Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по математике для 5-9 классов, в соответствии с ФГОС.
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по математике для 5-9 классов, в соответствии с ФГОС.

библиотека
материалов

Оглавление










  1. Пояснительная записка

Рабочая программа предмета «Математика» обязательной предметной области «Математика и информатика» для основного общего образования разработана на основании нормативных документов:

  1. Приказом Минобрнауки РФ № 1644 от 29 января 2014 года « Об образовании в Российской Федерации: Федеральный закон от 29 декабря 2012 г. № 273-ФЗ.

  2. Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях» : постановление Главного государственного санитарного врача Российской Федерации от 29 декабря 2010 г. № 189, г. Москва ; зарегистрировано в Минюсте РФ 3 марта 2011 г.

  3. Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательной деятельности в образовательных организациях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2013/14 учебный год: приказ Министерства образования и науки Российской Федерации от 19 декабря 2012 г. № 1067, г. Москва.

  4. в соответствии с Федеральным государственным образовательным стандартом основного общего образования: приказ Минобрнауки России от 17 декабря 2010 г. № 1897 (с внесёнными изменениями внесении изменений в федеральный государственный образовательный стандарт основного общего образования), с учётом примерной основной образовательной программы основного общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15, реестровый № 5)

  5. Основная образовательная программа основного общего образования МБОУ Новоивановская ООШ

- информационно-методических материалов:

  1. «Математика». Сборник рабочих программ. 5-6 классы [Т.А.Бурмистрова]. – М.: Просвещение, 2013. – 64с.  

  2. Алгебра. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразоват. организаций / [со- ставитель Т. А. Бурмистрова]. — 2-е изд., доп. — М. : Просвещение, 2014.

  3. Геометрия. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразов. организаций / [сост. Т. А. Бурмистрова]. — 2-е изд., дораб. — М: Просвещение, 2014.

  4. Примерные программы по учебным предметам. Математика.- М: Просвещение, 2011. — 64 с. — (Стандарты второго поколения).

Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся. При этом когнитивная составляющая данного курса позволяет обеспечить как требуемый государственным стандартом необходимый уровень математической подготовки, так и повышенный уровень, являющийся достаточным для углубленного изучения предмета.

Вместе с тем очевидно, что положение с обучением предмету «Математика» в основной школе требует к себе самого серьёзного внимания. Анализ состояния преподавания свидетельствует о том, что школа не полностью обеспечивает функциональную грамотность учащихся.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы.

Обучение математике в основной школе направлено на достижение следующих целей:

в направлении личностного развития:

Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

Развитие интереса к математическому творчеству и математических способностей;

в метапредметном направлении:

Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

в предметном направлении:

Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

В организации учебно–воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.

Задачи:

Формировать элементы самостоятельной интеллектуальной деятельности на основе овладения математическими методами познания окружающего мира (умения устанавливать, описывать, моделировать и объяснять количественные и пространственные отношения);

Развивать основы логического, знаково-символического и алгоритмического мышления; пространственного воображения; математической речи; умения вести поиск информации и работать с ней;

Развивать познавательные способности;

Воспитывать стремление к расширению математических знаний;

Способствовать интеллектуальному развитию, формировать качества личности, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

Воспитывать культуру личности, отношение к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Решение названных задач обеспечит осознание школьниками универсальности математических способов познания мира, усвоение математических знаний, связей математики с окружающей действительностью и с другими школьными предметами, а также личностную заинтересованность в расширении математических знаний.

Целью изучения курса математике в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.

Целью изучения курса математике в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.

Целью изучения курса геометрии в 7-9 классах является систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.

В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.

Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

  1. Общая характеристика учебного предмета

Содержание математического образования в 5-9 классах представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигуры. Измерение геометрических величин», «Элементы статистики, вероятности. Комбинаторные задачи», «Математика в историческом развитии», «Алгебра», «Числовые множества», «Функции», «Элементы прикладной математики», «Алгебра в историческом развитии»

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе связано с изучением рациональных чисел: натуральных чисел, обыкновенных и десятичных дробей, положительных и отрицательных чисел.

Содержание раздела «Числовые и буквенные выражения. Уравнения» формирует знания о математическом языке. Существенная роль при этом отводится овладению формальным аппаратом буквенного исчисления. Изучение материала способствует формированию у учащихся математического аппарата решения задач с помощью уравнений.

Содержание раздела «Геометрические фигуры. Измерения геометрических величин» формирует у учащихся понятия геометрических фигур на плоскости и в пространстве, закладывает основы формирования геометрической «речи», развивает пространственное воображение и логическое мышление.

Содержание раздела «Элементы статистики, вероятности. Комбинаторные задачи» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности, умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор вариантов, в том числе в простейших прикладных задачах.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Раздел «Числовые множества» нацелен на математическое развитие учащихся, формирование у них точно, сжато и ясно излагать мысли в устной и письменной речи.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Содержание раздела «Элементы прикладной математики» раскрывают прикладное и практическое значения математики в современном мире. Материал способствует формированию умения представлять и анализировать информацию.

Раздел «Алгебра в историческом развитии» предназначается для формирования представлений о математике как части человеческой культуры, для общего развития школьников, создания культурно- исторической среды обучения.

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Содержание курса геометрии в 7-9 классах представлено в виде следующих содержательных разделов: «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Геометрия в историческом развитии».

Содержание раздела «Геометрические фигуры» служит базой для дальнейшего изучения учащимися геометрии. Изучение материала способствует формированию у учащихся знаний о геометрической фигуре как важнейшей математической модели для описания реального мира. Главная цель данного раздела — развить у учащихся воображение и логическое мышление путём систематического изучения свойств геометрических фигур и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности с формально-логическим подходом является неотъемлемой частью геометрических знаний.

Содержание раздела «Измерение геометрических величин» расширяет и углубляет представления учащихся об измерениях длин, углов и площадей фигур, способствует формированию практических навыков, необходимых как при решении геометрических задач, так и в повседневной жизни.

Содержание разделов «Координаты», «Векторы» расширяет и углубляет представления учащихся о методе координат, развивает умение применять алгебраический аппарат при решении геометрических задач, а также задач смежных дисциплин.

Раздел «Геометрия в историческом развитии», содержание которого фрагментарно внедрено в изложение нового материала как сведения об авторах изучаемых фактов и теорем, истории их открытия, предназначен для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

  1. Описание места учебного предмета «Математика» в учебном плане.

Предмет «Математика» входит в обязательную предметную область «Математика и информатика». На изучение учебным планом отводится:

Года обучения

Количество часов в неделю

Количество учебных недель

Алгебра

Геометрия

Всего часов за учебный год

5 класс

5

35

-

175

6 класс

5

35

-

175

7 класс

5

35

105

70

175

8 класс

5

36

108

72

180

9 класс

5

34

102

68

170

Итого:

875 часов за курс

  1. Личностные, метапредметные и предметные результаты освоения содержания предмета

5 класс

Личностные результаты:

независимость и критичность мышления;

воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

система заданий учебников;

представленная в учебниках в явном виде организация материала по принципу минимакса;

использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология проблемного диалога, технология продуктивного чтения, технология оценивания.

Метапредметные результаты:

формирование универсальных учебных действий (УУД).

Регулятивные УУД:

самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

анализировать, сравнивать, классифицировать и обобщать факты и явления;

осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

создавать математические модели;

составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития.

1-я ЛР – Использование математических знаний для решения различных математических задач и оценки полученных результатов.

2-я ЛР – Совокупность умений по использованию доказательной математической речи.

3-я ЛР – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

4-я ЛР Умения использовать математические средства для изучения и описания реальных процессов и явлений.

5-я ЛР Независимость и критичность мышления.

6-я ЛР Воля и настойчивость в достижении цели.

Коммуникативные УУД:

самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

в дискуссии уметь выдвинуть контраргументы;

учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.

6 класс

Личностные результаты:

  • ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • первичная сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • первоначальное представление о математической науке как сфере человеческой деятельности, об этапах её развития значимости для развития цивилизации;

  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • креативность мышления, инициативы, находчивости, активность при решении арифметических задач;

  • умение контролировать процесс и результат учебной математической деятельности;

  • формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

Метапредметные результаты:

Познавательные УУД:

  • умение устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

  • умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

  • развитие способности видеть математическую задачу в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

Регулятивные УУД:

  • способность самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  • умение осуществлять контроль по образцу и вносить необходимые коррективы;

  • способность адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  • способность планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

  • умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Коммуникативные УУД:

  • развитие способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

  • формирование учебной и обще пользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

  • первоначального представление об идеях и о методах математики как об универсальном языке науки и техники;

  • умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • понимание сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом.

