.

Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точ­ки на плоскости


Читать и записывать буквенные выражения, состав­лять буквенные выражения по условиям задач.Вычислять числовое значение буквенного выражения при заданных значениях букв.Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.Строить на координатной плоскости точки и фигуры по заданным координатам.

6. Описательная статистика. Вероятность. Комбинаторика (25 ч)




Представление данных в виде таблиц, диаграмм. Понятие о случайном событии. Достоверное и не­возможное события. Сравнение шансов

Решение комбинаторных задач методом перебора вариантов

Извлекать информацию из таблиц и диаграмм, вы­полнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие зна­чения и др.Выполнять сбор информации в несложных случаях, организовывать информацию в виде таблиц и диа­грамм, в том числе с помощью компьютерных программ. Приводить примеры случайных событий, достовер­ных и невозможных событий. Сравнивать шансы наступ­ления событий; строить речевые конструкции с исполь­зованием словосочетаний более вероятно, маловероятно и др. Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комби­нации, отвечающие заданным условиям.

7. Наглядная геометрия (45 ч)

Наглядные представления о геометрических фигу­рах: прямая, отрезок, луч, угол, ломаная, многоуголь­ник, окружность, круг. Взаимное расположение двух прямых, двух окружностей. Многоугольник, правильный многоугольник. Четы­рехугольник, прямоугольник, квадрат. Виды треуголь­ников: остроугольный, прямоугольный, тупоугольный, равнобедренный, равносторонний. Изображение геометрических фигур на нелино­ванной бумаге с использованием циркуля, линейки, угольника, транспортира. [Построения на клетчатой бумаге.] Длина отрезка-, ломаной. Периметр многоуголь­ника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины с по­мощью линейки. Виды углов: острый, прямой, тупой, развернутый. Градусная мера угла. Измерение и построение углов заданной градусной меры с помощью транспортира. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Равно­великие фигуры. Равносоставленные фигуры. Разрезание и составление геометрических фигур. Построение паркетов, орнаментов, узоров. Решение задач на нахождение равновеликих и равносоставленных фигур. Наглядные представления о пространственных фи­гурах (куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр). Изображение пространствен­ных фигур. Примеры сечений.Многогранники.Понятие объема; единицы объема. Объем прямо­угольного параллелепипеда, куба.Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.Графы. Задача Эйлера о кёнигсбергских мостах

Распознавать на чертежах, рисунках, и моделях гео­метрические фигуры, конфигурации фигур (плоские и пространственные). Приводить примеры аналогов гео­метрических фигур в окружающем мире. Изображать геометрические фигуры и их конфигу­рации от руки и с использованием чертежных инструмен­тов. Изображать геометрические фигуры на клетчатой бумаге. Измерять с помощью линейки и сравнивать длины отрезков. Строить отрезки заданной длины с помощью линейки и циркуля, углы заданной величины с помощью транспортира. Выражать одни единицы измерения длин через другие. Выражать одни единицы измерения углов через другие.

Вычислять площади квадратов и прямоугольников, ис­пользуя формулы площади квадрата и прямоугольника. Выражать одни единицы измерения площади через другие. Изготавливать пространственные фигуры из развер­ток; распознавать развертки куба, параллелепипеда, пи­рамиды, цилиндра и конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, опреде­лять их вид.Вычислять объемы куба и прямоугольного паралле­лепипеда, используя формулы объема куба и прямо­угольного параллелепипеда. Выражать одни единицы измерения объема через другие.Исследовать и описывать свойства геометрических фигур (плоских и пространственных)

АЛГЕБРА 7—9 классы (315 ч)

Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

1

2

1. Действительные числа (15 ч)

Расширение множества натуральных чисел до множества целых, множества целых чисел до множе­ства рациональных. Рациональное число как отноше­ние —, где т целое число, а и — натуральное чи­сло.

