Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике для 5-9 классов ФГОС ООО

Рабочая программа по математике для 5-9 классов ФГОС ООО

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Документы в архиве:

194.22 КБ Рабочая программа по математике для 5-9 кл. ФГОС ООО.docx
299.14 КБ ФГОС ООО математика 5-7 кл. тит.лист.jpg

Название документа Рабочая программа по математике для 5-9 кл. ФГОС ООО.docx

Поделитесь материалом с коллегами:


1.Пояснительная записка

Рабочая программа для обучающихся 5-9 классов составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО), требованиями к результатам освоения ООП ООО МБОУ СОШ №30 (личностным, метапредметным, предметным); основными подходами к развитию и формированию универсальных учебных действий (УУД) для основного общего образования, с учетом требований к оснащению образовательной деятельности.

Программа составлена на основе авторской программы по математике под редакцией Г.В. Дорофеева (М. Просвещение).

В состав УМК входит:

  • В.Г. Дорофеев, И.С. Шарыгин, С.Б. Суворова и др. «Математика, 5», «Математика, 6»,

  • В.Г. Дорофеев, С.Б. Суворова, Е.А. Бунимович. «Алгебра,7», В.Г. Дорофеев, С.Б. Суворова, Е.А. Бунимович. «Алгебра,8», В.Г. Дорофеев, С.Б. Суворова, Е.А. Бунимович. «Алгебра,9»,

  • Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. «Геометрия. 7-9 классы».

  • Предметные рабочие тетради на печатной основе.

  • Дидактические материалы.

  • Тематические тесты.

  • Контрольные работы.

  • Книга учителя

  • Устные упражнения

  • Поурочные разработки

Выбор данной авторской программы и учебно-методического комплекса обусловлен преемственностью целей образования, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся, и опираются на вычислительные умения и навыки учащихся, полученные на уроках математики 1 – 4 классов: на знании обучающимися основных свойств на все действия. Новизна данной программы определяется тем, что в основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям. Предлагаемый курс позволяет обеспечить формирование, как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят обучающимся применять полученные знания и умения для решения различных жизненных задач.

Рабочая программа имеет цель обновления требований к уровню подготовки обучающихся в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта - переход от суммы «предметных результатов» к «метапредметным результатам».

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы.

Обучение математике в основной школе направлено на достижение следующих целей:

-осознание значения математики в повседневной жизни человека;

-формирование представлений о социальных, культурных и исторических факторах становления математической науки;

-понимание роли информационных процессов в современном мире;

-формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать

реальные процессы и явления.

В результате изучения предметной области математика обучающиеся развивают логическое и математическое мышление, получают представление о математических моделях; овладевают математическими рассуждениями; учатся применять математические знания при решении различных задач и оценивать полученные результаты; овладевают умениями решения учебных задач; развивают математическую интуицию; получают представление об основных информационных процессах в реальных ситуациях.

Математическое образование играет важную роль в практической жизни общества, которая связана с формированием способностей к умственному эксперименту.

Практическая полезность предмета обусловлена тем, что происходит формирование общих способов интеллектуальной деятельности, значимой для различных сфер человеческой деятельности.

Без базовой математической подготовки невозможно стать образованным человеком, так как овладение математическими знаниями и умениями необходимо для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни.

Обучение математике дает возможность формировать у обучающихся качества мышления необходимые для адаптации в современном информационном обществе.

Новизна данной программы определяется тем, что в основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности обучающегося, его интересам и способностям. Предлагаемый курс позволяет обеспечить формирование, как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС ООО личностных результатов, которые в дальнейшем позволят обучающимся применять полученные знания и умения для решения различных жизненных задач.

Межпредметные связи осуществляются посредством опоры данного предмета на информатику, физику, химию, географию.

При организации процесса обучения в рамках данной программы предполагается применение следующих педагогических технологий обучения: личностно-ориентированная (педагогика сотрудничества), позволяющую увидеть уровень обученности каждого ученика и своевременно подкорректировать её; технология уровневой дифференциации, позволяющая ребенку выбирать уровень сложности, информационно-коммуникационная технология, обеспечивающая формирование учебно-познавательной и информационной деятельности учащихся. Использование компьютерных технологий  в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес  к изучению данного предмета.

Система уроков условна, но все же выделяются следующие виды:

Урок-лекция (УЛ). Предполагаются  совместные усилия учителя и обучающихся для решения общей проблемной познавательной задачи. На таком уроке используется демонстрационный материал на компьютере, разработанный учителем или обучающимися, мультимедийные продукты.

Урок-практикум (УП). На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования,  решение различных задач, изучение свойств различных функций, практическое применение различных методов решения задач. Компьютер на таких уроках используется как электронный калькулятор, тренажер устного счета, виртуальная лаборатория, источник справочной информации.

Урок-исследование (УИ). На уроке обучающиеся решают проблемную задачу исследовательского характера аналитическим методом и с помощью компьютера с использованием различных лабораторий.

Комбинированный урок (КУ) предполагает выполнение работ и заданий разного вида.

Урок решения задач (УРЗ). Вырабатываются у обучающихся умения и навыки решения задач на уровне обязательной и возможной подготовке. Любой обучающийся может использовать компьютерную информационную базу по методам решения различных задач, по свойствам элементарных функций и т.д.

Урок-тест (УТ). Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности обучающихся, тренировки технике тестирования. Тесты предлагаются как в печатном так и в компьютерном варианте. Причем в компьютерном варианте всегда с ограничением времени.

Урок-зачет (УЗ). Устный опрос обучающихся по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.

Урок-самостоятельная работа (УСР). Предлагаются разные виды самостоятельных работ: двухуровневая – уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5»; большой список заданий разного уровня, из которого обучающийся решает их по своему выбору. Рядом с обучающимся на таких уроках – включенный компьютер, который он использует по своему усмотрению.

Урок-контрольная работа (УКР). Проводится на двух уровнях: уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5».

Компьютерное обеспечение уроков.

В разделе рабочей программы «Компьютерное обеспечение» спланировано применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса обучающихся тренировочные упражнения, а также различные электронные учебники.

Демонстрационный материал (слайды) (ДМ).

Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах обучающихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает повышенное внимание и интерес у обучающихся.