Предметные результаты 5-6 класс:

Натуральные числа. Дроби. Рациональные числа.

Ученик научится:

    • понимать особенности десятичной системы счисления;

    •  сравнивать и упорядочивать натуральные числа;

    •  выполнять вычисления с натуральными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

    •  использовать понятия и умения, связанные процентами, в ходе решения математических задач, выполнять несложные практические расчёты.

Ученик получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;

  •  углубить и развить представления о натуральных числах;

  • научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Измерения, приближения, оценки

Ученик научится:

  • использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Ученик получит возможность:

    • понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения.

Уравнения

Ученик научится:

    • решать простейшие уравнения с одной переменной;

    • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

Ученик получит возможность:

    • овладеть специальными приёмами решения уравнений;

    • уверенно применять аппарат уравнений для решения разнообразных задач из математики,смежных предметов, практики;

Неравенства

Ученик научится:

    • понимать и применять терминологию и символику, связанные с отношением неравенства;

    • применять аппарат неравенств, для решения задач.

Ученик получит возможность научиться:

  • уверенно применять аппарат неравенств, для решения разнообразных математических задач и задач из смежныхпредметов, практики;

Описательная статистика.

Ученик научится использовать простейшие способы представления и анализа статистических данных.

Ученик получит возможность приобрести первоначальный опыт организации сбора данных при проведенииопроса общественного мнения, представлять результаты опроса в виде таблицы, диаграммы.

Комбинаторика

Ученик научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Ученик получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Ученик научится:

    • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

    • распознавать развёртки куба, прямоугольного параллелепипеда;

    • строить развёртки куба и прямоугольного параллелепипеда;

    • вычислять объём прямоугольного параллелепипеда.

Ученик получит возможность:

  • научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

  • углубить и развить представления о пространственных геометрических фигурах.

Геометрические фигуры

Ученик научится:

    • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

    • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

    • находить значения длин линейных фигур, градусную меру углов от 0 до 180°;

    • решать несложные задачи на построение.

Ученик получит возможность:

  • научится пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  • находить значения длин линейных фигур, градусную меру углов от 0 до 180°;

  • решать несложные задачи на построение.

Измерение геометрических величин

Ученик научится:

    • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;

    • вычислять площади прямоугольника, квадрата;

    • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;

    • решать задачи на применение формулы площадипрямоугольника, квадрата.

Ученик получит возможность научиться:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;

  • вычислять площади прямоугольника, квадрата;

  • вычислять длины линейных элементов фигур и их углы, формулы площадей фигур;

  • решать задачи на применение формулы площади прямоугольника, квадрата.

Координаты

Ученик научится:

    • находить координаты точки.

Ученик получит возможность:

  • овладеть координатным методом решения задач.

Работа с информацией

Ученик научится:

    • заполнять простейшие таблицы по результатам выполнения практической работы, по рисунку;

    • выполнять действия по алгоритму;

    • читать простейшие круговые диаграммы.

Ученик получит возможность научиться:

  • устанавливать закономерность расположения данных в строках и столбцах таблицы, заполнять таблицу в соответствии с установленной закономерностью;

  • понимать информацию, заключенную в таблице, схеме, диаграмме и представлять ее в виде текста (устного или письменного), числового выражения, уравнения;

  • выполнять задания в тестовой форме с выбором ответа;

  • выполнять действия по алгоритму; проверять правильность готового алгоритма, дополнять незавершенный алгоритм;

  • строить простейшие высказывания с использованием логических связок «верно /неверно, что ...»;

  • составлять схему рассуждений в текстовой задаче от вопроса.

7 класс

Личностные результаты:

  1. сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

  2. сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  3. сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

  4. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  5. представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

  6. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  7. креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;

  8. умение контролировать процесс и результат учебной математической деятельности;

  9. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Метапредметные результаты:

Познавательные УУД:

    • осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

    • умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

    • осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

    • умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

    • умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

    • формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

    • формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

    • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

    • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

    • умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

    • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

    • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

Регулятивные УУД:

  • умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  • умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;

  • умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

  • умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

  • умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  • умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

Коммуникативные УУД:

  • умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;

  • умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;

  • слушать партнера;

  • формулировать, аргументировать и отстаивать свое мнение;

  • умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  • умение создавать, применять и преобразовывать знаково- символические средства, модели и схемы для решения учебных и познавательных задач;

  • умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

  • сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Предметные результаты:

Алгебра

Содержательные

линии

Базовый уровень

Повышенный уровень


Рациональные числа


Семиклассник научится:

  • понимать особенности десятичной системы счисления;

  • владеть понятиями, связанными с делимостью натуральных чисел;

  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

  • сравнивать и упорядочивать рациональные числа;

  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

  • использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчеты.

Семиклассник получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;

  • углубить и развить представления о натуральных числах и свойствах делимости;

  • научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.


Действительные числа


Семиклассник научится:

  • использовать начальные представления о множестве действительных чисел;


Семиклассник получит возможность:

  • развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

  • развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Алгебраические выражения


Семиклассник научится:

  • владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

  • выполнять преобразования выражений, содержащих степени с целыми показателями;

  • выполнять разложение многочленов на множители.

Семиклассник получит возможность научиться:

  • выполнять многошаговые преобразования целых выражений, применяя широкий набор способов и приёмов;


Уравнения


Семиклассник научится:

  • решать основные виды линейных уравнений с одной переменной, системы двух уравнений с двумя переменными;

  • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Семиклассник получит возможность:

  • овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

  • применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.


Описательная статистика


Семиклассник научится:

  • использовать простейшие способы представления и анализа статистических данных.


Семиклассник получит возможность:

приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Геометрия

В результате изучения курса геометрии семиклассник ученик научится:

  • использовать язык геометрии для описания предметов окружающего мира;

  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их отношения;

  • использовать свойства измерения длин и углов при решении задач на нахождение длины отрезка и градусной меры угла;

  • решать задачи на вычисление градусных мер углов от 0^0 до 180^0 с необходимыми теоретическими обоснованиями, опирающимися на изучение свойства фигур и их элементов;

  • решать задачи на доказательство, опираясь на изученные свойства фигур и отношения между ними и применяя изученные виды доказательств;

  • решать несложные задачи на построение циркуля и линейки;

  • решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Семиклассник получит возможность:

  • овладеть методами решения задач на вычисления и доказательства: методом от противного;

  • овладеть традиционной схемой решения задач на построения с помощью циркуля и линейки: анализ, построение, доказательство и исследование

8 класс

Личностные результаты:

формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;

формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

креативность мышления, инициативу, находчивость, активность при решении геометрических задач;

умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

Метапредметные результаты:

Познавательные УУД:

– анализировать, сравнивать, классифицировать и обобщать факты и явления;

– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

– создавать математические модели;

составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

– вычитывать все уровни текстовой информации.

– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

  – Использование математических знаний для решения различных математических задач и оценки полученных результатов.

  – Совокупность умений по использованию доказательной математической речи.

 – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

 – Умения использовать математические средства для изучения и описания реальных процессов и явлений.

  – Независимость и критичность мышления.

 – Воля и настойчивость в достижении цели.

Регулятивные УУД:

самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

– планировать свою индивидуальную образовательную траекторию;

свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

в ходе представления проекта давать оценку его результатам;

самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

– уметь оценить степень успешности своей индивидуальной образовательной деятельности;

Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Коммуникативные УУД:

самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

в дискуссии уметь выдвинуть контраргументы;

учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

Средством  формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и  системнодеятельностного обучения.


Предметные результаты:

Алгебра

Содержательные

линии

Базовый уровень

Повышенный уровень



Действительные числа

Восьмиклассник научится:

1)использовать начальные представления о множестве действительных чисел;

2)владеть понятием квадратного корня, применять его в вычислениях.



Восьмиклассник получит возможность :

1)развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

2)развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).


Измерения, приближения, оценки

Восьмиклассник научится:

1)использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.


Восьмиклассник получит возможность:

1)понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

2)понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.





Уравнения

Восьмиклассник научится:

1)решать различные виды квадратных уравнений и уравнений, сводящихся к квадратным, а также системы двух уравнений с двумя неизвестными;

2)понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом.