Степень с целым показателем. Квадратный корень из числа. Корень третьей сте­пени. Понятие об иррациональном числе. Иррацио­нальность числа л/2 и несоизмеримость стороны и диагонали квадрата. Десятичные приближения ирра­циональных чисел. Множество действительных чисел; представление действительных чисел в виде бесконечных десятич­ных дробей. Сравнение действительных чисел. Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки: интервал, отрезок, луч

Описывать множество целых чисел, множество ра­циональных чисел, соотношение между этими множе­ствами. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вы­числять значения степеней с целым показателем. Формулировать определение квадратного корня из числа. Использовать график функции у = х2 для нахож­дения квадратных корней. Вычислять точные и прибли­женные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней. Формулировать определение корня третьей степени; находить значения кубических корней, при необходимо­сти используя калькулятор. Приводить примеры иррациональных чисел; распо­знавать рациональные и иррациональные числа; изобра­жать числа точками координатной прямой. Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа. Описывать множество действительных чисел. Использовать в письменной математической речи обозначения и графические изображения числовых мно­жеств, теоретико-множественную символику

2. Измерения, приближения, оценки (10 ч.)

Приближенное значение величины, точность приближения. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множите­ля — степени 10 в записи числа.Прикидка и оценка результатов вычислений

Находить и анализировать, сопоставлять числовые характеристики объектов окружающего мира. Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире. Сравнивать числа и величины, записанные с исполь­зованием степени 10.Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения.Выполнять вычисления с реальными данными.Выполнять прикидку и оценку результатов вычислений.

3. Введение в алгебру (8 ч)


Буквенные выражения (выражения с переменны­ми). Числовое значение буквенного выражения. До­пустимые значения переменных. Подстановка выраже­ний вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквен­ных выражений. Тождество


Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выра­жения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагае­мых, раскрытие скобок, упрощение произведений).Вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении

4. Многочлены (45 ч)


Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сло­жение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение мно­гочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители


Формулировать, записывать в символической фор­ме и обосновывать свойства степени с натуральным по­казателем; применять свойства степени для преобразо­вания выражений и вычислений. Выполнять действия с многочленами.

Выводить формулы сокращенного умножения, при­менять их в преобразованиях выражений и вычислениях. Выполнять разложение многочленов на множители. Распознавать квадратный трехчлен, выяснять возмож­ность разложения на множители, представлять квадрат­ный трехчлен в виде произведения линейных множителей. Применять различные формы самоконтроля при вы­полнении преобразований

5. Алгебраические дроби (22 ч)

Алгебраическая дробь. Основное свойство алгеб­раической дроби. Сокращение дробей. Сложение, вы­читание, умножение, деление алгебраических дробей. Степень с целым показателем и ее свойства. Рациональные выражения и их преобразования. Доказательство тождеств

формулировать основное свойство алгебраической дроби и применять его для преобразования дробей. Выполнять действия с алгебраическими дробями. Представлять целое выражение в виде многочлена, дробное - в виде отношения многочленов; доказывать тождества. Формулировать определение степени с целым пока­зателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений

6. Квадратные корни (12 ч)

Понятия квадратного корня, арифметического квадратного корня. Уравнение вида х2=а. Свойства арифметических квадратных корней: корень из произ­ведения, частного, степени. Применение свойств арифметических квадратных корней для преобразования числовых вы­ражений и вычислений

Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений. Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул. Исследовать уравнение вида х2 = а; находить точные и приближенные корни.

7. Уравнения с одной переменной (38 ч)

Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Решение уравнений, сводящихся к линейным. Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение. Примеры решения уравнений третьей и четвертой степени разложением на множители. Решение дробно-рациональных уравнений. Решение текстовых задач алгебраическим способом

Распознавать линейные и квадратные уравнения, целые и дробные уравнения. Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения. Исследовать квадратные уравнения по дискриминанту и коэффициентам. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат

8. Системы уравнений (30 ч)

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах. Система уравнений с двумя переменными. Равно­сильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое второй степени. Примеры решения систем нелинейных уравнений. Решение текстовых задач алгебраическим способом. Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменны­ми, угловой коэффициент прямой; условие парал­лельности прямых. Графики простейших нелинейных уравнений (па­рабола, гипербола, окружность). Графическая интерпретация системы уравнений с двумя переменными

Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными. Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора. Решать системы двух уравнений с двумя переменными, указанные в содержании. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат. Строить графики уравнений с двумя переменными. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков. Решать и исследовать уравнения и системы уравне­ний на основе функционально-графических представле­ний уравнений

9. Неравенства (20 ч)

Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной перемен­ной. Квадратные неравенства. Системы линейных неравенств с одной перемен­ной

Формулировать свойства числовых неравенств, ил­люстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при ре­шении задач. Распознавать линейные и квадратные неравенства. Решать линейные неравенства, системы линейных нера­венств. Решать квадратные неравенства на основе гра­фических представлений

10. Зависимости между величинами (15 ч)

Зависимость между величинами. Представление зависимостей между величинами в виде формул. Вычисления по формулам. Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свой­ства. Примеры прямо пропорциональных зависимостей. Обратная пропорциональная зависимость: зада­ние формулой, коэффициент обратной пропорциональности; свойства. Примеры обратных пропорцио­нальных зависимостей. Решение задач на прямую пропорциональную и обратную пропорциональную зависимости

Составлять формулы, выражающие зависимости между величинами, вычислять по формулам. Распознавать прямую и обратную пропорциональ­ные зависимости. Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни)

11. Числовые функции (35 ч)

Понятие функции. Область определения и множе­ство значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение гра­фиков функций. Примеры графиков зависимостей, отражающих реальные процессы. Функции, описывающие прямую и обратную про­порциональные зависимости, их графики. Линейная функция, ее график и свойства. Квадратичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства.

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); со­ставлять таблицы значений функций. Строить по точкам графики функций. Описывать свойства функции на основе ее графического представ­ления. Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей. Использовать функциональную символику для запи­си разнообразных фактов, связанных с рассматриваемы­ми функциями, обогащая опыт выполнения знаково-сим-волических действий. Строить речевые конструкции с использованием функциональной терминологии. Использовать компьютерные программы для по­строения графиков функций, для исследования положе­ния на координатной плоскости графиков функций в за­висимости от значений коэффициентов, входящих в формулу. Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости гра­фиков функций в зависимости от значений коэффициентов, входящих в формулы. Строить графики изучаемых функций; описывать их свойства

12. Числовые последовательности. Арифметическая и геометрическая прогрессии (15 ч)

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и фор­мулой n-го члена. Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометриче­ской прогрессий, суммы первых п членов. Изображе­ние членов арифметической и геометрической про­грессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты

Применять индексные обозначения, строить рече­вые высказывания с использованием терминологии, свя­занной с понятием последовательности. Вычислять члены последовательностей, заданных формулой n-го члена или рекуррентной формулой. Устанавливать закономерность в построении последова­тельности, если известны первые несколько ее членов. Изображать члены последовательности точками на ко­ординатной плоскости. Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего чле­на арифметической и геометрической прогрессий, суммы первых п членов арифметической и геометрической про­грессий; решать задачи с использованием этих формул. Рассматривать примеры из реальной жизни, иллю­стрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствую­щие зависимости графически. Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием кальку­лятора)

13. Описательная статистика (10 ч)

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметиче­ское, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании

Извлекать информацию из таблиц и диаграмм, вы­полнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины. Представлять информацию в виде таблиц, столбча­тых и круговых диаграмм, в том числе с помощью компьютерных программ. Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифмети­ческое, размах числовых наборов. Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климати­ческих зон)

14. Случайные события и вероятность (15 ч)

Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Рав-новозможность событий. Классическое определение вероятности

Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретиро­вать их результаты. Вычислять частоту случайного собы­тия; оценивать вероятность с помощью частоты, получен­ной опытным путем. Решать задачи на нахождение вероятностей событий. Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных со­бытий. Приводить примеры равновероятных событий

15. Элементы комбинаторики (10 ч)

Решение комбинаторных задач перебором вари­антов. Комбинаторное правило умножения. Переста­новки и факториал

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций. Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или ком­бинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.). Распознавать задачи на определение числа переста­новок и выполнять соответствующие вычисления. Решать задачи на вычисление вероятности с приме­нением комбинаторики

16. Множества. Элементы логики (5 ч)