Изучение многих тем в математике связано с знанием и пониманием свойств элементарных функций. Решение уравнений, неравенств, различных задач предполагает глубокое знание поведения элементарных функций. Научиться распознавать графики таких функций, суметь рассказать об их свойствах помогают компьютерные слайды.

При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет обучающимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.

  Задания для устного счета (ЗУС).

Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель – ученик, взаимопроверки, а также в виде тренировочных занятий.

Тренировочные упражнения (ТУ).

Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики.

  Электронные учебники (ЭУ).

Они используются в качестве виртуальных лабораторий при проведении практических занятий, уроков введения новых знаний. В них заключен большой теоретический материал, много тренажеров, практических и исследовательских заданий, справочного материала. На любом из уроков возможно использование компьютерных устных упражнений, применение тренажера устного счета, что активизирует мыслительную деятельность обучающихся, развивает вычислительные навыки, так как позволяет осуществить иной подход к изучаемой теме.

Формы оценки и контроля достижений обучающихся:

  • самостоятельные и проверочные работы (СР, ПР);

  • контрольные работы (КР);

  • устные ответы на уроках (УО);

  • математические диктанты и тесты (МД, МТ);

  • зачет (З);

  • диагностические задания (ДЗ);

  • задания рабочей тетради (РТ);

  • домашняя работа (ДР) и домашняя контрольная работа (ДКР);

  • исследовательская работа (ИР);

  • проектная работа (ПрР);

  • творческая работа (реферат, сообщение, презентация) (ТР).

Виды контроля: входной, текущий, тематический, итоговый.

Административный контроль качества знаний осуществляется трижды: на «входе» в I четверти, промежуточный – в конце II четверти или в III четверти и на «выходе»- в конце года в форме административных контрольных работ (тестов).

Промежуточная аттестация проводится в соответствии с Уставом ОО в форме тестирования.

Внеурочная деятельность по предмету предусматривается в формах: факультатив, элективный курс по предмету, участие в конкурсах, олимпиадах, творческие проекты, предметная неделя.


2.Общая характеристика учебного предмета, курса.

Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламентирует объем материала, обязательного для изучения в основной школе, а также дает примерное его распределение между 5—6 и 7—9 классами.

Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития обучающихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения обучающимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирование у обучающихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения обучающихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у обучающихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у обучающихся функциональной грамотности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит обучающимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у обучающихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределенно — в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие обучающихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

В основе содержания обучения математике лежит овладение обучающимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций нами выделены главные содержательно-целевые направления (линии) развития обучающихся средствами предмета «Математика».

Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция. Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые обучающимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция. Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.




3.Место учебного предмета в учебном плане


В соответствии с учебным планом МБОУ СОШ №30 на изучение математики в основной школе отводится 5 учебных часов в неделю в течение каждого года обучения, всего 875 часов.

В 5—6 классах изучается предмет «Математика» (интегрированный предмет), в 7—9 классах параллельно изучаются предметы «Алгебра» и «Геометрия».

Распределение учебного времени между этими предметами представлено в таблице.


классы

Предметы математического цикла

Количество часов на ступени основного образования

5-6

Математика

350

7-9

Алгебра

315


Геометрия

210

Всего


875



Предмет «Математика» в 5—6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

Предмет «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции, а также элементы вероятностно-статистической линии.

В рамках учебного предмета «Геометрия» изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

В силу новизны для школы вероятностно-статистического материала изучение соответствующего материала отнесено и к 5—6, и к 7—9 классам.



4.Личностные, метапредметные и предметные результаты освоения учебного предмета


Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

личностные:

- ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

- формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

- умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

- первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

- критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

- креативности мышления, инициативы, находчивости, активности при решении арифметических задач;

- умения контролировать процесс и результат учебной математической деятельности;

- формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

- способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

- умения осуществлять контроль по образцу и вносить необходимые коррективы;

- способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

- умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

- умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

- развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

- формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

- первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;

- развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;

- умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

- умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

- умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

- понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;

- умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

- способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные результаты:

- формирование представлений о математике как о методе познания действительности, позволяющем описывать и изучать реальные процессы и

явления;

- развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно

выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования,

доказательства математических утверждений;

- развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;

- овладение символьным языком алгебры, приемами выполнения тождественных преобразований выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умения моделировать реальные ситуации на языке алгебры, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат;

- овладение системой функциональных понятий, развитие умения использовать функционально-графические представления для решения различных математических задач, для описания и анализа реальных зависимостей;

- овладение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира; развитие пространственных

представлений, изобразительных умений, навыков геометрических построений;

- формирование систематических знаний о плоских фигурах и их свойствах, представлений о простейших пространственных телах; развитие умений моделирования реальных ситуаций на языке геометрии, исследования построенной модели с использованием геометрических понятий и теорем,

аппарата алгебры, решения геометрических и практических задач;

- овладение простейшими способами представления и анализа статистических данных; формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о простейших вероятностных моделях; развитие умений извлекать информацию, представленную в таблицах, на диаграммах, графиках, описывать и анализировать массивы числовых данных с помощью подходящих статистических характеристик, использовать понимание вероятностных свойств окружающих явлений при принятии решений;

- развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, компьютера, пользоваться оценкой и прикидкой при практических расчетах;

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве

обработки информации; развитие основных навыков и умений использования компьютерных устройств;

- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель - и их свойствах;

- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами - линейной, условной и циклической;

- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей - таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;

- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.



5.Содержание учебного предмета (875 часов)

Содержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.

Элементы теории множеств и математической логики

Согласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.


Множества и отношения между ними

Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.

Операции над множествами

Пересечение и объединение множеств. Разность множеств, дополнение множества. Интерпретация операций над множествами с помощью кругов Эйлера.

Элементы логики

Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Высказывания

Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).


Содержание курса математики в 5–6 классах

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Делители и кратные

Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.

Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби

Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

Отношение двух чисел

Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты

Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Диаграммы

Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.


Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур.

История математики

Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?

Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.

Содержание курса математики в 7–9 классах


Алгебра

Числа

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.

Тождественные преобразования

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения

Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Квадратный трехчлен, разложение квадратного трехчлена на множители.

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.

