Инфоурок Математика Рабочие программыРабочая программа по математике 5 класс

Рабочая программа по математике 5 класс

Скачать материал

                               ГБОУ РК « ЛОЗОВСКАЯ СПЕЦИАЛЬНАЯ ШКОЛА-ИНТЕРНАТ»

 

«Рассмотрено»

На заседании МО учителей естественно-математического цикла

Протокол №________ от

«_____»____________________2015г.

Руководитель МО

________ Мамутова Г. С.

«Согласовано»

Заместитель директора школы по УР

__________ Пацан С. О.

«_____»____________________2015г.

 

«Утверждаю»

Директор Лозовской спецшколы-интерната

__________ Химина Е.К.

«_____»____________________2015г.

 

 

РАБОЧАЯ  ПРОГРАММА

ПО МАТЕМАТИКЕ

 

 

 

 

с. Ферсманово , 2015г.

 

 

Рабочая  программа

по математике

(Базовый уровень)

к учебнику «Математика», 5 класс

 авт. С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин

(для общеобразовательных организаций).

2015-2016 учебный год

 

 

 

 

 

 

 

 

с. Ферсманово, 2015 г.

 

Пояснительная записка

Рабочая  программа по предмету «Математика» в 5 классе  составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 5 класса и реализуется на основе следующих документов:

1. Стандарт основного общего образования по математике.

Стандарт основного общего образования по математике //Сборник нормативно-правовых документов и методических материалов, Москва: «Вентана-Граф», 2008.

2.  Программы общеобразовательных учреждений. Математика 5-6 классы/Сост. Т.А. Бурмистрова – Москва: «Просвещение», 2009.

Настоящая  программа курса математики для 5 класса  продолжает соответствующую программу начальной школы и ставит перед собой главной целью формирование у школьников основ научного (математического) мышления, позволяющих продолжать обучение в основной и старшей школе.

Задачи изучения математики в 5 классе:

·        развитие логического  и критического мышления, формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимых для различных сфер человеческой деятельности;

·        овладение математическими знаниями и умениями, необходимыми для продолжения обучения в основной и старшей школе (6-11 классы), изучения смежных дисциплин и применения их в повседневной жизни.

·        развитие представления о математике, как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта  математического моделирования.

Общая характеристика курса

Программа ориентирована, главным образом, на формирование научных (математических) понятий, а не только лишь на выработку практических навыков и умений. Это предполагает особую организацию учебного процесса в форме учебной деятельности школьников.

Содержание учебной деятельности должно развертываться в теоретической форме – от общего к частному, от абстрактного к конкретному. Освоение понятий должно происходить не в форме отработки словесных формулировок, а путем введения учащихся в новый круг задач и включением их в деятельность по поиску общего способа их решения.

Поиск способа решения новой задачи является мотивационным ядром учебной деятельности, той ценностной установкой учеников, которая складывается в виде формального эффекта обучения как личностно-смысловое образование, основа желания и умения учиться.

Необходимость поиска способа решения новой задачи не диктуется требованиями учителя, учебника или программы, она должна быть обусловлена для детей внутренней логикой содержания обучения.

Осуществление школьниками учебной деятельности способствует формированию у них таких мыслительных действий, как рефлексия, анализ и планирование, являющихся основой теоретического мышления и, одновременно развитию других познавательных процессов – восприятия, воображения, памяти. Это дает основание говорить о развивающем значении специальной организации учебной деятельности школьников.

В курсе математики 5 класса  могут быть условно выделены четыре раздела: натуральные числа и нуль, измерение величин, делимость натуральных чисел, обыкновенные дроби.

Раздел 1. Натуральные числа и нуль.

В этом разделе проводится систематизация сведений о натуральных числах, полученных в начальной школе. В нем содержится не просто повторение изученного ранее материала, а его развитие, нацеленное на осознанное овладение способами выполнения арифметических действий. Учащиеся приучаются к определенному порядку изучения чисел: запись чисел, их сравнение, арифметические действия с ними, законы арифметических действий, применение этих законов, степень числа с натуральным показателем.

Особое внимание уделено решению текстовых задач арифметическими способами. Ученик должен научиться осознанно решать такие задачи, сначала формулируя вопросы, а затем делая выкладки. Решение задач таким способом содействует развитию речи и мышления учащихся, учит умению рассуждать.

Цели изучения раздела:

• научить осознанному выполнению арифметических действий над натуральными числами и применению законов для упрощения вычислений;

• развить язык и логическое мышление при помощи решения текстовых задач арифметическими методами.

Этот раздел — фундамент всего изучения математики. Поэтому не надо жалеть времени на его изучение, надо добиться действительно осмысленного и уверенного владения четырьмя арифметическими действиями над натуральными числами.

Раздел 2. Измерение величин

В этом разделе повторяются и систематизируются изученные ранее элементы геометрии. Здесь же рассматривается измерение отрезков и представление натуральных чисел на координатном луче. У учащихся должны быть сформированы первые понятия о числе как о длине отрезка и об изображении чисел на координатном луче, т. е. понятие о числе как о координате точки на координатной оси.

Кроме того, здесь вводятся понятия пути, времени, скорости и продолжается решение текстовых задач арифметическими способами (задачи на движение).

Цели изучения раздела:

• систематизировать сведения о геометрических фигурах;

• сформировать первые представления о числе как о длине отрезка и об изображении чисел на координатном луче;

• продолжить развитие языка и логического мышления учащихся при помощи решения текстовых задач арифметическими методами

Раздел 3. Делимость натуральных чисел

В данном разделе изучаются делимость натуральных чисел, признаки делимости, вводятся понятия простого числа, составного числа, разложения числа на простые множители. Этим разделом завершается изучение натуральных чисел и закладываются основы вычислений с обыкновенными дробями.

Здесь продолжается работа по формированию умений проводить доказательства. Особое внимание следует обратить на мотивацию доказательств, так как этот вид деятельности ещё мало знаком учащимся.

Доказательство утверждений проводится на числовых примерах, но таким способом, что если заменить числа буквами, то получится общее доказательство утверждений.

Цели изучения раздела:

• сформировать у учащихся умение проводить простые доказательные рассуждения и подготовить их к изучению обыкновенных дробей;

• продолжить развитие языка и логического мышления учащихся в процессе доказательства несложных утверждений.

Раздел 4. Обыкновенные дроби

В этом раздел изучаются в полном объёме обыкновенные дроби по плану, намеченному в разделе 1. Важно, чтобы каждый учащийся понял, что действия с обыкновенными дробями сводятся к нескольким действиям с натуральными числами. Здесь снова вводятся элементы доказательных рассуждений при изучении теоретического материала, а также решение текстовых задач арифметическими способами.

Цели изучения раздела:

• сформировать у учащихся осознанные умения выполнять арифметические действия над обыкновенными дробями;

• продолжить развитие языка и логического мышления учащихся при изучении теоретического материала и при решении текстовых задач арифметическими методами.

 

 

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч. из расчета 5 ч. в неделю с V по IX класс.

Математика изучается в 2015/2016 году в 5 классе -   6 ч. в неделю, всего 210 ч.

 

 

 

СОДЕРЖАНИЕ ОБУЧЕНИЯ

Содержание материала

Количество часов

Характеристика основных видов деятельности обучающегося(на уровне учебных действий)

1.     Натуральные числа и нуль

62

 

Ряд натуральных чисел. Десятичная запись, сравнение, сложение и вычитание натуральных чисел. Законы сложения. Решение текстовых задач с помощью сложения и вычитания. Умножение, законы умножения. Решение задач с помощью умножения и деления. Степень с натуральным показателем. Деление нацело, деление с остатком. Числовые выражения. Решение текстовых задач арифметическими методами.

 

 

Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их. Выполнять вычисления с натуральными числами; вычислять значения степеней. Формулировать законы арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения, применять их для рационализации вычислений. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью реальных предметов, схем, рисунков; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Уметь решать задачи на понимание отношений «больше на…», «меньше на …», «больше в…», «меньше в…», а также понимание стандартных ситуаций, в которых используются слова «всего», «осталось» и т.п. ;типовые задачи «на части», на нахождение двух чисел по их сумме и разности.

2.     Измерение величин

32

 

Прямая, луч, отрезок. Измерение отрезков и метрические единицы длины. Представление натуральных чисел на координатном луче. Окружность и круг, сфера и шар. Углы, измерение углов. Треугольники и четырехугольники. Прямоугольный параллелепипед. Площадь прямоугольника, объем прямоугольного параллелепипеда. Единицы площади, объема, массы, времени. Решение текстовых задач арифметическими методами.

 

 

Измерять с помощью линейки и сравнивать длины отрезков. Строить отрезки заданной длины с помощью линейки и циркуля. Выражать одни единицы измерения длин отрезков через другие. Представлять натуральные числа на координатном луче. Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры, конфигурации фигур(плоские и пространственные). Приводить примеры аналогов геометрических фигур в окружающем мире. Изображать геометрические фигуры, их конфигурации от руки и с использованием чертёжных инструментов. Измерять с помощью транспортира и сравнивать величины углов. Строить углы заданной величины с помощью транспортира. Выражать одни единицы измерения углов через другие. Вычислять площади квадратов и прямоугольников, объёмы куба и прямоугольного параллелепипеда, используя соответствующие формулы. Выражать одни единицы измерения площади, объёма, массы, времени через другие. Решать задачи на движение, на движение по реке.

3.     Делимость натуральных чисел

23

 

Свойства и признаки делимости. Простые и составные числа. Делители натурального числа. Наибольший общий делитель, наименьшее общее кратное.

 

 

Формулировать определение делителя и кратного, простого и составного числа, свойства и признаки делимости чисел. Классифицировать натуральные числа(чётные и нечётные, по остаткам от деления на 3 и т.п.)[Решать задачи, связанные с использованием чётности и с делимостью чисел.]

4.     Обыкновенные дроби

83

 

Понятие дроби, равенство дробей (основное свойство дроби). Приведение дроби к общему знаменателю. Сравнение, сложение и вычитание дробей. Законы сложения. Умножение дробей, законы умножения. Деление дробей. Смешанные дроби и действия с ними. Представление дробей на координатном луче. Площадь прямоугольника, объем прямоугольного параллелепипеда. Решение текстовых задач арифметическими методами.

 

 

Преобразовывать обыкновенные дроби с помощью основного свойства дроби. Приводить дроби к общему знаменателю, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями. Знать законы арифметических действий, уметь записывать их формульно и применять их для рационализации вычислений. [Проводить несложные доказательные рассуждения с опорой на законы арифметических действий для дробей.]Решать задачи на дроби, на все действия с дробями, на совместную работу. Выражать с помощью дробей сантиметры в метрах, граммы в килограммах, килограммы в тоннах и т.п. Выполнять вычисления со смешанными дробями. Вычислять площадь прямоугольника, объём прямоугольного параллелепипеда. Выполнять вычисления с применением дробей. Представлять дроби на координатном луче.

5.     Повторение

10

 

 

 

 

 

Литература

 

 

В учебный комплекс для 5 класс входят:

1.                 Математика. 5 класс: учебник для общеобразоват. учреждений / С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин. — М.: Просвещение, 2014;

2.                 Математика. Дидактические материалы. 5 класс / М. К. Потапов, А. В. Шевкин. — М.: Просвещение, 2009–2012;

3.                 Математика. Рабочая тетрадь. 5 класс. В двух частях / М. К. Потапов, А. В. Шевкин.— М.: Просвещение, 2012;

4.                 Математика. Тематические тесты. 5 класс / П. В. Чулков, Е. Ф. Шершнев, О.Ф. Зарапина. — М.: Просвещение, 2009–2012;

5.                 Задачи на смекалку. 5–6 классы / И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2005–2012;

6.                 Математика. Методические рекомендации. 5 класс / М. К. Потапов, А. В. Шевкин.— М.: Просвещение, 2012;

7.                 Программы общеобразовательных учреждений. Математика 5-6 классы / Сост. Т.А. Бурмистрова -  Москва: «Просвещение», 2009.

8.                 Приложение к учебнику на электронном носителе.

 

 

 

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ПЯТИКЛАССНИКОВ

Арифметика

уметь

·               выполнять устно арифметические действия: сложение и вычитание двузначных чисел, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

·               выполнять арифметические действия с рациональными числами, сравнивать рациональные числа; находить значения числовых выражений;

·               округлять целые числа, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

·               пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

·               решать текстовые задачи, включая задачи, связанные с дробями;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

·               решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов;

·               устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;

Алгебра

уметь

·               составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;

·               изображать числа точками на координатной прямой;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

·               выполнения расчетов по формулам;

·               описания зависимостей между изученными физическими величинами, соответствующими им формулами, при исследовании несложных практических ситуаций.

Геометрия

уметь

·               распознавать изученные геометрические фигуры;

·               изображать изученные геометрические фигуры;

·               распознавать на чертежах, моделях и в окружающей обстановке изученные пространственные тела, изображать их;

Элементы логики, комбинаторики, статистики и теории вероятностей

уметь

·               извлекать информацию, представленную в таблицах, на диаграммах; составлять таблицы, решать комбинаторные задачи путем систематического перебора возможных вариантов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

·               анализа реальных числовых данных, представленных в виде диаграмм, таблиц;

·               решения практических задач в повседневной деятельности с использованием действий с числами, длин, площадей, объемов, времени, скорости;

·               решения учебных и практических задач, требующих систематического перебора вариантов.

 

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1.  Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

-       работа выполнена полностью;

-       в логических рассуждениях и обосновании решения нет пробелов и ошибок;

-       в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

-       работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

-       допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

-        допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

-       допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.  Оценка устных ответов обучающихся по математике.

Ответ оценивается отметкой «5», если ученик:

-       полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

-       изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

-       правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

-       показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

-       продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;

-       отвечал самостоятельно, без наводящих вопросов учителя;

-       возможны одна – две  неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

-       в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

-       допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

-       допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

-       неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

-       имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

-       ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

-       при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

-       не раскрыто основное содержание учебного материала;

-       обнаружено незнание учеником большей или наиболее важной части учебного материала;

-       допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

 

 

 

Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Рабочая программа по математике 5 класс"

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Специалист по выставочной деятельности

Получите профессию

Методист-разработчик онлайн-курсов

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 650 848 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 27.03.2017 340
    • DOCX 27.7 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Мамутова Гульнара Сейрановна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Мамутова Гульнара Сейрановна
    Мамутова Гульнара Сейрановна
    • На сайте: 7 лет и 7 месяцев
    • Подписчики: 4
    • Всего просмотров: 28536
    • Всего материалов: 59

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Методист-разработчик онлайн-курсов

Методист-разработчик онлайн-курсов

500/1000 ч.

Подать заявку О курсе
  • Сейчас обучается 118 человек из 42 регионов

Курс повышения квалификации

Преподавание математики в школе в условиях реализации ФГОС

72/144/180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 82 человека из 35 регионов
  • Этот курс уже прошли 729 человек

Курс повышения квалификации

Реализация межпредметных связей при обучении математике в системе основного и среднего общего образования

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 21 человек из 14 регионов
  • Этот курс уже прошли 94 человека

Курс повышения квалификации

Мастерство мышления: развитие SoftSkills и математической логики

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 21 человек из 10 регионов

Мини-курс

Стратегии брендинга и лояльности потребителей: изучение современных тенденций и подходов

2 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Психология учебной среды и развития детей: от диагностики к коррекции

3 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 25 человек из 16 регионов
  • Этот курс уже прошли 24 человека

Мини-курс

Психология и профессиональное развитие

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 21 человек из 15 регионов