Множество, элемент множества. Задание мно­жеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых мно­жеств. Пустое множество и его обозначение. Подмно­жество. Объединение и пересечение множеств, раз­ность множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна. Понятия о равносильности, следовании, употреб­ление логических связок если ..., то ..., в том и толь­ко том случае. Логические связки и, или

Приводить примеры конечных и бесконечных мно­жеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций. Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса. Иллюстрировать математические понятия и утверж­дения примерами. Использовать примеры и контрпри­меры в аргументации. Конструировать математические предложения с по­мощью связок если ..., то ..., в том и только том слу­чае, логических связок и, или



Геометрия

7-9 классы



Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

1

2

1. Прямые и углы (15 ч)

Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельны­ми и перпендикулярными сторонами. Взаимное рас­положение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные пря­мые. Теоремы о параллельности и перпендикуляр­ности прямых. Перпендикуляр и наклонная к пря­мой. Серединный перпендикуляр к отрезку. Геометрическое место точек. Метод геометри­ческих мест точек. Свойства биссектрисы угла и се­рединного перпендикуляра к отрезку

Формулировать определения и иллюстрировать по­нятия отрезка, луча; угла, прямого, острого, тупого и раз­вернутого углов; вертикальных и смежных углов; биссект­рисы угла. Формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; перпендикулярных прямых; перпендику­ляра и наклонной к прямой; серединного перпендикуляра к отрезку; распознавать и изображать их на чертежах и рисунках. Объяснять, что такое геометрическое место точек, приводить примеры геометрических мест точек. Формулировать аксиому параллельных прямых. Формулировать и доказывать теоремы, выражаю­щие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и на­клонной, свойствах биссектрисы угла и серединного пер­пендикуляра к отрезку. Решать задачи на построение, доказательство и вы­числения. Выделять в условии задачи условие и заклю­чение. Опираясь на условие задачи, проводить необхо­димые доказательные рассуждения. Сопоставлять полу­ченный результат с условием задачи

2. Треугольники (65 ч)

Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссект­риса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Признаки ра­венства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и угла­ми треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треуголь­ника. Теорема Фалеса. Подобие треугольников; коэф­фициент подобия. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, ко­тангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Реше­ние прямоугольных треугольников. Основное тригоно­метрическое тождество. Формулы, связывающие си­нус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника: точки пересе­чения серединных перпендикуляров, биссектрис, ме­диан, высот или их продолжений

Формулировать определения прямоугольного, ост­роугольного, тупоугольного, равнобедренного, равносто­роннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изобра­жать их на чертежах и рисунках. Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках ра­венства треугольников. Объяснять и иллюстрировать неравенство тре­угольника. Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношени­ях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней ли­нии треугольника. Формулировать определение подобных треугольников. Формулировать и доказывать теоремы о призна­ках подобия треугольников, теорему Фалеса. Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольни­ка через его стороны. Формулировать и доказывать те­орему Пифагора. Формулировать определения синуса, косинуса, тан­генса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной три­гонометрической функции угла вычислять значения дру­гих тригонометрических функций

3. Четырехугольники (20 ч)

Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограм­ма и его признаки. Прямоугольник, теорема о равенстве диагоналей прямоугольника. Ромб, теорема о свойстве диагоналей. Квадрат. Трапеция, средняя линия трапеции; равнобедрен­ная трапеция

Формулировать определения параллелограмма, пря­моугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках. Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадра­та, ромба, трапеции. Исследовать свойства четырехугольников с по­мощью компьютерных программ. Решать задачи на построение, доказательство и вы­числения. Моделировать условие задачи с помощью чер­тежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, не­обходимые для проведения обоснований логических шагов решения. Интерпретировать полученный резуль­тат и сопоставлять его с условием задачи

4. Многоугольники (10 ч)

Многоугольник. Выпуклые многоугольники. Пра­вильные многоугольники. Теорема о сумме углов вы­пуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника


















Распознавать многоугольники, формулировать оп­ределение и приводить примеры многоугольников. Формулировать и доказывать теорему о сумме уг­лов выпуклого многоугольника. Исследовать свойства многоугольников с помощью компьютерных программ. Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

5. Окружность и круг (20 ч)

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окруж­ность, вписанная в треугольник, и окружность, опи­санная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника Вписанные и описанные окружности правильного многоугольника. Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, опи­санной около правильного многоугольника.