Квадратные корни

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

Уравнения и неравенства

Равенства

Числовое равенство. Свойства числовых равенств. Равенство с переменной.

Уравнения

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Квадратное уравнение и его корни

Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений:использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида , .

Уравнения вида .Уравнения в целых числах.

Системы уравнений

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Системы неравенств

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

Функции

Понятие функции

Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция

Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции hello_html_m7c4f1826.gifhello_html_m7c4f1826.gif. Гипербола.

Графики функций. Преобразование графика функции для построения графиков функций вида .

Графики функций , ,hello_html_86db9e5.gif, .

Последовательности и прогрессии

Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

Решение текстовых задач

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Статистика

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

Геометрия

Геометрические фигуры

Фигуры в геометрии и в окружающем мире

Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».

Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, круг.

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.

Многоугольники

Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.

Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.

Окружность, круг

Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.

Геометрические фигуры в пространстве (объемные тела)

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

Отношения

Равенство фигур

Свойства равных треугольников. Признаки равенства треугольников.

Параллельность прямых

Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.

Перпендикулярные прямые

Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.

Подобие

Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Взаимное расположение прямой и окружности, двух окружностей.

Измерения и вычисления

Величины

Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.

Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.

Представление об объеме и его свойствах. Измерение объема. Единицы измерения объемов.

Измерения и вычисления

Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.

Расстояния

Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.

Геометрические построения

Геометрические построения для иллюстрации свойств геометрических фигур.

Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,

Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.

Деление отрезка в данном отношении.

Геометрические преобразования

Преобразования

Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.

Движения

Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.

Векторы и координаты на плоскости

Векторы

Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.

Координаты

Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

Применение векторов и координат для решения простейших геометрических задач.

История математики

Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.

Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.

Геометрия и искусство. Геометрические закономерности окружающего мира.

Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.

Резерв свободного учебного времени — 55 часов

Содержание учебного предмета

с определением основных видов учебной деятельности


Математика 5-6 класс

(5 часов в неделю)


Основное содержание по темам


Характеристика основных видов деятельности ученика (на уровне учебных действий)

Натуральные числа (50 ч)

Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Понятие о степени с натуральным показателем. Квадрат и куб числа.

Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок.

Решение текстовых задач арифметическим способом.

Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. [Другие признаки делимости (например, на 4, на 25).] Простые и составные числа. Разложение натурального числа на простые множители. [Алгоритмы нахождения НОК и НОД.] Деление с остатком.




Описывать свойства натурального ряда.

Читать и записывать натуральные числа, сравнивать и упорядочивать их.

Выполнять вычисления с натуральными числами; вычислять значения степеней.

Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Формулировать определения делителя и кратного, простого и составного чисел, свойства и признаки делимости.

Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел.

Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.).

Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера)

Дроби (120 ч)

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей.

Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Отношение. Пропорция; основное свойство пропорции.

Проценты. Нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах.

Решение текстовых задач арифметическим способом




Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби.

Формулировать, записывать с помощью букв основное свойство дроби, правила действий с обыкновенными дробями.

Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями.

Читать и записывать десятичные дроби. Представлять обыкновенные дроби в виде десятичных дробей и десятичные в виде обыкновенных; находить десятичные приближения обыкновенных дробей.

Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями.

Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.

Выполнять прикидку и оценку в ходе вычислений.

Объяснять, что такое процент. Представлять проценты в виде дробей и дроби в виде процентов.

Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их.

Приводить примеры использования отношений на практике.

Решать задачи на проценты и дроби (в том числе задачи из реальной практики, используя при необходимости калькулятор); использовать понятия отношения и пропорции при решении задач.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора, компьютера)

Рациональные числа (40 ч)

Положительные и отрицательные числа, модуль числа.

Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа.

Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий

Измерения, приближения, оценки. Зависимости между величинами

Приближенное значение величины; округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

Примеры зависимостей между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул.

Решение текстовых задач арифметическим способом


Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш — проигрыш, выше - ниже уровня моря и т. п.).

Изображать положительные и отрицательные рациональные числа точками на координатной прямой.

Характеризовать множество целых чисел, множество рациональных чисел.

Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять их для преобразования числовых выражений.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами

Измерения, приближения, оценки. Зависимости между величинами (20 ч)

Приближенное значение величины; округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

Примеры зависимостей между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул.

Решение текстовых задач арифметическим способом.


Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений.

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.

Использовать знания о зависимостях между величинами (скорость, время, расстояние; работа, производительность, время и т. п.) при решении текстовых задач; осмысливать текст задачи, извлекать необходимую информацию, строить логическую цепочку рассуждений; критически оценивать полученный ответ.

Элементы алгебры (25 ч)

Использование букв для обозначения чисел, для записи свойств арифметических действий.

Буквенные выражения. Числовое значение буквенного выражения.

Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий.

Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точки на плоскости


Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач.

Вычислять числовое значение буквенного выражения при заданных значениях букв.

Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек

Описательная статистика. Вероятность. Комбинаторика (20 ч)

Представление данных в виде таблиц, диаграмм.

Понятие о случайном событии. Достоверное и невозможное события. Сравнение шансов.

Решение комбинаторных задач методом перебора вариантов.




Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др.

Выполнять сбор информации в несложных случаях, организовывать информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям

Наглядная геометрия (45 ч)

Наглядные представления о геометрических фигурах: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Взаимное расположение двух прямых, двух окружностей.

Многоугольник, правильный многоугольник. Четырехугольник, прямоугольник, квадрат.

Виды треугольников: остроугольный, прямоугольный, тупоугольный, равнобедренный, равносторонний.

Изображение геометрических фигур на нелинованной бумаге с использованием циркуля, линейки, угольника, транспортира. [Построения на клетчатой бумаге.]

Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины с помощью линейки.

Виды углов: острый, прямой, тупой, развернутый. Градусная мера угла. Измерение и построение углов заданной градусной меры с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Равновеликие фигуры. [Равносоставленные фигуры.]

[Разрезание и составление геометрических фигур. Построение паркетов, орнаментов, узоров.]

[Решение задач на нахождение равновеликих и равносоставленных фигур.]

Наглядные представления о пространственных фигурах (куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр). Изображение пространственных фигур. Примеры сечений. Многогранники. Примеры разверток многогранников, цилиндра и конуса. [Создание моделей пространственных фигур (из бумаги, проволоки, пластилина и др.).]

