Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 8 класс
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Законы экологии», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 21 ОКТЯБРЯ!

Конкурс "Законы экологии"

Рабочая программа по математике 8 класс

библиотека
материалов



Муниципальное казенное образовательное учреждение

Заливинская средняя общеобразовательная школа

Кыштовского района Новосибирской области



Согласовано Утверждаю

И.о.зам.директора по УР Директор ЗСОШ ______Гревцова Р.Н. ____ Янущик Л.Г.







Рабочая программа

по математике

8 класс







Учитель: Савеных М.С.













2014 год





Пояснительная записка

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования по математике, примерной программы по математике, с учетом авторских программ Ю.Н. Макарычева и др. и Л.С. Атанасяна (Программы общеобразовательных учреждений. Алгебра. 7-9 классы / авт.-сост. Бурмистрова, Т.А. – М. Просвещение, 2008; Программы общеобразовательных учреждений. Геометрия. 7-9 классы / авт.-сост. Бурмистрова, Т.А. – М. Просвещение, 2008.)

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса. Образовательная область «Математика» представлена двумя предметами: алгебра и геометрия.

Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Задача образовательного процесса: обеспечить усвоение учащимися обязательного минимума содержания на основе требований государственного образовательного стандарта.

Общая характеристика учебного предмета.

Математическое образование в основной школе складывается из следующих содержательных компонентов: арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Изучение математики в 8 классе направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Место предмета в учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расчета 5 ч в неделю с 5 по 9 класс. Рабочая программа для 8 класса рассчитана на 5 часов: алгебра-3 часа в неделю, всего 108 часов, геометрия-2 часа в неделю, всего 72 часа, итого 180 часов. Учебная нагрузка 36 недель.

Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.

Изменения, внесенные в рабочую программу: увеличено количество часов на раздел «Подобные треугольники» за счет раздела «Повторение».

Содержание тем учебного курса

Алгебра

1. Рациональные дроби (23ч).

Рациональная дробь. Основное свойство дроби, сокращение дробей. Сложение, вычитание, умножение и деление дробей. Преобразование рациональных выражений. Функция hello_html_m7bae1714.gif и её график.

2. Квадратные корни (19ч).

Понятие об иррациональном числе. Общие сведения о действительных числах. Квадратный корень, приближённое значение квадратного корня. Свойства квадратных корней, преобразования выражений, содержащих квадратные корни. Функция hello_html_a095b41.gif и её график.

3. Квадратные уравнения (21ч).

Квадратное уравнение. Формулы корней квадратного уравнения. Теорема Виета. Решение рациональных уравнений. Решение задач, приводящих к квадратным и рациональным уравнениям.

4. Неравенства (20ч).

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Применение свойств неравенств к оценке значения выражения. Линейное неравенство с одной переменной. Система линейных неравенств с одной переменной.

5. Степень с целым показателем. Элементы статистики и теории вероятностей (11ч)

Степень с целым показателем и её свойства. Стандартный вид числа. Запись приближенных значений. Действия над приближенными значениями. Сбор и группировка статистических данных. Наглядное представление статистической информации

6. Повторение (14ч).

Рациональные дроби Квадратные корни и квадратные уравнения Решение задач с помощью квадратных уравнений Неравенства Степень с целым показателем


Геометрия

1. Четырехугольники (14ч).

Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

2. Площадь (14ч).

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора. w

3. Подобные треугольники (20ч)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

4. Окружность (17ч).

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

5. Повторение. Решение задач (8ч).

Учебно-тематический план по математике

Алгебра

п/п

Название темы

Количество часов по программе

Количество часов в рабочей программе

Из них контрольные работы

1

Рациональные дроби

23

23

2

2

Квадратные корни

19

19

2

3

Квадратные уравнения

21

21

2

4

Неравенства

20

20

2

5

Степень с целым показателем. Элементы статистики и теории вероятностей.

11

11

1

6

Повторение

8

14

1


Всего

102

108

10


Геометрия


п/п

Название темы

Количество часов по программе

Количество часов в рабочей программе

Из них

контрольные

работы

1

Повторение


-


2


1

Четырехугольники

14

14

1

2

Площадь

14

14

1

3

Подобные треугольники

19

20

2

4

Окружность

17

17

1

5

Повторение. Решение задач.

4

5

1


Итого

68

72

6

Требования к уровню подготовки восьмиклассников по математике:

В результате изучения математики ученик должен

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где кhello_html_m1dad04d4.gif0, у=кх+b, у=х2, у=х3, у =hello_html_m78e30021.gif, у=hello_html_1c51bb38.gif), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследование построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами.