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окруж­ностью. Формулировать и доказывать теоремы о вписан­ных углах, углах, связанных с окружностью. Изображать, распознавать и описывать взаимное расположение прямой и окружности. Изображать и формулировать определения впи­санных и описанных многоугольников и треугольников. окружности, вписанной в треугольник, и окружности, описанной около треугольника. Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника. Исследовать свойства конфигураций, связанных с ок­ружностью, с помощью компьютерных программ. Решать задачи на построение, доказательство и вы­числения. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные по­строения в ходе решения. Выделять на чертеже конфи­гурации, необходимые для проведения обоснований ло­гических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

6. Геометрические преобразования (10 ч)


Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный пере­нос, поворот. Понятие о подобии фигур и гомотетии

Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигу­ры, выполнять параллельный перенос и поворот. Исследовать свойства движений с помощью компь­ютерных программ. Выполнять проекты по темам геометрических преоб­разований на плоскости

7. Построения с помощью циркуля и линейки (5 ч)


Построения с помощью циркуля и линейки

Решать задачи на построение с помощью циркуля и линейки. Находить условия существования решения, выпол­нять построение точек, необходимых для построения ис­комой фигуры. Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число реше­ний задачи при каждом возможном выборе данных)

8. Измерение геометрических величин (25 ч)

Длина отрезка. Длина ломаной. Периметр много­угольника. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число л; длина дуги окруж­ности. Градусная мера угла, соответствие между величи­ной центрального угла и длиной дуги окружности. Понятие площади плоских фигур. Равносоставлен-ные и равновеликие фигуры. Площадь прямоугольни­ка. Площади параллелограмма, треугольника и трапе­ции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол меж­ду ними, через периметр и радиус вписанной окруж­ности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение меж­ду площадями подобных фигур

Объяснять и иллюстрировать понятие периметра многоугольника. Формулировать определения расстояния между точка­ми, от точки до прямой, между параллельными прямыми. Формулировать и объяснять свойства длины, гра­дусной меры угла, площади. Формулировать соответствие между величиной центрального угла и длиной дуги окружности. Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур. Выводить формулы площадей прямоугольника, па­раллелограмма, треугольника и трапеции, а также фор­мулу, выражающую площадь треугольника через две сто­роны и угол между ними, длину окружности, площадь круга. Находить площадь многоугольника разбиением на треугольники и четырехугольники. Объяснять и иллюстрировать отношение площадей подобных фигур. Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четы­рехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, на­ходить возможности применения необходимых формул, преобразовывать формулы.

9. Координаты (10 ч)

Вектор. Длина (модуль) вектора. Равенство векто­ров. Коллинеарные векторы. Координаты вектора. Ум­ножение вектора на число, сумма векторов, разложе­ние вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение векторов

Формулировать определения и иллюстрировать по­нятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов. Вычислять длину и координаты вектора. Находить угол между векторами. Выполнять операции над векторами. Выполнять проекты по темам использования вектор­ного метода при решении задач на вычисления и доказа­тельства

11. Элементы логики (5 ч)

Определение. Аксиомы и теоремы. Доказатель­ство. Доказательство от противного. Теорема, обрат­ная данной. Пример и контрпример

Воспроизводить формулировки определений; конструировать несложные определения самостоятель­но. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на опре­деления, теоремы, аксиомы



7.Тематическое планирование 6 класс (6 часов в неделю).


п/п

урока по теме

Тема урока с указанием этнокультурных особенностей Республики Башкортостан

Модуль

Планируемая

дата проведения или номер недели в модуле

Фактическая дата проведения или номер недели в модуле

Примечания



1. Делимость чисел.24ч





1-3

1-3

Делители и кратные

1

01.09.16

02.09.16

03.09.16



4-6

4-6

Признаки делимости на 10, на 5 и на 2.

05.09.16

06.09.16

07.09.16



7-9

7-9

Признаки делимости на 9 и на 3.