Восьмиклассник получит возможность овладеть специальными приёмами решения квадратных уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики.









Неравенства

Восьмиклассник научится:

1)понимать и применять терминологию и символику, связанные с понятием неравенства, свойства числовых неравенств;

2) решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

3) применять аппарат неравенств для решения задач различных из различных разделов курса.

Восьмиклассник получит возможность научиться разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения математических задач.



Числовые функции

Восьмиклассник научится:

1)понимать и использовать функциональные понятия и язык (термины, символические обозначения);

2)строить графики квадратных функций, исследовать их свойства на основе изучения поведения этих графиков;

3)понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Восьмиклассник получит возможность научиться:

1)проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера;

2)использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.



Действительные числа

Восьмиклассник научится:

1)использовать начальные представления о множестве действительных чисел;

2)владеть понятием степени с рациональным показателем, применять его в вычислениях.

Восьмиклассник получит возможность развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике.



Геометрия

Восьмиклассник научится:

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

- определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;

- определении трапеции; элементах трапеции; теореме о средней линии трапеции; - определении окружности, круга и их элементов;

- теореме об измерении углов, связанных с окружностью;

- определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;

- определении вписанной и описанной окружностей, их свойствах;

- определении тригонометрические функции острого угла, основных соотношений между ними;

- приёмах решения прямоугольных треугольников; - тригонометрических функциях углов от 0 до 180°; - теореме косинусов и теореме синусов;

- приёмах решения произвольных треугольников;

- формулах для площади треугольника, параллелограмма, трапеции; - теореме Пифагора.

- Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;

- решать простейшие задачи на трапецию;

- находить градусную меру углов, связанных с окружностью; устанавливать их равенство;

- применять свойства касательных к окружности при решении задач;

- решать задачи на вписанную и описанную окружность;

- выполнять основные геометрические построения с помощью циркуля и линейки;

- находить значения тригонометрических функций острого угла через стороны пря-моугольного треугольника;

- применять соотношения между тригонометрическими функциями при решении за-дач; в частности, по значению одной из функций находить значения всех остальных;

- решать прямоугольные треугольники;

- сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;

- применять теорему косинусов и теорему синусов при решении задач; - решать произвольные треугольники;

- находить площади треугольников, параллелограммов, трапеций;

- применять теорему Пифагора при решении задач;

- находить простейшие геометрические вероятности;

Восьмиклассник получит возможность:

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

9 класс

Личностные результаты:

1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.

2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.

3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; веротерпимость, уважительное отношение к религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.

4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.

5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).

6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами; идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).

7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.

8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимой ценности).

9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

Метапредметные результаты:

Познавательные УУД

  1. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:

  • подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;

  • выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;

  • выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;

  • объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;

  • выделять явление из общего ряда других явлений;

  • определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;

  • строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;

  • строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;

  • излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;

  • самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;

  • вербализовать эмоциональное впечатление, оказанное на него источником;

  • объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);

  • выявлять и называть причины события, явления, в том числе возможные / наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;

  • делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.

  1. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:

  • обозначать символом и знаком предмет и/или явление;

  • определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;

  • создавать абстрактный или реальный образ предмета и/или явления;

  • строить модель/схему на основе условий задачи и/или способа ее решения;

  • создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;

  • преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;

  • переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;

  • строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;

  • строить доказательство: прямое, косвенное, от противного;

  • анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.

  1. Смысловое чтение. Обучающийся сможет:

  • находить в тексте требуемую информацию (в соответствии с целями своей деятельности);

  • ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;

  • устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;

  • резюмировать главную идею текста;

  • преобразовывать текст, «переводя» его в другую модальность, интерпретировать текст (художественный и нехудожественный – учебный, научно-популярный, информационный, текст non-fiction);

  • критически оценивать содержание и форму текста.

  1. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:

  • определять свое отношение к природной среде;

  • анализировать влияние экологических факторов на среду обитания живых организмов;

  • проводить причинный и вероятностный анализ экологических ситуаций;

  • прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;

  • распространять экологические знания и участвовать в практических делах по защите окружающей среды;

  • выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.

10. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:

  • определять необходимые ключевые поисковые слова и запросы;

  • осуществлять взаимодействие с электронными поисковыми системами, словарями;

  • формировать множественную выборку из поисковых источников для объективизации результатов поиска;

  • соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные УУД

  1. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:

  • определять возможные роли в совместной деятельности;

  • играть определенную роль в совместной деятельности;

  • принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

  • определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;

  • строить позитивные отношения в процессе учебной и познавательной деятельности;

  • корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);

  • критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

  • предлагать альтернативное решение в конфликтной ситуации;

  • выделять общую точку зрения в дискуссии;

  • договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;

  • организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);

  • устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.

  1. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:

  • определять задачу коммуникации и в соответствии с ней отбирать речевые средства;

  • отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);

  • представлять в устной или письменной форме развернутый план собственной деятельности;

  • соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;

  • высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;

  • принимать решение в ходе диалога и согласовывать его с собеседником;

  • создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;

  • использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;

  • использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;

  • делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.

  1. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее – ИКТ). Обучающийся сможет:

  • целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;

  • выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;

  • выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;

  • использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;

  • использовать информацию с учетом этических и правовых норм;

  • создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

Предметные:

Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

  • Оперировать на базовом уровне1 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

  • использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов

Статистика и теория вероятностей

  • Представлять данные в виде таблиц, диаграмм,

  • читать информацию, представленную в виде таблицы, диаграммы,.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

  • Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;

  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни

История математики

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей

Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях)

Элементы теории множеств и математической логики

  • Оперировать2 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

  • определять принадлежность элемента множеству, объединению и пересечению множеств;

задавать множество с помощью перечисления элементов, словесного описания

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания;

  • строить цепочки умозаключений на основе использования правил логики

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приёмов рациональных вычислений, обосновывать алгоритмы выполнения действий;

  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;

  • выполнять округление рациональных чисел с заданной точностью;

  • упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;

  • находить НОД и НОК чисел и использовать их при решении задач.

  • оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов;

Уравнения и неравенства Этого в содержании нет

  • Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

  • извлекать, информацию, представленную в таблицах, на диаграммах;

  • составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета

Наглядная геометрия

Геометрические фигуры

  • Оперировать понятиями фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, призма, шар, пирамида, цилиндр, конус;

  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах

  • изображать изучаемые фигуры от руки и с помощью линейки, циркуля, компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников, квадратов, объёмы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объёмы комнат;

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей

Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне3 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях;

  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;

  • приводить примеры и контрпримеры для подтвержнения своих высказываний

В повседневной жизни и при изучении других предметов:

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;

  • использовать свойства чисел и правила действий при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • оценивать значение квадратного корня из положительного целого числа;

  • распознавать рациональные и иррациональные числа;

  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями .

В повседневной жизни и при изучении других предметов:

  • понимать смысл записи числа в стандартном виде;

  • оперировать на базовом уровне понятием «стандартная запись числа»

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

  • проверять справедливость числовых равенств и неравенств;

  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

  • решать системы несложных линейных уравнений, неравенств;

  • проверять, является ли данное число решением уравнения (неравенства);

  • решать квадратные уравнения по формуле корней квадратного уравнения;

  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах

Функции

  • находить значение функции по заданному значению аргумента;

  • находить значение аргумента по заданному значению функции в несложных ситуациях;

  • определять положение точки по её координатам, координаты точки по её положению на координатной плоскости;

  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;

  • строить график линейной функции;

  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

  • определять приближённые значения координат точки пересечения графиков функций;

  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчётом без применения формул.

В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов

Статистика и теория вероятностей поставить после текстовых задач, как с содержании.

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;

  • представлять данные в виде таблиц, диаграмм, графиков;

  • читать информацию, представленную в виде таблицы, диаграммы, графика;

  • определять основные статистические характеристики числовых наборов;

  • оценивать вероятность события в простейших случаях;

  • иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;

  • иметь представление о роли практически достоверных и маловероятных событий;

  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

  • оценивать вероятность реальных событий и явлений в несложных ситуациях

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку)

Геометрические фигуры

  • Оперировать на базовом уровне понятиями геометрических фигур;

  • извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;

  • применять для решения задач геометрические факты, если условия их применения заданы в явной форме;

  • решать задачи на нахождение геометрических величин по образцам или алгоритмам.