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.


Распознавать на чертежах, рисунках, и моделях геометрические фигуры, конфигурации фигур (плоские и пространственные). Приводить примеры аналогов геометрических фигур в окружающем мире.

Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге.

Измерять с помощью линейки и сравнивать длины отрезков. Строить отрезки заданной длины с помощью линейки и циркуля, углы заданной величины с помощью транспортира. Выражать одни единицы измерения длин через другие.

Выражать одни единицы измерения углов через другие.

Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и прямоугольника. Выражать одни единицы измерения площади через другие.

Изготавливать пространственные фигуры из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра и конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, определять их вид.

Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.

Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение. Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов.

Решать задачи на нахождение длин отрезков, периметров многоугольников; градусной меры углов; площадей квадратов и прямоугольников; объемов кубов и прямоугольных параллелепипедов, куба. Выделять в условии задачи данные, необходимые для ее решения, строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Находить в окружающем мире плоские и пространственные симметричные фигуры.

Изображать равные фигуры; симметричные фигуры

Резерв времени 30 ч

АЛГЕБРА 7-9 классы (315 ч)


Действительные числа (15ч)

Расширение множества натуральных чисел до множества целых, множества целых чисел до множества рациональных. Рациональное число как отношение , где т - целое число, п - натуральное.

Степень с целым показателем.

Квадратный корень из числа. Корень третьей степени. [Понятие о корне n-й степени из числа.] Запись корней с помощью степени с дробным показателем.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. [Построение на координатной прямой точек, соответствующих иррациональным числам вида , где п - натуральное число.]

Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел. [Периодические и непериодические десятичные дроби.] Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки: интервал, отрезок, луч.




Характеризовать множество целых чисел, множество рациональных чисел, описывать соотношение между этими множествами.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вычислять значения степеней с целым показателем.

Формулировать определение квадратного корня из числа.

Использовать график функции у = х2 для нахождения квадратных корней. Вычислять точные и приближенные значения корней, используя при необходимости калькулятор.

Формулировать определение корня третьей степени, находить значения кубических корней, при необходимости используя калькулятор.

Исследовать свойства квадратного корня, кубического корня, проводя числовые эксперименты с использованием калькулятора, компьютера.

Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать числа точками координатной прямой.

Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа.

Описывать множество действительных чисел. Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику

Измерения, приближения, оценки (10 ч)

Приближенное значение величины; точность приближения. [Абсолютная и относительная погрешности приближения.] Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире.

Прикидка и оценка результатов вычислений. Способы записи значений величин, в том числе с выделением множителя - степени 10 в записи числа


Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира.

Использовать запись числа в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире. Сравнивать числа и величины, записанные с использованием степени 10.

Использовать разные формы записи приближенных значений, делать выводы о точности приближения.

Выполнять вычисления с реальными данными.

Округлять натуральные числа и десятичные дроби.

Выполнять прикидку и оценку результатов вычислений

Введение в алгебру (8 ч)

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных.

Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.


Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, с помощью рисунка или чертежа; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений).

Вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении.

Многочлены (45 ч)

Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. [Куб суммы и куб разности.] Формула разности квадратов. [Формулы суммы кубов и разности кубов.] Преобразование целого выражения в многочлен.

Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители.


Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем; применять свойства степени для преобразования выражений и вычислений.

Выполнять действия с многочленами.

Доказывать формулы сокращенного умножения, применять их в преобразованиях выражений и в вычислениях.

Выполнять разложение многочленов на множители. Распознавать квадратный трехчлен, выяснять возможность разложения на множители, представлять

квадратный трехчлен в виде произведения линейных множителей.

Применять различные формы самоконтроля при выполнении преобразований

Алгебраические дроби (22 ч)

Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей.

Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.


Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей.

Выполнять действия с алгебраическими дробями; представлять целое выражение в виде многочлена, дробное - в виде отношения многочленов; доказывать тождества.

Формулировать определение степени с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений.

Квадратные корни (12 ч)

Понятие квадратного корня, арифметического квадратного корня. Уравнение вида х2 = а.

Свойства арифметических квадратных корней: корень из произведения, частного, степени.

Тождество вида Применение свойств арифметических квадратных корней к преобразованию числовых выражений и к вычислениям.

Доказывать свойства арифметических квадратных корней; применять их к преобразованию выражений.

Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул.

Исследовать уравнение вида х2 = а; находить точные и приближенные корни при а > 0

Уравнения с одной переменной (38 ч)

Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. [Исследование линейного уравнения.] Решение уравнений, сводящихся к линейным.

Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратные уравнения. Примеры решения уравнений третьей и четвертой степени с использованием методов разложения на множители [замены переменной].

Решение дробно-рациональных уравнений.

Решение текстовых задач алгебраическим способом

Проводить доказательные рассуждения о корнях уравнения с опорой на определение корня, функциональные свойства выражений.

Распознавать линейные и квадратные уравнения, целые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения. Определять наличие корней квадратных уравнений по дискриминанту и коэффициентам.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат

Системы уравнений (30 ч)

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое - второй степени. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными.

График линейного уравнения с двумя переменными. Угловой коэффициент прямой; условие параллельности прямых. [Условие перпендикулярности прямых.]

Графики простейших нелинейных уравнений (парабола, гипербола, окружность).

Графическая интерпретация системы уравнений с двумя переменными.


Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решений уравнений с двумя переменными.

Решать задачи, алгебраической моделью которых является уравнение с двумя переменными, находить целые решения путем перебора. [Решать линейные уравнения и несложные уравнения второй степени с двумя переменными в целых числах.]

Решать системы двух уравнений с двумя переменными, указанные в содержании.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат

Строить графики уравнений с двумя переменными.

Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.

Использовать функционально-графические представления для решения и исследования уравнений и систем

Неравенства (20 ч)

Числовые неравенства и их свойства

Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. [Примеры решения дробно-рациональных неравенств.] Системы неравенств с одной переменной.


Формулировать свойства числовых неравенств, обосновывать их, опираясь на координатную прямую, и доказывать алгебраически; применять свойства неравенств в ходе решения задач.

Распознавать линейные и квадратные неравенства. Решать линейные неравенства, системы линейных неравенств. Решать квадратные неравенства.