элементы логики, комбинаторики, статистики и теории вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • понимания статистических утверждений.

геометрия

уметь:

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

  • вычислять значения геометрических величин (длин, углов, площадей); определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве.

Критерии и нормы оценки знаний, умений и навыков обучающихся по

математике.

1. Оценка письменных контрольных работ обучающихся по математике:

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике:

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

3. Оценка тестовых работ

Отметка 5 ставится в том случае, если учащийся

  • выполнил работу в полном объеме с соблюдением необходимой последовательности действий;

  • допустил не более 2% неверных ответов.

Отметка 4 ставится, если

  • выполнены требования к оценке 5, но допущены ошибки (не более 20% ответов от общего количества заданий).

Отметка 3 ставится, если учащийся

  • выполнил работу в полном объеме, неверные ответы составляют от 20% до 50% ответов от общего числа заданий;

  • если работа выполнена не полностью, но объем выполненной части таков, что позволяет получить оценку.

Отметка 2 ставится, если

  • работа, выполнена полностью, но количество правильных ответов не превышает 50% от общего числа заданий;

  • работа выполнена не полностью и объем выполненной работы не превышает 50% от общего числа заданий;

  • если ученик совсем не выполнил работу.

Общая классификация ошибок:

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.

К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.


Литература:

Литература для учителя:

  1. Алгебра, учебник для 8 класса для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б. Суворова: Просвещение, 2008.

  2. Геометрия, 7 – 9. Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.: Просвещение, 2009.

  3. Программы общеобразовательных учреждений: Алгебра. Геометрия. 7-9 классы / Сост. Т. А. Бурмистрова. – М. : Просвещение, 2008

  4. Алгебра. 8кл. Поурочные планы по учеб. Макарычева Ю.Н. и др./авт.сост.Т.Ю.Дюмина, А.А. Махонина.- Волгоград: Учитель, 2011

  5. Поурочные разработки по геометрии: 8 класс. /сост. Гаврилова Н. Ф. – М.: ВАКО,2010

  6. Математика. Диагностические работы для проведения промежуточной аттестации. 5, 8, 9 классы.-/Л.Б. Слуцкий, А.Л. Александрова. М.: Вако, 2013

  7. Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение 2007.

  8. Контрольно-измерительные материалы. Алгебра: 8 класс/ сост.В.В. Черноруцкий. - М.: Вако, 2012

  9. Дидактические материалы по геометрии для 8 класса / Б.Г. Зив, В.М. Мейлер: Просвещение, 2010.

  10. Математические диктанты, 7-9 класс. /авт.сост. А.С.Конте.-Волгоград: Учитель, 2007

  11. Геометрия. 7-9 классы. Самостоятельные и контрольные работы к учебнику Л.С. Атанасяна: разрезные карточки/сост. М.А. Иченская.- Волгоград: Учитель, 2007

Литература для ученика:

  1. Алгебра, учебник для 8 класса для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б. Суворова: Просвещение, 2008.

  2. Геометрия, 7 – 9. Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.: Просвещение, 2009.

  3. Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение 2008.

  4. Дидактические материалы по геометрии для 8 класса / Б.Г. Зив, В.М. Мейлер: Просвещение, 2010.

  5. Рабочая тетрадь по геометрии для 8 класса / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк. – М. : Просвещение, 2007.

Дополнительная литература:

  1. Изучение алгебры в 7 – 9 классах. Книга для учителя. / Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение, 2006.

  2. Изучение геометрии в 7 – 9 классах. Методические рекомендации к учебнику. Книга для учителя / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков: Просвещение, 2004.

Интернет-ресурс

1. www. edu - "Российское образование"Федеральный портал.

2. www. school.edu - "Российский общеобразовательный портал".

3.www.school-collection.edu.ru/ Единая коллекция цифровых образовательных ресурсов

4. www.fipi.ru – Федеральный институт педагогический измерений

Краткое описание документа:

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования по математике, примерной программы по математике, с учетом авторских программ Ю.Н. Макарычева и др. и Л.С. Атанасяна (Программы общеобразовательных учреждений. Алгебра. 7-9 классы / авт.-сост. Бурмистрова, Т.А. – М. Просвещение, 2008; Программы общеобразовательных учреждений. Геометрия. 7-9 классы / авт.-сост. Бурмистрова, Т.А. – М. Просвещение, 2008.)

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса. Образовательная область «Математика» представлена двумя предметами: алгебра и геометрия.

Общая информация

Номер материала: 306122

Похожие материалы