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания

Отношения

  • Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения простейших задач, возникающих в реальной жизни

Измерения и вычисления

  • Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • применять формулы периметра, площади и объёма, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;

  • применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни

Геометрические построения

  • Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни

Геометрические преобразования

  • Строить фигуру, симметричную данной фигуре относительно оси и точки.

В повседневной жизни и при изучении других предметов:

  • распознавать движение объектов в окружающем мире;

  • распознавать симметричные фигуры в окружающем мире

Векторы и координаты на плоскости

  • Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

  • определять приближённо координаты точки по её изображению на координатной плоскости.

В повседневной жизни и при изучении других предметов:

  • использовать векторы для решения простейших задач на определение скорости относительного движения

История математики

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

  • понимать роль математики в развитии России

Методы математики

  • Выбирать подходящий изученный метод для решении изученных типов математических задач;

  • Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.


Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях

Элементы теории множеств и математической логики

  • Оперировать4 понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

  • изображать множества и отношение множеств с помощью кругов Эйлера;

  • определять принадлежность элемента множеству, объединению и пересечению множеств;

  • задавать множество с помощью перечисления элементов, словесного описания;

  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

  • строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений

Числа

  • Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чиселло, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;

  • выполнять округление рациональных чисел с заданной точностью;

  • сравнивать рациональные и иррациональные числа;

  • представлять рациональное число в виде десятичной дроби

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

  • находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

  • записывать и округлять числовые значения реальных величин с использованием разных систем измерения

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

  • выделять квадрат суммы и разности одночленов;

  • раскладывать на множители квадратный трёхчлен;

  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

  • выполнять преобразования выражений, содержащих квадратные корни;

  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;

  • выполнять преобразования алгебраических выражений при решении задач других учебных предметов

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

  • решать дробно-линейные уравнения;

  • решать простейшие иррациональные уравнения вида hello_html_5bfbb1df.gif, hello_html_8549cfa.gif;

  • решать уравнения вида hello_html_48b2055b.gif;

  • решать уравнения способом разложения на множители и замены переменной;

  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;

  • решать линейные уравнения и неравенства с параметрами;

  • решать несложные квадратные уравнения с параметром;

  • решать несложные системы линейных уравнений с параметрами;

  • решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

  • выбирать соответствующие уравнения, неравенства или их системы, для составления математической модели заданной реальной ситуации или прикладной задачи;

  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, чётность/нечётность функции;

  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: hello_html_m50d7343e.gif, hello_html_4ba7b855.gif, hello_html_m2ca2b0f0.gifhello_html_71b6350d.gif, hello_html_522736ec.gif;

  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций hello_html_52b08b14.gif;

  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

  • исследовать функцию по её графику;

  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;

  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках;

  • составлять таблицы, строить диаграммы и графики на основе данных;

  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

  • применять правило произведения при решении комбинаторных задач;

  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;

  • представлять информацию с помощью кругов Эйлера;

  • решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

  • оценивать вероятность реальных событий и явлений.

Геометрические фигуры

  • Оперировать понятиями геометрических фигур;

  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;

  • формулировать в простейших случаях свойства и признаки фигур;

  • доказывать геометрические утверждения

  • владеть стандартной классификацией плоских фигур (треугольников и четырёхугольников).

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин

Отношения

  • Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;

  • характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения задач, возникающих в реальной жизни

Измерения и вычисления

  • Оперировать представлениями о длине, площади, объёме как величинами. Применять теорему Пифагора, формулы площади, объёма при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объёма, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;

  • проводить простые вычисления на объёмных телах;

  • формулировать задачи на вычисление длин, площадей и объёмов и решать их. В содержании есть ещё и теорема синусов и косинусов. Либо там убрать . либо здесь добавить

В повседневной жизни и при изучении других предметов:

  • проводить вычисления на местности;

  • применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности

Геометрические построения

  • Изображать геометрические фигуры по текстовому и символьному описанию;

  • свободно оперировать чертёжными инструментами в несложных случаях,

  • выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;

  • изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира

Преобразования

  • Оперировать понятием движения и преобразования подобия, владеть приёмами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;

  • строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;

  • применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений

Векторы и координаты на плоскости

  • Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;

  • применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

  • понимать роль математики в развитии России

Методы математики

  • Используя изученные методы, проводить доказательство, выполнять опровержение;

  • Выбирать изученные методы и их комбинации для решения математических задач;

  • использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;

  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углублённом уровне

Элементы теории множеств и математической логики

  • Свободно оперировать5 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;

  • задавать множества разными способами;

  • проверять выполнение характеристического свойства множества;

  • свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний;, истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не. Условные высказывания (импликации);

  • строить высказывания с использованием законов алгебры высказываний.

В повседневной жизни и при изучении других предметов:

  • строить рассуждения на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

  • переводить числа из одной системы записи (системы счисления) в другую;

  • доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;

  • выполнять округление рациональных и иррациональных чисел с заданной точностью;

  • сравнивать действительные числа разными способами;

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

  • находить НОД и НОК чисел разными способами и использовать их при решении задач;

  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;

  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов

Тождественные преобразования

  • Свободно оперировать понятиями степени с целым и дробным показателем;

  • выполнять доказательство свойств степени с целыми и дробными показателями;

  • оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;

  • свободно владеть приемами преобразования целых и дробно-рациональных выражений;

  • выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приёмов;

  • использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трёхчлена и для решения задач, в том числе задач с параметрами на основе квадратного трёхчлена;

  • выполнять деление многочлена на многочлен с остатком;

  • доказывать свойства квадратных корней и корней степени n;

  • выполнять преобразования выражений, содержащих квадратные корни, корни степени n;

  • свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;

  • выполнять различные преобразования выражений, содержащих модули.hello_html_50fa9e0e.gifhello_html_50fa9e0e.gif

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;

  • выполнять преобразования рациональных выражений при решении задач других учебных предметов;

  • выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей

Уравнения и неравенства

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;

  • знать теорему Виета для уравнений степени выше второй;

  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

  • владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

  • владеть разными методами доказательства неравенств;

  • решать уравнения в целых числах;

  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов

  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты

Функции

  • Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, чётность/нечётность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,

  • строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, hello_html_522736ec.gif;

  • использовать преобразования графика функции hello_html_2a231cbf.gif для построения графиков функций hello_html_52b08b14.gif;

  • анализировать свойства функций и вид графика в зависимости от параметров;

  • свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;

  • использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;

  • исследовать последовательности, заданные рекуррентно;

  • решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

  • конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;

  • использовать графики зависимостей для исследования реальных процессов и явлений;

  • конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета

Статистика и теория вероятностей после задач

  • Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • выбирать наиболее удобный способ представления информации, адекватный её свойствам и целям анализа;

  • вычислять числовые характеристики выборки;

  • свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;

  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • знать примеры случайных величин, и вычислять их статистические характеристики;

  • использовать формулы комбинаторики при решении комбинаторных задач;

  • решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

  • представлять информацию о реальных процессах и явлениях способом, адекватным её свойствам и цели исследования;

  • анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;

  • оценивать вероятность реальных событий и явлений в различных ситуациях

Текстовые задачи

  • Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;

  • распознавать разные виды и типы задач;

  • использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;

  • знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние).при решение задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»;

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • конструировать новые для данной задачи задачные ситуации с учётом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчёта;

  • конструировать задачные ситуации, приближенные к реальной действительности

Геометрические фигуры

  • Свободно оперировать геометрическими понятиями при решении задач и проведении математических рассуждений;

  • самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новые классы фигур, проводить в несложных случаях классификацию фигур по различным основаниям;

  • исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;

  • решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;

  • формулировать и доказывать геометрические утверждения.

В повседневной жизни и при изучении других предметов:

  • составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат

Отношения

  • Владеть понятием отношения как метапредметным;

  • свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • использовать свойства подобия и равенства фигур при решении задач.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для построения и исследования математических моделей объектов реальной жизни

Измерения и вычисления

  • Свободно оперировать понятиями длина, площадь, объём, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объёмов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырёхугольника, а также с применением тригонометрии;

  • самостоятельно формулировать гипотезы и проверять их достоверность.

В повседневной жизни и при изучении других предметов:

  • свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни

Геометрические построения

  • Оперировать понятием набора элементов, определяющих геометрическую фигуру,

  • владеть набором методов построений циркулем и линейкой;

  • проводить анализ и реализовывать этапы решения задач на построение.