[Изображать на координатной плоскости множества точек, задаваемые неравенствами с двумя переменными и их системами.]

Зависимости между величинами (15 ч)

Зависимости между величинами. Представление зависимостей между величинами в виде формул. Вычисления по формулам.

Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей.

Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорциональности; свойства. Примеры обратно пропорциональных зависимостей.

Решение задач на пропорциональную и обратно пропорциональную зависимости.

Составлять формулы, выражающие зависимости между величинами, вычислять по формулам.

Распознавать прямую и обратно пропорциональные зависимости.

Решать текстовые задачи на прямую и обратно пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни).

Числовые функции (35 ч)

Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций.

Примеры графиков зависимостей, отражающих реальные процессы.

Функции, описывающие прямую и обратно пропорциональные зависимости, их графики и свойства.

Линейная функция, ее свойства и график.

Квадратичная функция, ее график и свойства.

Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций y=.

[Параллельный перенос графиков вдоль осей координат, симметрия относительно осей координат.]


Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций.

Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления.

Моделировать реальные зависимости с помощью формул и графиков. Интерпретировать графики реальных зависимостей.

Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.

Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков функций (например, у = кх + b в зависимости от знаков коэффициентов к и b).

Строить графики изучаемых функций; описывать их свойства.

Числовые последовательности. Арифметическая и геометрическая прогрессии (15 ч)

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена. [Числа Фибоначчи.]

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.


Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности.

Вычислять члены последовательностей, заданных формулой n-го члена или рекуррентной формулой. Устанавливать закономерность в построении последовательности, если выписаны первые несколько ее членов. Изображать члены последовательности точками на координатной плоскости.

Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых п членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул.

Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.

Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора).

Описательная статистика (10 ч)

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах Представления о выборочном исследовании.


Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.

Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу), находить средние значения, размах числовых наборов.

Приводить содержательные примеры использования средних значений, для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон).

Случайные события и вероятность (15 ч)

Понятие о случайном опыте и случайном событии. Элементарные события. Частота случайного события. Статистический подход к понятию вероятности. [Несовместные события. Формула сложения вероятностей.] Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.


Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем.

Решать задачи на нахождение вероятностей событий. Приводить примеры случайных событий, в том числе, достоверных и невозможных, маловероятных событий. Приводить примеры противоположных событий, равновероятных событий.

Элементы комбинаторики (10 ч)

Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций.

Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.).

Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления.

Решать задачи на вычисление вероятности с применением комбинаторики.

Множества. Элементы логики (5 ч)

Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера - Венна.

Понятие о равносильности, следовании, употребление логических связок если то в том и только в том случае, и, или.


Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств, разность множеств. Приводить примеры несложных классификаций из различных областей жизни. Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера.

Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контрпримеры в аргументации.

Конструировать математические предложения с помощью логических связок если то в том и только в том случае, и, или.


Резерв времени 10 ч




ГЕОМЕТРИЯ 7—9 классы

Прямые и углы (15 ч)


Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Метод геометрических мест точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку

Формулировать определения и иллюстрировать понятия отрезка, луча; угла, прямого, острого, тупого и развернутого углов; вертикальных и смежных углов; биссектрисы угла.

Формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; перпендикулярных прямых; перпендикуляра и наклонной к прямой; серединного перпендикуляра к отрезку; распознавать и изображать их на чертежах и рисунках.

Объяснять, что такое геометрическое место точек, приводить примеры геометрических мест точек.

Формулировать аксиому параллельных прямых.

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения.

Сопоставлять полученный результат с условием задачи

Треугольники(65 ч)


Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников.

Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений. [Окружность Эйлера.]

Формулировать определения прямоугольного, остроугольного, тупоугольного, равнобедренного, равностороннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изображать их на чертежах и рисунках.

Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках равенства треугольников.

Объяснять и иллюстрировать неравенство треугольника.

Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника.

Формулировать определение подобных треугольников.

Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса.

Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора.

Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°.

Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла. Формулировать и доказывать теоремы синусов и косинусов.

Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.

Исследовать свойства треугольника с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение.

Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Четырехугольники (20 ч)


Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки.

Прямоугольник, теорема о равенстве диагоналей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равнобедренная трапеция

Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках.

Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции.

Исследовать свойства четырехугольников с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

Многоугольники (10 ч)


Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника

Распознавать многоугольники, формулировать определение и приводить примеры многоугольников.

Формулировать и доказывать теорему о сумме углов выпуклого многоугольника.

Исследовать свойства многоугольников с помощью компьютерных программ.

Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи

Окружность и круг (20 ч)


Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.

Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника. Вписанные и описанные окружности правильного многоугольника. [Вписанные и описанные четырехугольники.]

Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью.

Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью.

Изображать, распознавать и описывать взаимное расположение прямой и окружности.

Изображать и формулировать определения вписанных и описанных многоугольников и треугольников; окружности, вписанной в треугольник, и окружности, описанной около треугольника.

Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника.

Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

Геометрические преобразования (10 ч)


Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии

Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот.

Исследовать свойства движений с помощью компьютерных программ.

Выполнять проекты по темам геометрических преобразований на плоскости

Построения с помощью циркуля и линейки (5 ч)


Построения с помощью циркуля и линейки. основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на n равных частей.

Решать задачи на построение с помощью циркуля и линейки.

Находить условия существования решения, выполнять построение точек, необходимых для построения искомой фигуры.

Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных)

Измерение геометрических величин (25 ч)


Длина отрезка. Длина ломаной. Периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Длина окружности, число π; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности. [Радианная мера угла.]

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона.

Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур

Объяснять и иллюстрировать понятие периметра многоугольника.

Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми.

Формулировать и объяснять свойства длины, градусной меры угла, площади.

Формулировать соответствие между величиной центрального угла и длиной дуги окружности.

Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга.

Находить площадь многоугольника разбиением на треугольники и четырехугольники.

Объяснять и иллюстрировать отношение площадей подобных фигур.

Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы.

Использовать формулы для обоснования доказательных рассуждений в ходе решения.

Интерпретировать полученный результат и сопоставлять его с условием задачи


Координаты (10 ч)


Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности

Объяснять и иллюстрировать понятие декартовой системы координат.

Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности.

Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства

Векторы (10 ч)


Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение векторов

Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов.

Вычислять длину и координаты вектора.