08.09.16

09.09.16

10.09.16



10-12

10-12

Простые и составные числа.

13.09.16

14.09.16

15.09.16




13-15

13-15

Разложение на простые множители.

16.09.16

17.09.16

19.09.16



16-19

16-19

Наибольший общий делитель. Взаимно простые числа.

20.09.16

21.09.16

22.09.16

23.09.16



20-23

20-23

Наименьшее общее кратное.

24.09.16

26.09.16

27.09.16

28.09.16



24

24

Контрольная работа №1

по теме «Делимость чисел»

29.09.16





2. Сложение и вычитание дробей с разными знаменателями.28ч




25-27

1-3

Основное свойство дроби.

30.09.16

01.10.16

03.10.16



28-31

4-7

Сокращение дробей.

04.10.16

05.10.16

06.10.16

07.10.16



32-37

8-13

Приведение дробей к общему знаменателю.

08.10.16

10.10.16



2


17.10.16

18.10.16

19.10.16

20.10.16



38-44

14-20

Сравнение, сложение и вычитание дробей с разными знаменателями.

21.10.16

22.10.16

24.10.16

25.10.16

26.10.16

27.10.16

28.10.16



45

21

Контрольная работа №2

по теме «Сложение и вычитание дробей».

29.10.16



46-51

22-27

Сложение и вычитание смешанных чисел.

31.10.16

01.11.16

02.11.16

03.11.16

05.11.16

07.11.16



52

28

Контрольная работа №3 по теме «Сложение и вычитание смешанных чисел».

08.11.16





3. Умножение и деление обыкновенных дробей.38ч




53-56

1-4

Умножение дробей.

09.11.16

10.11.16

11.11.16

12.11.16



57-62

5-10

Нахождение дроби от числа.

14.11.16

15.11.16

16.11.16

17.11.16

18.11.16

19.11.16



63-68

11-16

Применение распределительного свойства умножения.

21.11.16

22.11.16



3

28.11.16

29.11.16

30.11.16

01.12.16



69

17

Контрольная работа №4 по теме «Умножение обыкновенных дробей».

02.12.16



70-71

18-19

Взаимно обратные числа.

03.12.16

05.12.16



72-76

20-24

Деление.

06.12.16

07.12.16

08.12.16

09.12.16

10.12.16



77

25

Контрольная работа №5 по теме «Деление обыкновенных дробей».

12.12.16



78-82

26-30

Нахождение числа по его дроби.

13.12.16

14.12.16

15.12.16

16.12.16

17.12.16



83-89

31-37

Дробные выражения.

19.12.16

20.12.16

21.12.16

22.12.16

23.12.16

24.12.16

26.12.16



90

38

Контрольная работа №6 по теме Дробные выражения».

27.12.16





4. Отношения и пропорции.22ч




91-94

1-4

Отношения.

28.12.16

29.12.16

30.12.16



4

09.01.17

10.01.17

11.01.17

12.01.17

13.01.17



95-98

5-8

Пропорции.

99-102

9-12

Прямая и обратная пропорциональные зависимости.

14.01.17

16.01.17

17.01.17

18.01.17



103

13

Контрольная работа №7по теме «Отношения и пропорции».

19.01.17



104-105

14-15

Масштаб.

20.01.17

21.01.17



106-108

16-18

Длина окружности и площадь круга.


23.01.17

24.01.17

25.01.17



109-111

19-21

Шар.

26.01.17

27.01.17

28.01.17



112

22

Контрольная работа №8 по теме «Длина окружности и площадь круга».

30.01.17





5. Положительные и отрицательные числа.16ч




113-115

1-3

Координаты на прямой.

31.01.17

01.02.17

02.02.17



116-117

4-5

Противоположные числа.

03.02.17

04.02.17



118-120

6-8

Модуль числа.

06.02.17

07.02.17

08.02.17



121-124

9-12

Сравнение чисел.

09.02.17.

10.02.17

11.02.17

13.02.17



125-127

13-15

Изменение величин.

14.02.17

15.02.17

16.02.17



128

16

Контрольная работа №9

по теме «Положительные и отрицательные числа».

17.02.17





6. Сложение и вычитание положительных и отрицательных чисел.14ч




129-130

1-2

Сложение чисел с помощью координатной прямой.

18.02.17

20.02.17



131-133

3-5

Сложение отрицательных чисел.

21.02.17





5

27.02.17

28.02.17



134-137

6-9

Сложение чисел с разными знаками.



01.03.17

02.03.17

03.03.17

04.03.17



138-141

10-13

Вычитание.



06.03.17

07.03.17

09.03.17

10.03.17



142

14

Контрольная работа №10

по теме «Сложение и вычитание положительных и отрицательных чисел»

11.03.17





7. Умножение и деление положительных и отрицательных чисел.14ч




143-145

1-3

Умножение.

13.03.17

14.03.17

15.03.17



146-148

4-6

Деление.

16.03.17

17.03.17

18.03.17



149-151

7-9

Рациональные числа.

20.03.17

21.03.17

22.03.17



152

10

Контрольная работа №11

по теме «Умножение и деление положительных и отрицательных чисел».

5

23.03.17



153-156

11-14

Свойства действий с рациональными числами.

24.03.17

25.03.17

27.03.17

28.03.17





8. Решение уравнений.20ч




157-160

1-4

Раскрытие скобок.

29.03.17

30.03.17

31.03.17

01.04.17



161-162

5-6

Коэффициент.

03.04.17

04.04.17



163-166

7-10

Подобные слагаемые.

05.04.17

06.04.17

07.04.17

08.04.17



167

11

Контрольная работа №12

по теме «Раскрытие скобок. Подобные слагаемые».

10.04.17



168-175

12-19

Решение уравнений.

6


17.04.17

18.04.17

19.04.17

20.04.17

21.04.17

22.04.17

24.04.17

25.04.17




176

20

Контрольная работа №13

по теме «Решение уравнений».

26.04.17





9. Координаты на плоскости.14ч




177-179

1-3

Перпендикулярные прямые.

27.04.17

28.04.17

29.04.17



180-181

4-5

Параллельные прямые.

02.05.17

03.05.17



182-184

6-8

Координатная плоскость.

04.05.17

05.05.17

06.05.17



185-186

9-10

Столбчатые диаграммы.

08.05.17

10.05.17



187-189

11-13

Графики.

11.05.17

12.05.17

13.05.17



190

14

Контрольная работа №14по теме «Координаты на плоскости».

15.05.17



191-196

1-6

10.Множества и комбинаторика.6ч

Множество. Элементы множества, подмножество. Объединение и пересечение множеств. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

16.05.17

17.05.17

18.05.17

19.05.17

20.05.17

22.05.17



197-202

1-6

Итоговое повторение курса 5-6 классов.


23.05.17

24.05.17

25.05.17

26.05.17

27.05.17

29.05.17



203

1

Итоговая контрольная работа.

30.05.17



204

1

Обобщающий урок

31.05.17





Описание учебно- методического и материально-технического обеспечения образовательного процесса.

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С.. Шварцбурд С.И. Математика. 5 класс: Учебник для общеобразовательных учреждений. М.: Мнемозина, 2016

  2. Дидактические материалы по математике, 5 класс, авторы:   А.С.Чеснокова, К.И. Нешкова, М.: Просвещение, 2016

  3. Дидактические материалы по математике, 5 класс, М.А. Попов, изд, Экзамен, 2015г.

  4. Сборник рабочих программ по математике. 5-6 классы/ Сост. Т.А. Бурмистрова, Просвещение,-2016.

  5. Тесты по математике, 5 класс, Журавлев С.Г., Ермаков В.В.,Перепелкина Ю.В., Свентковс%А»Щкий В.А., М.:Экзамен,-2016.

  6. Контрольные и самостоятельные работы по математике, 5 класс, Журавлев С.Г., Свентковский В.А.- М. :Экзамен, 2015.

  7. Математические диктанты.5-6 классы/авт.-сост. А.С. Конте.-Волгоград:Учитель, 2015.

Общая информация

Номер материала: ДБ-268869

Похожие материалы