В повседневной жизни и при изучении других предметов:

  • выполнять построения на местности;

  • оценивать размеры реальных объектов окружающего мира

Преобразования

  • Оперировать движениями и преобразованиями как метапредметными понятиями;

  • оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;

  • использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах;

    • пользоваться свойствами движений и преобразований при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений

Векторы и координаты на плоскости

  • Свободно оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • Владеть векторным и координатным методом на плоскости для решения задач на вычисление и доказательства;

  • выполнять с помощью векторов и координат доказательство известных ему геометрических фактов (свойства средних линий, теорем о замечательных точках и т.п.) и получать новые свойства известных фигур;

  • использовать уравнения фигур для решения задач и самостоятельно составлять уравнения отдельных плоских фигур.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам

История математики

  • Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;

  • рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России

Методы математики

  • Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;

  • владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;

характеризовать произведения искусства с учётом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве

  1. Содержание учебного предмета «Математика»

Содержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.

Элементы теории множеств и математической логики

Согласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.

Множества и отношения между ними

Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.

Операции над множествами

Пересечение и объединение множеств. Разность множеств, дополнение множества, Интерпретация операций над множествами с помощью кругов Эйлера.

Элементы логики

Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Высказывания

Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).

Содержание курса математики в 5–6 классах:

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулём, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Делители и кратные

Делитель и его свойства, общий делитель двух более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.

Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби

Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

Отношение двух чисел

Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты

Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Диаграммы

Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объёма, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур.

История математики

Появление цифр, букв, иероглифов в процессе счёта и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему hello_html_m23dbfb77.gif?

Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.

Содержание курса математики в 7–9 классах

Алгебра

7 класс

Тождественные преобразования

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения

Степень с натуральным показателем и её свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращённого умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращённого умножения. Квадратный трёхчлен, разложение квадратного трёхчлена на множители.

Уравнения

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Статистика

Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Функции

Понятие функции

Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, чётность/нечётность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по её графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от её углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Системы уравнений

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

8 класс

Числа

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа hello_html_m42573d55.gif. Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.

Квадратные корни

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

Уравнения и неравенства

Равенства

Числовое равенство. Свойства числовых равенств. Равенство с переменной.

Квадратное уравнение и его корни

Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений: использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида hello_html_m228bff6c.gif, hello_html_8549cfa.gif.

Уравнения вида hello_html_48b2055b.gif.Уравнения в целых числах.

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Системы неравенств

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

Статистика

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков.

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.

9 класс

Квадратичная функция

Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции hello_html_m9c90e47.gifhello_html_m7c4f1826.gifhello_html_m7c4f1826.gif. Гипербола.

Графики функций. Преобразование графика функции hello_html_79480b2f.gif для построения графиков функций вида hello_html_7bfe9456.gif.

Графики функций hello_html_m50d7343e.gif, hello_html_4ba7b855.gif, hello_html_49f8f716.gifhello_html_71b6350d.gif, hello_html_522736ec.gif.

Последовательности и прогрессии

Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и её свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

Решение текстовых задач

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объёмов выполняемых работ при совместной работе.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

Геометрия

7 класс

Геометрические фигуры

Фигуры в геометрии и в окружающем мире

Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».

Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и её свойства, виды углов, многоугольники, круг.

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.

Величины

Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.

Измерения и вычисления

Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей.

Расстояния

Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.

Геометрические построения

Геометрические построения для иллюстрации свойств геометрических фигур.

Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,

Перпендикулярные прямые

Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.

Многоугольники

Многоугольник, его элементы и его свойства. Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Параллельность прямых

Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.

Отношения

Равенство фигур

Свойства равных треугольников. Признаки равенства треугольников.

8 класс

Многоугольники

Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.

Четырёхугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.

Величины

Понятие о площади плоской фигуры и её свойствах. Измерение площадей. Единицы измерения площади.

Представление об объёме и его свойствах. Измерение объёма. Единицы измерения объёмов.

Измерения и вычисления

Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.

Подобие

Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Окружность, круг

Их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства.

Взаимное расположение прямой и окружности, двух окружностей.

Векторы

Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.


9 класс

Координаты

Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

Применение векторов и координат для решения простейших геометрических задач.

Окружность, круг

Вписанные и описанные окружности для треугольников, четырёхугольников, правильных многоугольников.

Геометрические преобразования

Преобразования

Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.

Движения

Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.

Геометрические фигуры в пространстве (объёмные тела)

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

История математики

Возникновение математики как науки, этапы её развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.

Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырёх. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э.Галуа.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.

Геометрия и искусство. Геометрические закономерности окружающего мира.

Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

Роль российских учёных в развитии математики: Л.Эйлер. Н.И.Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н.Колмогоров.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н.Крылов. Космическая программа и М.В.Келдыш.

  1. Тематическое планирование

Математика 5 класс


Раздел / Тема

Кол-во час

Планируемые виды деятельности учащихся

Л (личностные),

П(метапредметные познавательные),

К(метапредметные коммуникативные);

Р(метапредметные регулятивные)


1 Повторение курса начальной школы

3


1.

Сложение и вычитание чисел.

1

2.

Решение текстовых задач.

1

3.

Решение уравнений.

1


2 Натуральные числа и шкалы

15

Л:

–  независимость и критичность мышления;

–  воля и настойчивость в достижении цели.

Р:

–  совокупность умений самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

–  выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

–  составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

–  работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

–  в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

П:

–  совокупность умений по использованию математических знаний для решения различных математических задач и оценки полученных результатов;

–  совокупность умений по использованию доказательной математической речи.

–  совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

–  умения использовать математические средства для изучения и описания реальных процессов и явлений.

К: совокупность умений самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

–  отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

–  в дискуссии уметь выдвинуть контраргументы;

–  учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

–  понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

–  уметь взглянуть на ситуацию с иной позиции и договариваться с людьми

иных позиций.

4.

Натуральные числа. Десятичная система счисления. Римская нумерация.

1

5.

Арифметические действия с натуральными числами. Решение задач.

1

6.

Решение задач с натуральными числами

1

7.

Разложение по разрядам натуральных чисел.

1

8.

Отрезок. Сравнение отрезков.

1

9.

Длина отрезка. Треугольник.

1

10.

Плоскость. Прямая.

1

11.

Луч. Дополнительные лучи.

1

12.

Шкалы.

1

13.

Координатный луч. Координаты.

1

14.

Меньше или больше.

1

15.

Сравнение чисел.

1

16.

Решение задач по теме «Натуральные числа».

1

17.

Контрольная работа №1 по теме «Натуральные числа».

1

18.

Анализ контрольной работы по теме «Натуральные числа».

1


3 Сложение и вычитание натуральных чисел

21

19.

Сложение натуральных чисел.

1

20.

Свойства сложения.

1

21.

Разложение числа по разрядам.

1

22.

Сложение натуральных чисел. Зависимость суммы от изменения компонентов.

1

23.

Вычитание натуральных чисел.

1

24.

Вычитание. Свойства вычитания.

1

25.

Вычитание чисел в столбик. Решение задач с использованием действия вычитания.

1

26.

Решение задач с использованием действия вычитания.

1

27.

Контрольная работа №2 по теме «Сложение и вычитание».

1

28.

Анализ контрольной работы по теме «Сложение и вычитание». Числовые выражения.

1

29.

Буквенные выражения.

1

30.

Числовые и буквенные выражения.

1

31.

Буквенная запись свойств сложения и вычитания.

1

32.

Свойства сложения и вычитания.

1

33.

Сложение и вычитание.

1

34.

Уравнения.

1

35.

Решение уравнений.

1

36.

Решение задач с помощью .уравнений.

1

37.

Решение задач на составление уравнений.

1

38.

Обобщающий урок по теме «Уравнения».

1

39.

Контрольная работа №3 по теме «Буквенные выражения».

1


4 Умножение и деление натуральных чисел

21

Л:    независимость и критичность мышления;

–  воля и настойчивость в достижении цели.

Р:    совокупность умений самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

–  выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

–  составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

–  работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

–  в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

П: –  совокупность умений по использованию математических знаний для решения различных математических задач и оценки полученных результатов;

–  совокупность умений по использованию доказательной математической речи.

–  совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

–  умения использовать математические средства для изучения и описания реальных процессов и явлений.

К:  совокупность умений самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

–  отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

–  в дискуссии уметь выдвинуть контраргументы;

–  учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

–  понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

–  уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

40.

Анализ контрольной работы

по теме «Буквенные выражения». Умножение натуральных чисел.

1

41.

Применение свойств умножения при решении примеров.

1

42.

Решение задач на умножение.

1

43.

Деление.

1

44.

Решение примеров на деление.

1

45.

Решение уравнений.

1

46.

Решение текстовых задач.

1

47.

Решение уравнений.

1

48.

Деление с остатком

1

49.

Обобщающий урок по теме «Умножение и деление натуральных чисел».

1

50.

Контрольная работа №4 по теме «Умножение и деление натуральных чисел».

1

51.

Анализ контрольной работы

по теме «Умножение и деление натуральных чисел». Упрощение выражений.

1

52.

Применение распределительного свойства.

1

53.

Решение задач на умножение и деление.

1

54.

Решение уравнений.

1

55.

Применение распределительного свойства.


56.

Порядок выполнения действий.

1

57.

Решение примеров.

1

58.

Квадрат и куб числа.

1

59.

Вычисление значений выражений содержащих степень.

1

60.

Контрольная работа №5 по теме

« Упрощение выражений».


1


5 Обыкновенные дроби

24

Л:    независимость и критичность мышления;

–  воля и настойчивость в достижении цели.

- формирование навыка анализа, сопоставление, сравнение

- формирование мотивации познавательной деятельности

- формирование познавательного интереса к изучению нового

Р: -формировать способность к мобилизации сил и энергии; способность к волевому усилию – выбору ситуации мотивационного конфликта к преодолению препятствий

- определять последовательность промежуточных целей с учетом конечного результата; составляют план последовательности действий

П: - уметь выделять существенную информацию из текстов

- уметь устанавливать причинно-следственные связи

- уметь осуществлять сравнения и квалификацию по заданным критериям

-произвольно и осознано владеть общим приемом решения задач

К: - воспринимать текст с учетом поставленной учебной задачи, находить текстовую информацию, необходимую для решения, управлять своим поведением ( контроль, оценка своего действия), развивать умения обмениваться знаниями между одноклассниками.

61.

Анализ контрольной работы по теме «Упрощение выражений». Окружность и круг.

1

62.

Круговые шкалы.

1

63.

Доли.

1

64.

Обыкновенные дроби.

1

65.

Нахождение дроби от числа.

1

66.

Решение задач, содержащих дроби.

1

67.

Сравнение дробей.

1

68.

Решение задач на сравнение дробей.

1

69.

Решение задач с обыкновенными дробями.

1

70.

Правильные и неправильные дроби.

1

71.

Изображение дробей на координатном луче.

1

72.

Контрольная работа №6 по теме «Обыкновенные дроби».

1

73.

Анализ контрольной работы по теме «Обыкновенные дроби». Сложение и вычитание дробей с одинаковыми знаменателями.

1

74.

Решение примеров на сложение и вычитание дробей.

1

75.

Решение задач на сложение и вычитание дробей.

1

76.

Деление и дроби.

1

77.

Решение задач на деление и дроби.

1

78.

Смешанные числа.

1

79.

Выделение целой части.

1

80.

Сложение и вычитание смешанных чисел.

1

81.

Решение примеров на сложение и вычитание дробей.

1

82.

Решение задач на сложение и вычитание дробей.

1

83.

Контрольная работа №7 по теме «Обыкновенные дроби».

1

84.

Анализ контрольной работы по теме «Обыкновенные дроби».



6 Десятичные дроби. Сложение и вычитание десятичных дробей.

15


85.

Десятичная запись дробных чисел.

1

Л:    независимость и критичность мышления;

–  воля и настойчивость в достижении цели.

Р:    совокупность умений самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

–  выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

–  составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

–  работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

–  в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

П: –  совокупность умений по использованию математических знаний для решения различных математических задач и оценки полученных результатов;

–  совокупность умений по использованию доказательной математической речи.

–  совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

–  умения использовать математические средства для изучения и описания реальных процессов и явлений.

К:  совокупность умений самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

–  отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

–  в дискуссии уметь выдвинуть контраргументы;

–  учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

–  понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

–  уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

–  выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

–  составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

–  работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

–  в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

П: –  совокупность умений по использованию математических знаний для решения различных математических задач и оценки полученных результатов;

–  совокупность умений по использованию доказательной математической речи.

–  совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

–  умения использовать математические средства для изучения и описания реальных процессов и явлений.

К:  совокупность умений самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

–  отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

–  в дискуссии уметь выдвинуть контраргументы;

–  учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

–  понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

–  уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.


86.

Запись единиц измерения в виде десятичных дробей.

1

87.

Сравнение десятичных дробей.

1

88.

Изображение точек на координатном луче.

1

89.

Решение задач на сравнение десятичных дробей.

1

90.

Сложение десятичных дробей.

1

91.

Разложение десятичной дроби по разрядам.

1

92.

Сложение и вычитание десятичных дробей.

1

93.

Решение примеров с десятичными дробями.

1

94.

Решение уравнений.

1

95.

Решение задач на движение.

1

96.

Приближенные значения чисел.

1

97.

Округление чисел.

1

98.

Решение задач на округление чисел.

1

99.

Контрольная работа №8 по теме «Сложение и вычитание десятичных дробей».

1


7 Умножение и деление десятичных дробей

26

100.

Анализ контрольной работы. Умножение десятичных дробей на натуральное число.

1

101.

Умножение десятичных дробей на 10,100,1000.

1

102.

Решение задач на умножение десятичных дробей на натуральное число.

1

103.

Деление десятичных дробей на натуральное число.

1

104.

Решение задач на деление десятичных дробей.

1

105.

Деление десятичной дроби на 10.100.1000.

1

106.

Решение примеров, содержащих десятичные дроби.

1

107.

Решение уравнений, содержащих десятичные дроби.

1

108.

Контрольная работа №9 по теме «Умножение и деление десятичной дроби на натуральное число».

1

109.

Анализ контрольной работы по теме «Умножение и деление десятичной дроби на натуральное число». Умножение десятичных дробей.

1

110.

Умножение десятичных дробей на 0,1; 0,01; 0,001.

1

111.

Упрощение выражений.

1

112.

Решение задач на умножение десятичных дробей.

1

113.

Решение уравнений с десятичными дробями.

1

114.

Деление на десятичную дробь .

1

115.

Деление на 0,1; 0,01; 0,001.

1

116.

Решение примеров с десятичными дробями.

1

117.

Решение задач на составление уравнений.

1

118.

Решение задач с помощью уравнения.

1

119.

Решение текстовых задач.

1

120.

Решение примеров с десятичными дробями.

1

121.

Среднее арифметическое.

1

122.

Средняя скорость движения.

1

123.

Решение задач на деление десятичных дробей.

1

124.

Обобщающий урок по теме «Умножение и деление десятичных дробей».

1

125.

Контрольная работа №10 по теме «Умножение и деление десятичных дробей».

1


8 Площади и объемы

13

126.

Анализ контрольной работы по теме «Умножение и деление десятичных дробей». Формулы.

1

127.

Решение задач на применение формул.

1

128.

Площадь прямоугольника.

1

129.

Вычисление площади прямоугольника.

1

130.

Единицы измерения площади.

1

131.

Решение задач на нахождение площади и объема.

1

132.

Параллелепипед.

1

133.

Площадь поверхности параллелепипеда.

1

134.

Объем параллелепипеда.

1

135.

Вычисление объемов.

1

136.

Решение задач на вычисление объемов.

1

137.

Контрольная работа №11 по теме «Площади и объемы».

1

138.

Анализ контрольной работы по теме «Площади и объемы».

1


9 Инструменты для вычислений и измерений

17

140.

Микрокалькулятор.

1

145.

Решение примеров с помощью микрокалькулятора

1

146


Проценты.

1

147.

Решение задач на нахождение целого по части.

1

148.

Решение задач на нахождение части от числа.

1

149.

Решение задач на проценты.

1

150.

Решение задач на проценты.

1

151.

Угол.

1

152.

Виды углов.

1

153.

Построение углов.

1

154.

Транспортир

1

155.

Измерение углов

1

156.

Решение задач на построение углов.

1

157.

Круговые диаграммы.

1

158.

Круговые диаграммы.

1

159.

Построение и измерение углов.

1

155.

Построение углов.

1


Повторение. Решение задач.

20


156.

Натуральные числа

1

Л: -формирование устойчивой мотивации к закреплению материала;

- формирование творческих способностей через активные формы деятельности;

- формирование навыков анализа

Р: - обнаруживать и формулировать учебную проблему, составлять план выполнения работы;

-определять последовательность промежуточных действий с учетом конечного результата;

-удерживать цель деятельности до получения его результатов;

П: - владеть общим приемом решения учебных задач ;

-уметь строить рассуждение в форме связи простых суждений об объекте, его строении, свойствах и связях;

-ориентироваться на разнообразие способов решения;

К: - развивать умения точно и грамотно выражать свои мысли, отстаивать свою точку зрения в процессе дискуссии;

-организовывать и планировать учебное сотрудничество с учителем и сверстниками

157.

Среднее арифметическое.

1

158.

Числовые выражения.

1

159.

Буквенные выражения.

1

160.

Действия с обыкновенными дробями.

1

161.

Действия с десятичными дробями.

1

162.

Распределительное свойство умножения.

1

163.

Задачи на движение.

1

164.

Задачи на составление выражений.

1

165.

Задачи на нахождение части от числа.

1

166.

Задачи на проценты.


167.

Уравнения.

1

168.

Контрольная работа №12 «Итоговое повторение».

1

169.

Анализ итоговой контрольной работы.

1

170.

Измерение углов.

1

171.

Измерение углов.

1

172.

Круговые диаграммы.

1

173.

Решение задач по теме «Круговые диаграммы».

1

174.

Решение занимательных задач.

1

175.

Решение задач за курс 5-го класса.

1


  1. Описание учебно-методического и материально-технического обеспечения образовательного процесса

1.Учебники:

Класс

Предметная область

Предмет

Авторы учебника

Издательство

5

Математика и Информатика

Математика

Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд.

Вентана-Граф

6

Математика и Информатика

Математика

Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд .

Вентана-Граф

7

Математика и Информатика

Алгебра

Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков и др. / Под ред. Теляковского С.А.

Просвещение

7,8,9

Математика и Информатика

Геометрия

Л.С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.

Просвещение

8

Математика и Информатика

Алгебра

Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков и др. / Под ред. Теляковского С.А.

Просвещение

9

Математика и Информатика

Алгебра

Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков и др. / Под ред. Теляковского С.А.

Просвещение













3.Научная, научно-популярная, историческая литература.

4.Справочные пособия (энциклопедии, словари, справочники по
математике и т.п.).

5.Печатные пособия:  Портреты выдающихся деятелей математики.

6.Информационные средства

  • Мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики.

  • Электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы.

7.Технические средства обучения

  • Мультимедийный компьютер.

  • Мультимедийный   проектор.

  • Экран навесной.

8. Учебно-практическое и учебно-лабораторное оборудование

  • Доска магнитная .

  • Комплект чертежных инструментов (классных и раздаточных): линейка, транспортир, угольник (30°, 60°, 90°), угольник (45°, 90°), циркуль.

  • Комплекты планиметрических и стереометрических тел (демонстрационных и раздаточных).

  • Комплект для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).

  1. Планируемые результаты изучения учебного предмета

Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

  • Оперировать на базовом уровне6 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

  • использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов

Статистика и теория вероятностей

  • Представлять данные в виде таблиц, диаграмм,

  • читать информацию, представленную в виде таблицы, диаграммы,.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

  • Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;

  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни

История математики

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей

Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях)

Элементы теории множеств и математической логики

  • Оперировать7 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

  • определять принадлежность элемента множеству, объединению и пересечению множеств;

задавать множество с помощью перечисления элементов, словесного описания

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания;

  • строить цепочки умозаключений на основе использования правил логики

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приёмов рациональных вычислений, обосновывать алгоритмы выполнения действий;

  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;

  • выполнять округление рациональных чисел с заданной точностью;

  • упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;

  • находить НОД и НОК чисел и использовать их при решении задач.

  • оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов;

Уравнения и неравенства Этого в содержании нет

  • Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

  • извлекать, информацию, представленную в таблицах, на диаграммах;

  • составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета

Наглядная геометрия

Геометрические фигуры

  • Оперировать понятиями фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, призма, шар, пирамида, цилиндр, конус;

  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах

  • изображать изучаемые фигуры от руки и с помощью линейки, циркуля, компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников, квадратов, объёмы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объёмы комнат;

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей


Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне8 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях;

  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;

  • приводить примеры и контрпримеры для подтвержнения своих высказываний

В повседневной жизни и при изучении других предметов:

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;

  • использовать свойства чисел и правила действий при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • оценивать значение квадратного корня из положительного целого числа;

  • распознавать рациональные и иррациональные числа;

  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями .

В повседневной жизни и при изучении других предметов:

  • понимать смысл записи числа в стандартном виде;

  • оперировать на базовом уровне понятием «стандартная запись числа»

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

  • проверять справедливость числовых равенств и неравенств;

  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

  • решать системы несложных линейных уравнений, неравенств;

  • проверять, является ли данное число решением уравнения (неравенства);

  • решать квадратные уравнения по формуле корней квадратного уравнения;

  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах

Функции

  • находить значение функции по заданному значению аргумента;

  • находить значение аргумента по заданному значению функции в несложных ситуациях;

  • определять положение точки по её координатам, координаты точки по её положению на координатной плоскости;

  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;

  • строить график линейной функции;

  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

  • определять приближённые значения координат точки пересечения графиков функций;

  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчётом без применения формул.

В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов

Статистика и теория вероятностей поставить после текстовых задач, как с содержании.

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;

  • представлять данные в виде таблиц, диаграмм, графиков;

  • читать информацию, представленную в виде таблицы, диаграммы, графика;

  • определять основные статистические характеристики числовых наборов;

  • оценивать вероятность события в простейших случаях;

  • иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;

  • иметь представление о роли практически достоверных и маловероятных событий;

  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

  • оценивать вероятность реальных событий и явлений в несложных ситуациях

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку)

Геометрические фигуры

  • Оперировать на базовом уровне понятиями геометрических фигур;

  • извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;

  • применять для решения задач геометрические факты, если условия их применения заданы в явной форме;

  • решать задачи на нахождение геометрических величин по образцам или алгоритмам.

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания

Отношения

  • Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения простейших задач, возникающих в реальной жизни

Измерения и вычисления

  • Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • применять формулы периметра, площади и объёма, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;

  • применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни

Геометрические построения

  • Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни

Геометрические преобразования

  • Строить фигуру, симметричную данной фигуре относительно оси и точки.

В повседневной жизни и при изучении других предметов:

  • распознавать движение объектов в окружающем мире;

  • распознавать симметричные фигуры в окружающем мире

Векторы и координаты на плоскости

  • Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

  • определять приближённо координаты точки по её изображению на координатной плоскости.

В повседневной жизни и при изучении других предметов:

  • использовать векторы для решения простейших задач на определение скорости относительного движения

История математики

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

  • понимать роль математики в развитии России

Методы математики

  • Выбирать подходящий изученный метод для решении изученных типов математических задач;

  • Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.


Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях

Элементы теории множеств и математической логики

  • Оперировать9 понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

  • изображать множества и отношение множеств с помощью кругов Эйлера;

  • определять принадлежность элемента множеству, объединению и пересечению множеств;

  • задавать множество с помощью перечисления элементов, словесного описания;

  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

  • строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений

Числа

  • Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чиселло, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;

  • выполнять округление рациональных чисел с заданной точностью;

  • сравнивать рациональные и иррациональные числа;

  • представлять рациональное число в виде десятичной дроби

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

  • находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

  • записывать и округлять числовые значения реальных величин с использованием разных систем измерения

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

  • выделять квадрат суммы и разности одночленов;

  • раскладывать на множители квадратный трёхчлен;

  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

  • выполнять преобразования выражений, содержащих квадратные корни;

  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;

  • выполнять преобразования алгебраических выражений при решении задач других учебных предметов

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

  • решать дробно-линейные уравнения;

  • решать простейшие иррациональные уравнения вида hello_html_5bfbb1df.gif, hello_html_8549cfa.gif;

  • решать уравнения вида hello_html_48b2055b.gif;

  • решать уравнения способом разложения на множители и замены переменной;

  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;

  • решать линейные уравнения и неравенства с параметрами;

  • решать несложные квадратные уравнения с параметром;

  • решать несложные системы линейных уравнений с параметрами;

  • решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

  • выбирать соответствующие уравнения, неравенства или их системы, для составления математической модели заданной реальной ситуации или прикладной задачи;

  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, чётность/нечётность функции;

  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: hello_html_m50d7343e.gif, hello_html_4ba7b855.gif, hello_html_m2ca2b0f0.gifhello_html_71b6350d.gif, hello_html_522736ec.gif;

  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций hello_html_52b08b14.gif;

  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

  • исследовать функцию по её графику;

  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;

  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках;

  • составлять таблицы, строить диаграммы и графики на основе данных;

  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

  • применять правило произведения при решении комбинаторных задач;

  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;

  • представлять информацию с помощью кругов Эйлера;

  • решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

  • оценивать вероятность реальных событий и явлений.

Геометрические фигуры

  • Оперировать понятиями геометрических фигур;

  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;

  • формулировать в простейших случаях свойства и признаки фигур;

  • доказывать геометрические утверждения

  • владеть стандартной классификацией плоских фигур (треугольников и четырёхугольников).

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин

Отношения

  • Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;

  • характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения задач, возникающих в реальной жизни

Измерения и вычисления

  • Оперировать представлениями о длине, площади, объёме как величинами. Применять теорему Пифагора, формулы площади, объёма при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объёма, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;

  • проводить простые вычисления на объёмных телах;

  • формулировать задачи на вычисление длин, площадей и объёмов и решать их. В содержании есть ещё и теорема синусов и косинусов. Либо там убрать . либо здесь добавить

В повседневной жизни и при изучении других предметов:

  • проводить вычисления на местности;

  • применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности

Геометрические построения

  • Изображать геометрические фигуры по текстовому и символьному описанию;

  • свободно оперировать чертёжными инструментами в несложных случаях,

  • выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;

  • изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира

Преобразования

  • Оперировать понятием движения и преобразования подобия, владеть приёмами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;

  • строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;

  • применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений

Векторы и координаты на плоскости

  • Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;

  • применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

  • понимать роль математики в развитии России

Методы математики

  • Используя изученные методы, проводить доказательство, выполнять опровержение;

  • Выбирать изученные методы и их комбинации для решения математических задач;

  • использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;

  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углублённом уровне

Элементы теории множеств и математической логики

  • Свободно оперировать10 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;

  • задавать множества разными способами;

  • проверять выполнение характеристического свойства множества;

  • свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний;, истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не. Условные высказывания (импликации);

  • строить высказывания с использованием законов алгебры высказываний.

В повседневной жизни и при изучении других предметов:

  • строить рассуждения на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов

Числа

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

  • переводить числа из одной системы записи (системы счисления) в другую;

  • доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;

  • выполнять округление рациональных и иррациональных чисел с заданной точностью;

  • сравнивать действительные числа разными способами;

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

  • находить НОД и НОК чисел разными способами и использовать их при решении задач;

  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;

  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов

Тождественные преобразования

  • Свободно оперировать понятиями степени с целым и дробным показателем;

  • выполнять доказательство свойств степени с целыми и дробными показателями;

  • оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;

  • свободно владеть приемами преобразования целых и дробно-рациональных выражений;

  • выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приёмов;

  • использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трёхчлена и для решения задач, в том числе задач с параметрами на основе квадратного трёхчлена;

  • выполнять деление многочлена на многочлен с остатком;

  • доказывать свойства квадратных корней и корней степени n;

  • выполнять преобразования выражений, содержащих квадратные корни, корни степени n;

  • свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;

  • выполнять различные преобразования выражений, содержащих модули.hello_html_50fa9e0e.gifhello_html_50fa9e0e.gif

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;

  • выполнять преобразования рациональных выражений при решении задач других учебных предметов;

  • выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей

Уравнения и неравенства

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;

  • знать теорему Виета для уравнений степени выше второй;

  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

  • владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

  • владеть разными методами доказательства неравенств;

  • решать уравнения в целых числах;

  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов

  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты

Функции

  • Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, чётность/нечётность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,

  • строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, hello_html_522736ec.gif;

  • использовать преобразования графика функции hello_html_2a231cbf.gif для построения графиков функций hello_html_52b08b14.gif;

  • анализировать свойства функций и вид графика в зависимости от параметров;

  • свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;

  • использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;

  • исследовать последовательности, заданные рекуррентно;

  • решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

  • конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;

  • использовать графики зависимостей для исследования реальных процессов и явлений;

  • конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета

Статистика и теория вероятностей после задач

  • Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • выбирать наиболее удобный способ представления информации, адекватный её свойствам и целям анализа;

  • вычислять числовые характеристики выборки;

  • свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;

  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • знать примеры случайных величин, и вычислять их статистические характеристики;

  • использовать формулы комбинаторики при решении комбинаторных задач;

  • решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

  • представлять информацию о реальных процессах и явлениях способом, адекватным её свойствам и цели исследования;

  • анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;

  • оценивать вероятность реальных событий и явлений в различных ситуациях

Текстовые задачи

  • Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;

  • распознавать разные виды и типы задач;

  • использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;

  • знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние).при решение задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»;

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • конструировать новые для данной задачи задачные ситуации с учётом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчёта;

  • конструировать задачные ситуации, приближенные к реальной действительности

Геометрические фигуры

  • Свободно оперировать геометрическими понятиями при решении задач и проведении математических рассуждений;

  • самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новые классы фигур, проводить в несложных случаях классификацию фигур по различным основаниям;

  • исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;

  • решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;

  • формулировать и доказывать геометрические утверждения.

В повседневной жизни и при изучении других предметов:

  • составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат

Отношения

  • Владеть понятием отношения как метапредметным;

  • свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • использовать свойства подобия и равенства фигур при решении задач.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для построения и исследования математических моделей объектов реальной жизни

Измерения и вычисления

  • Свободно оперировать понятиями длина, площадь, объём, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объёмов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырёхугольника, а также с применением тригонометрии;

  • самостоятельно формулировать гипотезы и проверять их достоверность.

В повседневной жизни и при изучении других предметов:

  • свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни

Геометрические построения

  • Оперировать понятием набора элементов, определяющих геометрическую фигуру,

  • владеть набором методов построений циркулем и линейкой;

  • проводить анализ и реализовывать этапы решения задач на построение.

В повседневной жизни и при изучении других предметов:

  • выполнять построения на местности;

  • оценивать размеры реальных объектов окружающего мира

Преобразования

  • Оперировать движениями и преобразованиями как метапредметными понятиями;

  • оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;

  • использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах;

    • пользоваться свойствами движений и преобразований при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений

Векторы и координаты на плоскости

  • Свободно оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • Владеть векторным и координатным методом на плоскости для решения задач на вычисление и доказательства;

  • выполнять с помощью векторов и координат доказательство известных ему геометрических фактов (свойства средних линий, теорем о замечательных точках и т.п.) и получать новые свойства известных фигур;

  • использовать уравнения фигур для решения задач и самостоятельно составлять уравнения отдельных плоских фигур.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам

История математики

  • Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;

  • рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России

Методы математики

  • Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;

  • владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;

характеризовать произведения искусства с учётом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.

Портрет выпускника основной школы:

- любящий свой край и свое Отечество, знающий русский и родной язык, уважающий свой народ, его культуру и духовные традиции;

- осознающий и принимающий ценности человеческой жизни, семьи, гражданского общества, многонационального российского народа, человечества;

- активно и заинтересованно познающий мир, осознающий ценность труда, науки и творчества;

- умеющий учиться, осознающий важность образования и самообразования для жизни и деятельности, способный применять полученные знания на практике;

- социально активный, уважающий закон и правопорядок, соизмеряющий свои поступки с нравственными ценностями, осознающий свои обязанности перед семьей, обществом, Отечеством;

- уважающий других людей, умеющий вести конструктивный диалог, достигать взаимопонимания, сотрудничать для достижения общих результатов;

- осознанно выполняющий правила здорового и экологически целесообразного образа жизни, безопасного для человека и окружающей его среды;

- ориентирующийся в мире профессий, понимающий значение профессиональной деятельности для человека в интересах устойчивого развития общества и природы.



1 Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

2 Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

3 Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

4 Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

5 Здесь и далее – знать определение понятия, знать и уметь доказывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

6 Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

7 Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

8 Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

9 Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

10 Здесь и далее – знать определение понятия, знать и уметь доказывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

139



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 13.09.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров285
Номер материала ДA-042229
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.