Находить угол между векторами.

Выполнять операции над векторами.

Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства

Элементы логики (5 ч)


Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы





Резерв времени 15 ч




6.Тематическое планирование

Административные диагностические контрольные работы (входная, промежуточная, итоговая) проводятся за счет сокращения часов выделенных на самостоятельную работу.

5 класс

п/п

Тема

Всего часов



Аудиторных

Самостоятельных работ

Контрольных работ

1

Линии

8

5

3

-

2

Натуральные числа

13

8

4

1

3

Действия с натуральными числами

22

11

10

1

4

Использование свойств действий при вычислении

12

8

4

-

5

Многоугольники

8

5

2

1

6

Делимость чисел

15

12

3

-

7

Треугольники и четырехугольники

10

5

4

1

8

Дроби

18

11

6

1

9

Действия с дробями

34

19

14

1

10

Многогранники

10

5

5

-

11

Таблицы и диаграммы

9

9

-

-


Повторение

16

16

-

-


итого

175

114

55

6



6 класс

п/п

Тема

Всего часов



Аудиторных

Самостоятельных работ

Контрольных работ

1

Дроби и проценты

20

16

3

1

2

Прямые на плоскости и в пространстве

6

6

-

-

3

Десятичные дроби

9

7

1

1

4

Действия с десятичными дробями

31

23

7

1

5

Окружность

8

8

-

-

6

Отношения и проценты

15

10

4

1

7

Симметрия

8

8

-

-

8

Целые числа

14

11

2

1

9

Комбинаторика. Случайные события

8

8

-

-

10

Рациональные числа

16

13

2

1

11

Буквы и формулы

15

10

4

1

12

Многоугольники и многогранники

10

10

1

-


Повторение

15

15

-

-


итого

175

145

23

7



7 класс

Алгебра

п/п

Тема

Всего часов



Аудиторных

Самостоятельных работ

Контрольных работ

1

Дроби и проценты

17

13

3

1

2

Прямая и обратная пропорциональности

8

5

2

1

3

Введение в алгебру

10

8

1

1

4

Уравнения

14

11

2

1

5

Координаты и графики

12

9

2

1

6

Свойства степени с натуральным показателем

9

7

1

1

7

Многочлены

19

14

3

2

8

Разложение многочленов на множители

20

16

3

1

9

Частота и вероятность

6

5

1

-


Повторение

8

8


-


итого

123

89

16

9



Геометрия

п/п

тема

Всего часов

В том числе

аудиторных

Самостоятельных работ

Контрольных работ

Практических работ

1

Начальные геометрические сведения

7

5

1

1

-

2

Треугольники

14

9

2

1

2

3

Параллельные прямые

9

6

1

1

1

4

Соотношения между сторонами и углами треугольника

16

11

2

2

1

5

Повторение. Решение задач

6

5

-

1

-


итого

52

36

6

6

4









8 класс

Алгебра

п/п

Тема

Всего часов



Аудиторных

Самостоятельных работ

Контрольных работ

1

Алгебраические дроби

22

17

4

1

2

Квадратные корни

12

9

2

1

3

Квадратные уравнения

18

14

3

1

4

Система уравнений

18

14

3

1

5

Функции

14

11

2

1

6

Вероятность и статистика

5

4

1

-


Повторение

7

7




итого

96

76

15

5



Геометрия

п/п

Тема

Всего часов

В том числе

Аудиторных

Самостоятельных работ

Контрольных работ

Практических работ

1

Четырехугольники

16

12

2

1

1

2

Площади фигур

16

13

1

1

1

3

Подобные треугольники

20

14

2

2

2

4

Окружность

21

16

2

1

2

5

Повторение

6

6

-

-

-


итого

79

61

7

5

6



9 класс

Алгебра

п/п

Тема

Всего часов



Аудиторных

Самостоятельных работ

Контрольных работ

1

Неравенства

18

14

3

1

2

Квадратичная функция

13

9

3

1

3

Уравнения и системы уравнений

25

20

3

2

4

Арифметическая и геометрическая прогрессии

17

13

3

1

5

Статистические исследования

5

4

-

1


Повторение

18

17

1

-


итого

96

77

13

6

Геометрия

п/п

Тема

Всего часов

В том числе

Аудиторных

Самостоятельных работ

Контрольных работ

Практических работ

1

Вводное повторение

5

5

-

-

-

2

Векторы.

10

7

2

1

-

3

Метод координат.

10

7

2

1

-

4

Соотношения между сторонами и углами треугольника

18

15

2

1

-

5

Длина окружности и площадь круга

14

10

2

1

1

6

Движения


12

8

2

1

1


Повторение

10

10

-

-

-


итого

79

62

10

5

2



7.Учебно-методическое и материально-техническое обеспечение образовательного процесса

Литература, использованная при подготовке программы

1. Федеральный государственный образовательный стандарт основного общего образования;

2.Примерная программа основного общего образования по математике.

3.Формирование универсальных учебных действий в основной школе. Система задании / А.Г.Асмолов, О.А.Кабанова. – М.: Просвещение,2010.


Программно – методическое обеспечение.

Учебник:

  1. Математика. 5 класс : учеб. для общеобразоват. учреждений / Г. В. Дорофеев [и др.] ; под ред. Г. В. Дорофеева, И. Ф. Шарыгина ; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». – М. : Просвещение, 2014. – 303 с. : ил. – (Академический школьный учебник). Учебник доработан в соответствии с ФГОС основного общего образования. 

  2. Математика. 6 класс : учеб. для общеобразоват. учреждений / Г. В. Дорофеев [и др.] ; под ред. Г. В. Дорофеева, И. Ф. Шарыгина ; Рос. акад. наук, Рос. акад. образования, изд-во «Просвещение». – М. : Просвещение, 2014. – 303 с. : ил. – (Академический школьный учебник). Учебник доработан в соответствии с ФГОС основного общего образования

  3. Алгебра. Учебник для 7 класса общеобразовательных учреждений. Под ред. Г.В. Дорофеева. – М., Просвещение-Дрофа, 2014 г. Учебник доработан в соответствии с ФГОС основного общего образования

  4. Математика. 8 класс. Учебник для общеобразовательной школы. Под ред. Г.В. Дорофеева. – М., Просвещение-Дрофа, 2014 г. Учебник доработан в соответствии с ФГОС основного общего образования

  5. Математика. 9 класс. Учебник для общеобразовательной школы. Под ред. Г.В. Дорофеева. – М., Просвещение-Дрофа, 20014 г. Учебник доработан в соответствии с ФГОС основного общего образования

  6. Геометрия. 7-9: учебник для общеобразовательных учреждений. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М., Просвещение, 2013 г.


Пособия для учителя:

  1. Дорофеев, Г. В. Оценка качества подготовки выпускников основной школы по математике / Г. В. Дорофеев [и др.]. – М. : Дрофа, 2013.

  2. Кузнецова, Л. В. Математика : контрольные работы : 5–6 кл. общеобразоват. учреждений / Л. В. Кузнецова [и др.]. – М. : Просвещение, 2014. – 109 с. : ил. – (Академический школьный учебник).

  3. Кузнецова, Л. В. Математика. Тематические тесты : 5–6 кл. общеобразоват. учреждений / Л. В. Кузнецова [и др.]. – М. : Просвещение, 2014. – 207 с. : ил. – (Академический школьный учебник).

  4. Кузнецова, С. С. Минаева. – М. : Просвещение, 2010. – 208 с. : ил. – (Академический школьный учебник). Тематическое планирование по математике: 5-6 кл.: кн. для учителя / сост. Т.А.

  5. Суворова, С. Б. Математика. 5–6 классы : книга для учителя / С. Б. Суворова, Л. В. Бурмистрова. – М.: Просвещение, 2013. – 319 с. Иду на урок математики. 6 класс. Методическое пособие для учителя.

  6. Шарыгин, И. Ф. Математика. Задачи на смекалку : учебное пособие для 5–6 классов общеобразовательных учреждений / И. Ф. Шарыгин, А. В. Шевкин. – М. : Просвещение, 1996.


Пособия для учеников:

1. Дорофеев, Г. В. Математика : дидактические материалы : 5 класс / Г. В. Дорофеев [и др.]. – М. : Просвещение, 2014. – 112 с. : ил. – (Академический школьный учебник).

2. Кузнецова, Л. В. Математика: контрольные работы : 5–6 кл. общеобразоват. учреждений / Л. В. Кузнецова [и др.]. – М. : Просвещение, 2014. – 109 с.: ил. – (Академический школьный учебник).

3. Бунимович, Е. А. Математика: рабочая тетрадь для 5 кл. общеобразоват. учреждений : в 2 ч. / Е. А. Бунимович [и др.]. – М. : Просвещение, 2014. – (Академический школьный учебник).

Математика: тематические тесты: 5 кл. / Л.В.Кузнецова, С.С.Минаева и др.: Математика: тематические тесты- М.: Просвещение, 2013

Технические средства обучения:

-мультимедийный компьютер;

-мультимедиапроектор;

-экран (навесной).


Учебно-практическое и учебно-лабораторное оборудование:

-доска магнитная с координатной сеткой;

-комплект чертежных инструментов;

-комплекты планиметрических и стереометрических тел;

-комплекты для моделирования.


Печатные пособия:

-таблицы по математике для 5-9 классов;

-портреты выдающихся деятелей математики.


Информационно - методическая и Интернет-поддержка:

1. Журнал «Математика в школе».

2. Приложение «Математика», сайт www.prosv.ru (рубрика «Математика»).

3. Интернет-школа Просвещение.ru

4. Интерактивная математика 5-9 класс. ДРОФА

5. ЦОРы из федерального собрания образовательных материалов.

6. ЦОРы из единой коллекции цифровых образовательных ресурсов.

7. Детская энциклопедия «Кирилла и Мефодия»

8. Фестиваль педагогических идей «Открытый урок», 2006-2014 год

9. Фестиваль исследовательских работ «Портфолио», 2007-2014 год



Планируемые результаты изучения учебного предмета

Элементы теории множеств и математической логики

Ученик научится:

  • Оперировать на базовом уровне1 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях.

  • распознавать логически некорректные высказывания.

Ученик получит возможность:

  • Оперировать2 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

  • определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

  • распознавать логически некорректные высказывания;

  • строить цепочки умозаключений на основе использования правил логики.


Числа

Ученик научится:

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

  • использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • сравнивать рациональные числа.

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.



Ученик получит возможность:

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений, обосновывать алгоритмы выполнения действий;

  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;

  • выполнять округление рациональных чисел с заданной точностью;

  • упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;

  • находить НОД и НОК чисел и использовать их при решении зада;.

  • оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.


Статистика и теория вероятностей

Ученик научится:

  • Представлять данные в виде таблиц, диаграмм,

  • читать информацию, представленную в виде таблицы, диаграммы.

Ученик получит возможность:

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

  • извлекать, информацию, представленную в таблицах, на диаграммах;

  • составлять таблицы, строить диаграммы на основе данных.

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.


Текстовые задачи


Ученик научится:

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;

решать несложные логические задачи методом рассуждений

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)


Ученик получит возможность:

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета.


Геометрические фигуры


Ученик научится:

  • Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

  • решать практические задачи с применением простейших свойств фигур.


Ученик получит возможность:

  • Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.


Измерения и вычисления


Ученик научится:

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников.

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;

  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.


Ученик получит возможность:

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников, квадратов, объемы прямоугольных параллелепипедов, кубов.

  • вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объемы комнат;

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира.


История математики


Ученик научится:

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.


Ученик получит возможность:

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.

Выпускник научится в 7-9 классах

Элементы теории множеств и математической логики


Ученик научится:

  • Оперировать на базовом уровне3 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях;

  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;

  • приводить примеры и контрпримеры для подтверждения своих высказываний.

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Ученик получит возможность:

  • Оперировать4 понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

  • изображать множества и отношение множеств с помощью кругов Эйлера;

  • определять принадлежность элемента множеству, объединению и пересечению множеств;

  • задавать множество с помощью перечисления элементов, словесного описания;

  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

  • строить высказывания, отрицания высказываний.

  • строить цепочки умозаключений на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.


Числа

Ученик научится:


  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;

  • использовать свойства чисел и правила действий при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • оценивать значение квадратного корня из положительного целого числа;

  • распознавать рациональные и иррациональные числа;

  • сравнивать числа.

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.


Ученик получит возможность:

  • Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений;

  • выполнять округление рациональных чисел с заданной точностью;

  • сравнивать рациональные и иррациональные числа;

  • представлять рациональное число в виде десятичной дроби

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

  • находить НОД и НОК чисел и использовать их при решении задач.

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

  • записывать и округлять числовые значения реальных величин с использованием разных систем измерения.


Тождественные преобразования


Ученик научится:

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

  • понимать смысл записи числа в стандартном виде;

  • оперировать на базовом уровне понятием «стандартная запись числа».


Ученик получит возможность:

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

  • выделять квадрат суммы и разности одночленов;

  • раскладывать на множители квадратный трехчлен;

  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

  • выполнять преобразования выражений, содержащих квадратные корни;

  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

  • выполнять преобразования выражений, содержащих модуль.

  • выполнять преобразования и действия с числами, записанными в стандартном виде;

  • выполнять преобразования алгебраических выражений при решении задач других учебных предметов.


Уравнения и неравенства


Ученик научится:

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

  • проверять справедливость числовых равенств и неравенств;

  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

  • решать системы несложных линейных уравнений, неравенств;

  • проверять, является ли данное число решением уравнения (неравенства);

  • решать квадратные уравнения по формуле корней квадратного уравнения;

  • изображать решения неравенств и их систем на числовой прямой.

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.


Ученик получит возможность:

  • Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

  • решать дробно-линейные уравнения;

  • решать простейшие иррациональные уравнения вида , ;

  • решать уравнения вида ;

  • решать уравнения способом разложения на множители и замены переменной;

  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;

  • решать линейные уравнения и неравенства с параметрами;

  • решать несложные квадратные уравнения с параметром;

  • решать несложные системы линейных уравнений с параметрами;

  • решать несложные уравнения в целых числах.

  • составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

  • выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;

  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.


Функции


Ученик научится:

  • Находить значение функции по заданному значению аргумента;

  • находить значение аргумента по заданному значению функции в несложных ситуациях;

  • определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;

  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;

  • строить график линейной функции;

  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

  • определять приближенные значения координат точки пересечения графиков функций;

  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Ученик получит возможность:

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;

  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,hello_html_86db9e5.gif, ;

  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;

  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

  • исследовать функцию по ее графику;

  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на арифметическую и геометрическую прогрессию.

  • иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;

  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов.


Статистика и теория вероятностей


Ученик научится:

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;

  • представлять данные в виде таблиц, диаграмм, графиков;

  • читать информацию, представленную в виде таблицы, диаграммы, графика;

  • определять основные статистические характеристики числовых наборов;

  • оценивать вероятность события в простейших случаях;

  • иметь представление о роли закона больших чисел в массовых явлениях.

  • оценивать количество возможных вариантов методом перебора;

  • иметь представление о роли практически достоверных и маловероятных событий;

  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

  • оценивать вероятность реальных событий и явлений в несложных ситуациях.


Ученик получит возможность:

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках;

  • составлять таблицы, строить диаграммы и графики на основе данных;

  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

  • применять правило произведения при решении комбинаторных задач;

  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;

  • представлять информацию с помощью кругов Эйлера;

  • решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

  • оценивать вероятность реальных событий и явлений.


Текстовые задачи


Ученик научится:

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

  • выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).


Ученик получит возможность:

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета.


Геометрические фигуры


Ученик научится:

  • Оперировать на базовом уровне понятиями геометрических фигур;

  • извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;

  • применять для решения задач геометрические факты, если условия их применения заданы в явной форме;

  • решать задачи на нахождение геометрических величин по образцам или алгоритмам.

  • использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.


Ученик получит возможность:

  • Оперировать понятиями геометрических фигур;

  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;

  • формулировать в простейших случаях свойства и признаки фигур;

  • доказывать геометрические утверждения;

  • владеть стандартной классификацией плоских фигур (треугольников и четырехугольников).

  • использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин.






Отношения


Ученик научится:

  • Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

  • использовать отношения для решения простейших задач, возникающих в реальной жизни.


Ученик получит возможность:

  • Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;

  • характеризовать взаимное расположение прямой и окружности, двух окружностей.

  • использовать отношения для решения задач, возникающих в реальной жизни.


Измерения и вычисления


Ученик научится:

  • Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;

  • применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

  • вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.


Ученик получит возможность:

  • Оперировать представлениями о длине, площади, объеме как величинами. Применять теорему Пифагора, формулы площади, объема при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объема, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;

  • проводить простые вычисления на объемных телах;

  • формулировать задачи на вычисление длин, площадей и объемов и решать их.

  • проводить вычисления на местности;

  • применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.





Геометрические построения


Ученик научится:

  • Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.

  • выполнять простейшие построения на местности, необходимые в реальной жизни.


Ученик получит возможность:

  • Изображать геометрические фигуры по текстовому и символьному описанию;

  • свободно оперировать чертежными инструментами в несложных случаях,

  • выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;

  • изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира.


Геометрические преобразования

Ученик научится:

  • Строить фигуру, симметричную данной фигуре относительно оси и точки.

  • распознавать движение объектов в окружающем мире;

  • распознавать симметричные фигуры в окружающем мире.


Ученик получит возможность:

  • Оперировать понятием движения и преобразования подобия, владеть приемами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;

  • строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;

  • применять свойства движений для проведения простейших обоснований свойств фигур.

  • применять свойства движений и применять подобие для построений и вычислений.


Векторы и координаты на плоскости


Ученик научится

  • Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

  • определять приближенно координаты точки по ее изображению на координатной плоскости.

  • использовать векторы для решения простейших задач на определение скорости относительного движения.


Ученик получит возможность:

  • Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;

  • применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам

История математики


Ученик научится


  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

  • понимать роль математики в развитии России.


Ученик получит возможность:

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

  • понимать роль математики в развитии России.


Методы математики


Ученик научится

  • Выбирать подходящий изученный метод для решения изученных типов математических задач;

  • Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.

Ученик получит возможность:


  • Используя изученные методы, проводить доказательство, выполнять опровержение;

  • выбирать изученные методы и их комбинации для решения математических задач;

  • использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;

  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.


1

2

3

4

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 28.04.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров85
Номер материала ДБ-057637
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх