Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 10 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по математике 10 класс

библиотека
материалов









РАБОЧАЯ ПРОГРАММА


ПО МАТЕМАТИКЕ



10 КЛАСС





























ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Настоящая рабочая программа написана на основе федерального компонента государственного стандарта (математика). Программы для общеобразовательных учреждений (Алгебра и начала математического анализа, 10-11 классы, М: «Просвещение», 2009) и на основе авторской программы линии Колмогоров А.Н., программы образовательных учреждений ( Геометрия 10-11 классы, М: «Просвещение», 2009) и на основе авторской программы Л.С. Атанасяна.


Календарно-тематический план ориентирован на использование учебников:


  1. Колмогоров А. Н. Алгебра и начала анализа. 10-11 классы; учебник /А.Н.Колмлгоров - М.: Просвещение, 2010.

  2. Атанасян Л.С. Геометрия 10-11 классы; учебник — М.: Просвещение, 2010

А также дополнительных пособий:

для учащихся:

1. Семенов А.Л., Ященко И.В., Математика ЕГЭ типовые экзаменационные варианты / М: Национальное образование 2013

2. Лысенко, Ф. Ф. Математика ЕГЭ -2012,. Учебно-тренировочные тесты / Ф. Ф. Лысенко. - Ростов н/Д.: Легион.

  1. Лысенко, Ф. Ф. Тематические тесты. Математика ЕГЭ -2012, / Ф. Ф. Лысенко. - Ростов н/Д.: Легион.

  2. Алешина Т.Н. Обучающие и проверочные задания по геометрии. 10-11 классы к учебники Л.С.Атанасяна и др.

для учителя:

  1. Ивлев, Б. И. Дидактические материалы по алгебре и началам анализа для 11 класса / Б.И.Ивлев, С. И. Саакян, С. И. Шварцбург. - М., 2000.

  2. Лукин, Р. Д. Устные упражнения по алгебре и началам анализа / Р. Д. Лукин, Т. К. Лукина, И. С. Якунина. - М., 1989.

  3. Зив. Б.Г. Дидактические материалы по геометрии для 10 класса — М., Просвещение, 2006



Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценност­ные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями.

Это определило цели обучения математики:


формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;

овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.


На основании требований Государственного образовательного стандарта 2004 г. в содержании календарно-тематического планирования предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:

• приобретение математических знаний и умений;

• овладение обобщенными способами мыслительной, творческой деятельностей;

• освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной) и профессионально-трудового выбора.

Согласно действующему в школе учебному плану и с учетом направленности классов календарно-тематический план предусматривает следующие варианты организации процесса обучения:

в 10 классе базового уровня предполагается обучение в объеме 102 часа на алгебру;68 часов на геометрию.



Обучение алгебры в 10 классе в объеме  102 часов. В соответствии с этим реализуется типовая программа «Алгебра и начала анализа , 10-11», авторов А.Н.Колмогорова, А.М. Абрамова, Ю.П. Дудницына и др.  в объеме 102 часов.
В том числе, для проведения контрольных работ 6 учебных часов по темам « Тригонометрические функции»-1 час, «Тригонометрические функции и основные тригонометрические формулы»-1 час, «Основные свойства функции»-1 час, «Решение тригонометрических уравнений и неравенств» - 1 час, «Производная» - 1 час, «Применение производной» -1 час.

Распределение тем: «Тригонометрические функции» -28 часов, «Основные свойства функций» -13 часов, «Решение тригонометрических уравнений и неравенств»- 34 часов, «Производные и применение производных» -39 часов.

Промежуточная аттестация проводится в форме тестов, составленных из заданий уровня В ЕГЭ.

Домашнее задание описано на блок уроков. По ходу работы, в зависимости от темпа прохождение материала номера заданий распределяются по урокам так, что по окончании изучения блока все задания выполнены учащимися в обязательном порядке.






Требования к уровню подготовки учащихся 10 класса

В результате изучения математики на базовом уровне ученик должен

знать/понимать:

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и иссле­дованию процессов и явлений в природе и обществе;

- значение практики и вопросов, возникающих в самой математике для формирования и раз­вития математической науки; историю развития понятия числа, создания математического ана­лиза, возникновения и развития геометрии;

- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

- вероятностный характер различных процессов окружающего мира;


АЛГЕБРА

уметь:

- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рацио­нальным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы и тригонометрические функции;

- вычислять значения числовых и буквенных выражений, осуществляя необходимые подста­новки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повсе­дневной жизни:

- для практических расчетов по формулам, включая формулы, содержащие степени, радика­лы и тригонометрические функции, используя при необходимости справочные мате­риалы и простейшие вычислительные устройства;


ФУНКЦИИ И ГРАФИКИ

уметь:

- определять значение функции по значению аргумента при различных способах задания функции;

- строить графики изученных функций;

- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

- решать уравнения, простейшие системы уравнений, используя свойства функций и их гра­фиков;

использовать приобретенные знания и умения в практической деятельности и повсе­дневной жизни:

- для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;






НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

уметь:

- вычислять производные и первообразные элементарных функций, используя справочные материалы;

- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

- вычислять в простейших случаях площади с использованием первообразной; использовать приобретенные знания и умения в практической деятельности и повсе­дневной жизни:

- для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;


УРАВНЕНИЯ И НЕРАВЕНСТВА

уметь:

- решать рациональные, показательные и логарифмические уравнения и неравенства, про­стейшие иррациональные и тригонометрические уравнения, их системы;

- составлять уравнения и неравенства по условию задачи;

- использовать для приближенного решения уравнений и неравенств графическим методом;

- изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повсе­дневной жизни:

- для построения и исследования простейших математических моделей;















ГЕОМЕТРИЯ

Содержание обучения.

  1. Введение.

Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.

Основная цель – познакомить учащихся с содержанием курса стереометрии, с основными понятиями и аксиомами, принятыми в данном курсе, вывести первые следствия из аксиом, дать представление о геометрических телах и их поверхностях, об изображении пространственных фигур на чертеже, о прикладном значении геометрии.

  1. Параллельность прямых и плоскостей.

Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.

Основная цель – сформировать представления учащихся о возможных случаях взаимного расположения двух прямых в пространстве, прямой и плоскости, изучить свойства и признаки параллельности прямых и плоскостей.

  1. Перпендикулярность прямых и плоскостей.

Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей. Трехгранный угол. Перпендикулярность плоскостей.

Основная цель – ввести понятия перпендикулярности прямых и плоскостей, изучить признаки перпендикулярности прямой и плоскости, двух плоскостей.

  1. Многогранники.

Понятие многогранника. Призма. Пирамида. Правильные многогранники.

Основная цель – познакомить учащихся с основными видами многогранников (призма, пирамида, усеченная пирамида), с формулой Эйлера для выпуклых многогранников, с правильными многогранниками и элементами их симметрии.

  1. Повторение. Решение задач.


Требования к математической подготовке учащихся


Уровень обязательной подготовки обучающегося

  • Уметь решать простые задачи по всем изученным темам, выполняя стереометрический чертеж.

  • Уметь описывать взаимное расположение прямых и плоскостей в пространстве.

  • Уметь анализировать в простейших случаях взаимное расположение объектов в пространстве.

  • Уметь изображать основные многоугольники; выполнять чертежи по условию задач.

  • Уметь строить простейшие сечения куба, призмы, пирамиды.

  • Уметь решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей).

  • Уметь использовать при решении стереометрических задач планиметрические факты и методы.


Уровень возможной подготовки обучающегося

  • Уметь распознавать на чертежах и моделях пространственные формы.

  • Уметь описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении.

  • Проводить доказательные рассуждения в ходе решения задач.

  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: исследования (моделирования) практических ситуаций на основе изученных формул и свойств фигур; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.



Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;

  • в логических рассуждениях и обоснованиях решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны;

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах.

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.


2. Оценка устных ответов обучающихся.

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математики


КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ ПЛАН 10 класс.

Тема 1. Повторение курса 9 класса. (3 часов).


Основная цель:

- формирование представлений о целостности и непрерывности курса алгебры 9 класса;

- овладение умением обобщения и систематизации знаний учащихся по основным темам курса алгебры 9 класса;

  • развитие логического, математического мышления и интуиции, творческих способностей в области математики.


Тема

раздела, урока

Кол-во часов

Тип урока

Вид контроля, измерители

Элементы

содержания

урока

Требования

к уровню

подготовки

обучающихся

Дополнительные знания,

умения (требования повышенного

уровня)

Оборудование для демонст­рация, лабора­торных, прак­тических ра­бот

Домашнее задание

Повторение. Квадратичная функция

1

Поиско­вый

Проблемные задания, фрон­тальный оп­рос, упражне­ния

У-2. Буквенные выражения

1

Учеб­ный практи­кум

Решение про­блемных заПовторение


Повторение

1

Учеб­ный практи­кумИзучение дополни­тельной литера­туры

Решение про­блемных задач


Знать действия над многочленами, с алгебраическими дробями и с ирра­циональными выра­жениями.

Уметь составлять текст научного сти­ля, адекватно вос­принимать устную речь, проводить информационно-смысловой анализ текста, приводить примеры.

Умение выполнять дей­ствия над многочленами, с алгебраическими дро­бями и с иррациональ­ными выражениями. Подбор аргументов, соответствующих реше­нию, работа по заданно­му алгоритму, сопостав­ление.

Раздаточный дифферен­цированный материал

Изучение дополни­тельной литера­туры

Входная контрольная работа

1










Тема 2. Тригономет­рические функции.

Основные тригонометрические формулы.

Формулы сложения и их свойства.(27 часов).


Основном цель:

- формирование представления о числовой окружности, о числовой окружности на координатной плоскости, о формулах синуса, косинуса, тангенса суммы и разности аргумента, формулы двой­ного аргумента, формулы половинного угла, формулы понижений степени;

- формирование умения находить значение синуса, косинуса, тангенса и котангенса на числовой окружности, применение этих формул, а также формулы преобразования суммы тригонометрических функций в произведение и формулы преобразования произведения тригонометрических функций в сумму;

- овладение умением применять тригонометрические функции числового аргумента, при преобразовании тригономет­рических выражений

- расширение и обобщение сведений о преобразовании тригонометрических выражении с применением различных формул.



Тема

раздела, урока

Кол-во часов

Тип урока

Вид контроля, измерители

Элементы

содержания

урока

Требования

к уровню

подготовки

обучающихся

Дополнительные знания,

умения (требования повышенного

уровня).

Оборудование для демонст­рация, лабора­торных, прак­тических ра­бот

Домашнее задание

Определение синуса, косинуса, тангенса и котангенса

1

Поиско­вый

Построение алгоритма действия, решение упражнений, ответы на вопросы

Числовая окружность, положи тельное и отрицательное направление обхода окружности, первый и второй макет

Знать, как можно на единичной окружности определять длины дуг. Уметь:

- найти на число вой окружности точку, соответствующую данному числу;

- собрать материал для сообщения по заданной теме; -заполнять и оформлять таблицы, отвечать на вопросы с по­мощью таблиц.

Умение, используя числовую окружность, находить все числа, которым на числовой окружности соответствуют точки, принадлежащие дугам; записать формулу бесконечного числа точек.

Восприятие устной речи, участие в диалоге, фор­мирование умения со­ставлять и оформлять таблицы, приведение примеров

Иллюстрации на доске, сборник задач

Создание

презентации

результатов

по теме

«Числовая

окружность»

Определение синуса, косинуса, тангенса и котангенса

1



Проблемные за­дания, индивиду­альный опрос

Система коорди­нат, чи­словая окруж­ность на коор­динатной; плоско­сти, коор­динаты точки ок­ружности

Знать, как опреде­лить координаты точек числовой ок­ружности.

Уметь:

- составить таблицу для точек числовой окружности и их координат;

- по координатам находить точку чи­словой окружности;

- участвовать

в диалоге, понимать точку зрения собе­седника, подбирать аргументы для отве­та на поставленный вопрос, приводить примеры.

Умение определять точку числовой окружности по координатам и координа­ты по точке числовой окружности; находить точки, координаты кото­рых удовлетворяют за­данному неравенству. Проведение информаци­онно-смыслового анализа текста, выбор главного и основного, приведение примеров, формирование умения работать с чер­тежными инструментами.

Раздаточный дифферен­цированный материал

Составле­ние обоб­щающих информа­ционных таблиц (конспек­тов)

Свойства синуса, косинуса, тангенса и котангенса

1

Комби­ниро­ванный

Фронтальный опрос; работа с демонстраци­онным материа­лом

Синус, косинус и их свой­ства, пер­вая, вто­рая, тре-тья и чет­вертая четверти окружно­сти

Знать понятие си­нуса, косинуса, произвольного уг­ла; радианную меру угла.

Уметь:

- вычислить синус, косинус числа;

- вывести некото­рые свойства сину­са, косинуса;

- воспринимать устную речь, уча­ствовать в диалоге, записывать глав­ное, приводить примеры.

Умение, используя число­вую окружность, опреде­лять синус, косинус про­извольного угла в радианной и градусной мере; решать простейшие уравнения и неравенства. Восприятие устной речи, участие в диалоге, пони­мание точки зрения собе­седника, подбор аргумен­тов для ответа на постав­ленный вопрос.

Слайд-лекция «Си­нус, косинус, тангенс, ко­тангенс»

Создание презента­ции своего проекта по обоб­щению пройденно­го мате­риала

Свойства синуса, косинуса, тангенса и котангенса

1

Поиско­вый

Проблемные за­дания, фронталь­ный опрос, упражнения


Знать понятие си­нуса, косинуса, произвольного уг­ла; радианную меру угла.

Уметь:

- вычислить синус, косинус числа;

- вывести некото­рые свойства сину­са, косинуса;

- проводить ин­формационно-смысловой анализ прочитанного тек­ста, участвовать

в диалоге, приво­дить примеры.

Умение, используя число­вую окружность, опреде­лять синус, косинус про­извольного угла в радиан­ной и градусной мере; ре­шать простейшие уравне­ния и неравенства. Воспроизведение изученной информации с заданной степенью свернутости, подбор аргументов, соот­ветствующих решению, правильное оформление работы.

Иллюстра­ции на доске, сборник задач

Исполь­зование справоч­ной лите­ратуры, матери­алов ЕГЭ

Радианная мера угла.

1

Комби­ниро­ванный


Построение алго­ритма действия, решение упраж­нений


Тригоно­метриче­ские функции числового аргумен­та, тригонометрические соотно­шения одного аргумента

Уметь:

- совершать преобразования простых тригонометриче­ских выражений, зная основные три­гонометрические тождества;

- составлять текст научного стиля;

- пользоваться эн­циклопедией, мате­матическим спра­вочником, записан­ными правилами.

Умение совершать пре­образования сложных тригонометрических вы­ражений, зная основные тригонометрические то­ждества. Воспроизведе­ние прослушанной и прочитанной информа­ции с заданной степенью свернутости. Подбор аргументов для объяснения решения, участие в диалоге

Опорные конспекты учащихся

Составле­ние обоб­щающих информа­ционных таблиц


Радианная мера угла.

1

Поиско­вый

Работа с опор­ными конспекта­ми, раздаточным материалом


Уметь:

- совершать преоб­разования простых тригонометриче­ских выражений, зная основные три­гонометрические тождества;

- передавать инфор­мацию сжато, полно, выборочно;

- работать по за­данному алгорит­му, аргументиро­вать ответ или ошибку.

Умение совершать пре­образования сложных тригонометрических вы­ражений, зная основные тригонометрические то­ждества; собрать матери­ал для сообщения по за­данной теме. Составле­ние алгоритмов, отраже­ние в письменной форме результатов деятельно­сти, заполнение матема­тических кроссвордов

Иллюстра­ции на доске, сборник за­дач

Исполь­зование справоч­ной лите­ратуры, а также матери­алов ЕГЭ

Соотношения между тригонометрическими функциями одного и того же угла

2

Про­блем­ный

Проблемные за­дачи, фронталь­ный опрос, уп­ражнения

Синус угла, косинус уг­ла, тангенс угла, котангенс угла, гра­дусная мера угла, радианная мера угла

Знать, как вычис­лять значения си­нуса, косинуса, тангенса и котан­генса градусной и радианной меры угла, используя табличные значе­ния; формулы пе­ревода градусной меры в радианную меру и наоборот. Уметь передавать информацию сжа­то, полно, выбо­рочно.

Умение вычислять зна­чения синуса, косинуса, тангенса и котангенса градусной и радианной меры угла, используя табличные значения; применять формулы пе­ревода градусной меры в радианную и наоборот, аргументировано отве­чать на поставленные вопросы, участвовать в диалоге.

Опорные конспекты учащихся

Поиск нужной информа­ции в раз­личных источни­ках

Применение основных тригонометрических формул к преобразованию выражения

3

Комби­ниро­ванный

Составление опорного кон­спекта, ответы на вопросы

Основные тригонометрические формулы

Знать основные фор­мулы тригонометрии. Уметь:

- упрощать выра­жения, используя основные тригоно­метрические тож­дества и формулы приведения; .

- выбрать и выпол­нить задание по своим силам

и знаниям, приме­нить знания для решения практиче­ских задач.

Умение упрощать выра­жения, используя основ­ные тригонометрические тождества и формулы приведения; доказывать тождества. Владение диа­логической речью, подбор аргументов, формулиров­ка выводов, отражение в письменной форме ре­зультатов своей деятель­ности. Работа с тестовыми заданиями.

Дифферен­цированные карточки

Поиск нужной информации

по задан­ной теме

Формулы приведения

2

Комби­ниро­ванный


Решение упраж­нений, составле­ние опорного конспекта, отве­ты на вопросы

Формулы приведе­ния, углы перехода

Знать вывод фор­мул приведения. Уметь объяснить изученные положе­ния на самостоя­тельно подобран­ных конкретных примерах.

Умение упрощать выра­жения, используя основ­ные тригонометрические тождества и формулы приведения; доказывать тождества. Владение диа­логической речью, подбор аргументов, формулиров­ка выводов, отражение в письменной форме ре­зультатов своей деятель­ности. Работа с тестовыми заданиями.


Сборник за­дач, тетрадь с конспекта­ми

Поиск нужной информа­ции

в различ­ных ис­точниках

Контрольная работа по теме «Тригонометрические функции»

1

Кон­троль, оценка и коррек­ция зна­ний

Решение кон­трольных зада­ний


Уметь:

- пользоваться основными тригонометрическими формулами

- владеть навыками самоанализа и само­контроля (П)

Умение свободно пользо­ваться основными тригонометрическими формулами. Владе­ние навыками контроля и оценки своей деятельно­сти, умением предвидеть возможные последствия своих действий (ТВ)

Дифферен­цированный контрольно-измеритель­ный мате­риал


Создание базы тес­товых за­даний по теме

Формулы сложения

1

Комби­ниро­ванный

Работа с опор­ными конспекта­ми, раздаточным материалом.

Формулы синуса и косинуса суммы аргументов, вывод формул

Знать формулу си­нуса, косинуса суммы углов. Уметь:

- преобразовывать простейшие выражения, используя основные тригонометрические тождества, формулы приведения;

- передавать информацию сжато, полно, выборочно;

- участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение.


Умение решать простей­шие тригонометрические уравнения и простейшие тригонометрические нера­венства, используя преображения выражений; составлять текст научного стиля. Проведение информационно- смыслового анализа прочитанного текста, составление конспекта, участие в диалоге.

Иллюстра­ции на доске, сборник за­дач

Поиск нужной информа­ции в различных источниках

Формулы сложения

1

Учеб­ный практи­кум


Практи­кум,

фронталь­ный оп­рос, упражнения.

Знать формулу си­нуса, косинуса суммы двух углов. Уметь:

-преобразовывать простейшие выра­жения, используя основные тождества, формулы приведе­ния;

- извлекать необхо­димую информацию из учебно-научных текстов;

- выделить и запи­сать главное, при­вести примеры.

Умение решать простей­шие тригонометрические уравнения и простейшие тригонометрические не­равенства, используя преобразования выраже­ний; развернуто обосно­вывать суждения. Прове­дение информационно-смыслового анализа про­читанного текста, со­ставление конспекта, участие в диалоге.

Сборник за­дач, тетрадь с конспек­тами

Работа со справочной литера­турой

Формулы двойного угла

1

Комби­ниро­ванный

Построение алго­ритма действия, решение упражнений

Формулы двойного аргумен­та, фор­мулы по­ловинно­го угла, формулы кратного аргумента

Знать формулы двойного угла си­нуса, косинуса и тангенса.

Уметь:

- применять форму­лы для упрощения выражений;

- объяснить изучен­ные положения на самостоятельно по­добранных конкрет­ных примерах.

Умение вывести и при­менять при упрощении выражений формулы по­ловинного угла; выра­жать тригонометриче­ские функции через тан­генс половинного аргу­мента; определять поня­тия, приводить доказа­тельства. Осуществление проверки выводов, поло­жений, закономерностей, теорем.

1,2,3

Проблемные дифферен­цированные задания

1,2,8 Исполь­зование справоч­ной лите­ратуры, а также матери­алов ЕГЭ

Формулы двойного угла

1

Учеб­ный практи­кум

Практикум,

фронтальный

опрос


Знать формулы двойного угла си­нуса, косинуса и тангенса.

Уметь:

- применять форму­лы для упрощения выражений;

- обосновывать су­ждения, давать оп­ределения, приво­дить доказательства, примеры.

Умение вывести и при­менять при упрощении выражений формулы половинного угла; выра­жать тригонометриче­ские функции через тан­генс половинного аргу­мента; развернуто обос­новывать суждения.

Раздаточный дифферен­цированный материал

Составле­ние обобщающих информа­ционных таблиц

Формулы суммы и разности тригонометрических функций

1

Про­блем­ный

Проблемные за­дачи, фронталь­ный опрос, по­строение алго­ритма действия, решение упраж­нений

Формулы синуса и косинуса разности аргумен­тов, вы­вод фор­мул

Знать формулу сину­са, косинуса разности двух углов. Уметь:

- преобразовывать простейшие выра­жения, используя основные тождест­ва, формулы при­ведения;

- передавать инфор­мацию сжато, полно, выборочно;

- излагать информа­цию, интерпретируя факты, разъясняя значение и смысл теории.

Умение решать простей­шие тригонометрические уравнения и простейшие тригонометрические не­равенства, используя преобразования выраже­ний; составлять текст научного стиля. Воспри­ятие устной речи, прове­дение информационно-смыслового анализа лек­ции, составление кон­спекта, приведение и разбор примеров.

Сборник за­дач, тетрадь с конспек­тами

Работа со спра­вочной литера­турой

Формулы суммы и разности тригонометрических функций

1

Комби­ниро­ванный

Практикум, фронтальный оп­рос; решение уп­ражнений, со­ставление опор­ного конспекта


Знать формулу сину­са, косинуса разности двух углов. Уметь:

- преобразовывать простейшие выра­жения, используя основные тождест­ва, формулы при­ведения;

- извлекать необ­ходимую информа­цию из учебно-научных текстов;

- формировать во­просы, задачи, со­здавать проблемную ситуацию.

Умение решать простейшие тригонометрические уравнения и простейшие тригонометрические не- сборник равенства, используя преобразования выраже­ний; развернуто обосно­вывать суждения; поль­зоваться математическим справочником, рассуж­дать и обобщать, высту­пать с решением пробле­мы, аргументировано отвечать на вопросы со­беседников.


Работа со спра­вочной литера­турой

Формулы суммы и разности тригонометрических функций

1

Комби­ниро­ванный

Фронтальный опрос; решение качественных задач

Формулы тангенса разности и суммы аргумен­тов

Знать формулу тан­генса и котангенса суммы и разности двух углов. Уметь:

- преобразовывать простые тригоно­метрические выра­жения;

- составлять текст научного стиля;

- воспроизводить правила и примеры, работать по заданно­му алгоритму.

Умение решать простей­шие тригонометрические уравнения и простейшие тригонометрические не­равенства, используя преобразования выраже­ний. Отражение в пись­менной форме своих ре­шений, применение зна­ния предмета в жизнен­ных ситуациях, выступ­ление с решением про­блемы.

Сборник за­дач, тетрадь с конспек­тами

Поиск нужной информа­ции

по задан­ной теме

Синус. Косинус. Тангенс. Котангенс

2

Комби­ниро­ванный


Решение упраж­нений, составле­ние опорного конспекта, отве­ты на вопросы

Тригоно­метриче­ская функция у = sin х, график функции, свойства функции

Знать тригономет­рическую функцию у = sin х, ее свойст­ва и построение графика.

Уметь объяснить изученные положе­ния на самостоя­тельно подобран­ных конкретных примерах.

Умение совершать пре­образование графика функции

у = sin х, зная ее свойства; решать уравне­ния, используя график; составить набор карточек с заданиями; работать по заданному алгоритму, доказывать правильность решения с помощью аргументов.


Сборник за­дач, тетрадь с конспекта­ми

Поиск нужной информа­ции

в различ­ных ис­точниках

Тригонометрические функции и их графики

1

Про- блемный

решение про­блемных задач, фронтальный опрос, упражнения.


Знать тригономет­рическую функцию у = sin x, ее свойст­ва и построение графика.

Уметь:

- работать с учеб­ником, отбирать.

и структурировать

материал;

- собрать материал

для сообщения по

заданной теме.

Умение совершать преоб­разование графика функ­ции у = sin х, зная ее свой­ства; решать уравнения, используя график; развер­нуто обосновывать сужде­ния; рассуждать, обоб­щать, аргументировать

решение и ошибки, участ­вовать в диалоге.

Раздаточный дифферен­цированный материал

Исполь­зование справоч­ной лите­ратуры, матери­алов ЕГЭ

Тригонометрические функции и их графики

1

Комби­ниро­ванный

Составление опорного кон­спекта, решение задач, работа с тестом и книгой

Тригоно­метриче­ская

функция, у = cos х, график функции, свойства функции

Знать тригономет­рическую функцию у = cos х, ее свойст­ва и построение графика.

Уметь:

- использовать для решения познава­тельных задач справочную лите- -ратуру;

- оформлять реше­ния или сокращать решения, в зависи­мости от ситуации.

Умение совершать пре­образование графика функции у = cos x, зная ее свойства; решать уравне­ния графическим спосо­бом. Отражение в твор­ческой работе своих зна­ний, сопоставление ок­ружающего мира и гео­метрических фигур, рас­суждение, выступление с решением проблемы (П)

Сборник за­дач, тетрадь с конспекта­ми

Поиск нужной информа­ции

в различ­ных ис­точниках

Тригонометрические функции и их графики

1

Про­блем­ный

Решение упраж­нений, составле­ние опорного конспекта, отве­ты на вопросы


Знать тригономет­рическую функцию у = cos x, ее свойст­ва и построение графика.

Уметь извлекать необходимую ин­формацию из учеб­но-научных тек­стов; составить на­бор карточек с заданиями.

Умение совершать преоб­разование графика функ­ции у = cos х, зная ее свой­ства; решать уравнения графическим способом; развернуто обосновывать суждения. Проведение информационно-смыслового анализа про­читанного текста, прове­дение сопоставления тек­ста и лекции.

Раздаточный дифферен­цированный материал

Исполь­зование справоч­ной лите­ратуры, матери­алов ЕГЭ

Контрольная работа по теме «Формулы сложения и их следствия»

1

Кон­троль, оценка и коррек­ция зна­ний

Решение кон­трольных зада­ний


Уметь:

- строить графики тригонометрических функций и описы­вать их свойства;

- владеть навыками самоанализа и само­контроля (П)

Умение свободно пользо­ваться свойствами функ­ций и строить графики сложных функций. Владе­ние навыками контроля и оценки своей деятельно­сти, умением предвидеть возможные последствия своих действий (ТВ)

Дифферен­цированный контрольно-измеритель­ный мате­риал


Создание базы тес­товых за­даний по теме







Тема 3. Основные свойства функций. (13 часов)


Тема

раздела, урока

Кол-во часов

Тип урока

Вид контроля, измерители

Элементы

содержания

урока

Требования

к уровню

подготовки

обучающихся

Дополнительные знания,

умения (требования повышенного

уровня)

Оборудование для демонст­рация, лабора­торных, прак­тических ра­бот

Домашнее задание

Функции и их графики

2

Поиско­вый

Проблемные задания, фрон­тальный оп­рос, упражне­ния

Функции. Графики функций

Знать графики основных функций

Уметь:

- строить графики функций;

- вести диалог, аргументировано отвечать на постав­ленные вопросы.

Умение строить графики более сложных функций. Отражение в письменной форме своих решений, рассуждение, выступле­ние с решением пробле­мы.

Раздаточный дифферен­цированный материал

Решение качест­венных задач

Четные и нечетные функции.

2

Учеб­ный практи­кум

Решение про­блемных задач

Четные и нечетные функции. Периодичность тригонометрических функций.

Знать графики четных и нечетных функций, тригонометрических функций.

Уметь определять вид функции по графику.

Умение определять по уравнению четность. Подбор аргументов, соответствующих реше­нию, работа по заданно­му алгоритму, сопостав­ление.

Раздаточный дифферен­цированный материал

Изучение дополни­тельной литера­туры

Возрастание и убывание функций. Экстремумы.

2

Комбинированный

Решение упраж­нений, составле­ние опорного конспекта, отве­ты на вопросы

Возрастающие и убывающие функции. Экстремумы.

Знать какие функции возрастающие, какие убывающие. Уметь находить экстремумы функций.

Умение определять возрастание и убывание на промежуткам, точки экстремума.

Сборник за­дач, тетрадь с конспекта­ми

Разобраться с конспектами.

Исследование функций.

3

Комбинированные

Решение упраж­нений, составле­ние опорного конспекта, отве­ты на вопросы

План исследования функции. Асимптоты. Область определения и область значения функции.

Уметь исследовать функции, строить графики.

Знание о наличие асимптот. Свободного умение строить графики.

Раздаточный дифферен­цированный материал


Свойства гармонических функций.

3

Урок - практикум

Решение про­блемных задач

Гармонические функции.

Знать основные свойства гармонических функций. Уметь применять гармонические функции к описанию физических процессов

Применение тригонометрических функций для описания колебательного процесса.

Раздаточный дифферен­цированный материал


Контрольная работа по теме «основные свойства функций»

1

Кон­троль, оценка и коррек­ция зна­ний

Решение кон­трольных зада­ний


Уметь:

- строить графики функций и описы­вать их свойства;

- владеть навыками самоанализа и само­контроля (П)

Умение свободно пользо­ваться свойствами функ­ций и строить графики сложных функций. Владе­ние навыками контроля и оценки своей деятельно­сти, умением предвидеть возможные последствия своих действий (ТВ)

Дифферен­цированный контрольно-измеритель­ный мате­риал


Создание базы тес­товых за­даний по теме




Тема 4. Решение тригонометрических уравнений и неравенств. (14 часов).

Основная цель:

- формирование представлений о решении тригонометрических уравнений на числовой окружности, об арккосинусе, арксинусе, арктангенсе и арккотангенсе;

- овладение умением решения тригонометрических уравнений методом введения новой переменной, разложения на множите­ли;

- формирование умений решения однородных тригонометрических уравнений, неравенств;

- расширение и обобщение сведений о видах тригонометрических уравнений и неравенств.


Тема

раздела, урока

Кол-во часов

Тип урока

Вид контроля, измерители

Элементы

содержания

урока

Требования

к уровню

подготовки

обучающихся

Дополнительные знания,

умения (требования повышенного

уровня).

Оборудование для демонст­рация, лабора­торных, прак­тических ра­бот

Домашнее задание

Арксинус. Арккосинус. Арктангенс.

2

Комби­ниро­ванный

Проблемные за­дачи; построение алгоритма дейст­вия, решение уп­ражнений

Арксинус,арккосинус, арктангенс. Уравнение

sin t =a, cos t= a, tg t =a.

Знать определение

арксинуса, арккосинус, арктангенса

Уметь:

- решать простей­шие уравнения sin t = a; cos t= a, tg t =a.

- передавать инфор­мацию сжато, полно, выборочно;

- отражать в пись­менной форме свои решения, рассуждать и обобщать, участвовать в диа­логе, выступать с решением про­блемы;

- излагать информацию, обосновывая свой собственный подход.

собрать материал для сообщения по теме. Воспроизведе­ние изученной информа­ции с заданной степенью, свернутости, подбор ар­гументов, соответствую­щих решению, проведе­ние сравнительного ана­лиза. Объяснение изу­ченных положений на самостоятельно подоб­ранных конкретных при­мерах.

Дифференцированный материал

Создание компью­терной презента­ции по теме


Решение простейших тригонометрических уравнений


1


Комбинированный

Проблемные зада­ния; составление опорного кон­спекта

Арккоси­нус, урав­нение cos t = a, неравен­ства

cos t>a, простей­шие три-гонометрические уравнения.

Знать определение арккосинуса. Уметь:

-решать простей­шие уравнения cost = a;

- извлекать необ­ходимую информа­цию из учебно-научных текстов;

- воспринимать устную речь, участвовать в диалоге, аргументировано отвечать, приводить примеры.

Умение строить график арккосинуса и решать неравенства cos t > а; собрать материал для со­общения по заданной теме. Отражение в пись­менной форме своих ре­шений, ведение диалога, сопоставление, класси­фикация, аргументиро­ванный ответ на вопросы собеседников/

Дифферен­цированный материал

Создание компью­терной презента­ции по теме

Решение простейших тригонометрических уравнений

1

Учеб­ный практи­кум


Фронтальный опрос; решение качественных задач


Знать определение

арксинуса.

Уметь:

- решать простей­шие уравнения

sin t= a,

- извлекать необ­ходимую информа­цию из учебно-научных текстов;

- подбирать аргу­менты, соответст­вующие решению, участвовать в диа­логе, проводить сравнительный анализ.

Умение строить график арксинуса и решать нера­венства sin t> а; приве­сти примеры, подобрать аргументы, сформулиро­вать выводы; работать по заданному алгоритму, выполнять и оформлять тестовые задания, сопос­тавлять предмет и окру­жающий мир.


Сборник за­дач, тетрадь с конспек­тами

Изучение дополни­тельной литера­туры

Решение простейших тригонометрических уравнений

1

Комби­ниро­ванный


Решение упраж­нений, составле­ние опорного конспекта

Арктан­генс и арккотан­генс, урав­нения: tgt=a, ctgx = a, неравен­ства tgt>a, ctgx>a, простей­шие три­гономет­рические функции.

Знать определение арктангенса, аркко­тангенса.

Уметь:

- решать простей­шие уравнения

tg t= а и ctg t= а,

- обосновывать су­ждения, давать оп­ределения, приво­дить доказательства, примеры.

Умение строить график арктангенса, арккотан­генса и решать неравен­ства tg t > а и ctg t > а. Использование для ре­шения познавательных задач справочной литера­туры. Добывание инфор­мации по заданной теме в источниках различного типа.

Раздаточный дифферен­цированный материал

Создание презента­ции своего проекта по обобще­нию прой­денного материала.

Решение простейших тригонометрических неравенств.


Решение тригонометрических неравенств.

1





2

Учеб­ный практи­кум

Практикум, индивиду­альный оп­рос; работа с раздаточ­ным мате­риалом


Знать определение арк­тангенса, арккотангенса.

Уметь:

- решать простейшие уравнения

tg t = а и ctg t= a;

- работать с учебником, отбирать и структуриро­вать материал;

- находить и использо­вать информацию.

Умение строить гра­фик арктангенса, арк­котангенса и решать неравенства tg t > a и ctg t > а; передавать информацию сжато, полно, выборочно; ар­гументировано отве­чать на поставленные вопросы, осмыслить ошибки и устранить их.

Иллюстра­ции на доске, сборник за­дач

Поиск нужной информа­ции

в различ­ных ис­точниках

Примеры решения тригонометрических уравнений.

1

Комби­ниро­ванный

Практикум, фронталь­ный опрос; демонстра­ция слайд-лекции

Простейшие тригономет­рические уравнения, метод вве­дения новой переменной, метод раз­ложения на множители, однородные тригономет­рические уравнения, алгоритм решения однородно­го уравне­ния второй степени

Уметь:

- решать, простейшие тригонометрические уравнения по формулам;

- обосновывать сужде­ния, давать определения, приводить доказательст­ва, примеры;

- излагать информацию, обосновывая свой собст­венный подход.

Умение решать про­стейшие тригономет­рические уравнения введением новой пе­ременной и разложе­нием на множители; решать по алгоритму однородные уравне­ния; формировать во­просы, задачи, созда­вать проблемную си­туацию.

Слайд-лекция «Методы решения уравнений»

Создание презента­ции своего проекта по обобще­нию прой­денного материала

Решение однородных тригонометрических уравнений. Решение тригонометрических уравнений с помощью формул. Решение тригонометрических уравнений методом вспомогательной переменной.

3

Учеб­ный практи­кум

Проблемные задачи, фронталь­ный опрос, упражнения


Уметь:

- решать тригонометри­ческие уравнения мето­дом замены переменной, метод разложения на множители;

- участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение.

Умение самостоятель­но выбрать метод ре­шения тригонометри­ческого уравнения, критерии для сравнения, оценки и классификации объектов; участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение.

Сборник за­дач, тетрадь с конспек­тами

Изучение дополни­тельной литера­туры.

Решение систем тригонометрических уравнений.

1

Комби­ниро­ванный

Практикум, индивиду­альный оп­рос; работа с раздаточ­ным мате­риалом

Простейшие тригономет­рические уравнения, алгоритм решения

Уметь решать простейшие тригонометрические неравенства с помощью единичной окружности.

Умение решать тригонометрические неравенства более сложные. Использование для ре­шения познавательных задач справочной литера­туры. Добывание инфор­мации по заданной теме в источниках различного типа.

Раздаточный дифферен­цированный материал


Контрольная работа по теме «Решение тригонометрических уравнений и неравенств».

1

Кон­троль, оценка и кор­рекция знаний

Решение кон­трольных зада­ний


Уметь:

- расширять

и обобщать сведения о видах тригономет­рических уравнений;

- решать разными методами тригоно­метрические урав­нения.

Умение самостоятельно выбрать метод решения тригонометрического уравнения. Владение на­выками самоанализа и самоконтроля, контроля и оценки своей деятельно­сти, умением предвидеть возможные последствия своих действий.

Дифферен­цированный контрольно-измеритель­ный мате­риал

Создание базы тес­товых заданий по теме


Тема 5. Производная.

Применение непрерывности и производной.

Применение производной к исследованию функции (39 часов).


Основная цель:

- формирование умений применения правил вычисления производных и вывода формул производных элементарных функций;

-формирование представления о понятии предела числовой последовательности и функции;

- овладение умением исследования функции с помощью производной, составлять уравнения касательной к графику функции.

Приращение функции

2

Про­блем­ный

Проблем­ные задачи, фронталь­ный опрос, упражне­ния

Приращение функции, приращение аргумента.

Знать определение приращения функции

Уметь:

- определять поня­тия, приводить до­казательства;

- воспринимать устную речь, участвовать в диалоге, аргументировано рассуждать и обобщать, приводить примеры.

Умение определять приращение функции при приращении аргумента; развернуто обосновывать суждения; аргументиро­вано рассуждать, обоб­щать, участвовать в диа­логе, понимать точку зрения собеседника, при­водить примеры.

Сборник задач, тетрадь с конспектами.

Работа со справочной литературой.

Понятие о производной.

1

Урок ознакомления с новым материалом.

Фронталь­ный опрос, упражне­ния

Задача о скоро­сти движения, мгновенная скорость, каса­тельная к пло­ской кривой, касательная к графику функ­ции, производ­ная функции, физический смысл произ­водной, геомет­рический смысл производной, скорость изме­нения функции, алгоритм нахо­ждения произ­водной, диффе­ренцирование

Знать понятие о производной функции, физиче­ском и геометриче­ском смысле про­изводной.

Уметь работать с учебником, отби­рать и структури­ровать материал.

Умение использовать алгоритм нахождения производной простейших функций; определять по­нятия, приводить доказа­тельства. Восприятие устной речи, участие в диалоге, подбор аргу­ментов для ответа на по­ставленный вопрос, при­ведение примеров

Опорные конспекты учащихся

Исполь­зование справоч­ной лите­ратуры

Понятие о непрерывности и предельном переходе.

2

Про­блем­ный

Проблемные задачи; по­строение алгоритма действия

Предел числовой последовательно­сти, последова­тельность сходит­ся и расходится, экспонента, горизонтальная асимптота, свойства сходящихся последовательно­стей, теорема Вейерштрасса, предел последовательности, сумма бесконечной геометрической прогрессии.

Знать определение предела числовой последовательности; свойства сходящих­ся последовательно­стей. Уметь:

- составлять текст научного стиля;

- собрать материал для сообщения

по заданной теме.

Умение находить предел числовой последователь­ности, используя свойст­ва сходящихся последо­вательностей. Воспроиз­ведение изученной ин­формации с заданной степенью свернутости, подбор аргументов, соот­ветствующих решению, правильное оформление работы.

Сборник за­дач, тетрадь с конспек­тами



Вычисление производной


4


Комби­ниро­ванный.

Учеб­ный практи­кум

Проблем­ные задачи, индивиду­альный оп­рос.

Практикум, фронталь­ный опрос, работа с раздаточ­ными мате­риалами

Формулы дифференцирова­ния, правила дифференциро­вания

Уметь:

- находить произ­водные суммы, разности, произве­дения, частного; производные ос­новных элементар­ных функций;

- собрать материал для сообщения по заданной теме.

Уметь:

- находить произ­водные суммы, разности, произве­дения, частного; производные ос­новных элементар­ных функций;

- работать с учеб­ником, отбирать

и структурировать материал.

Умение вывести форму­лы нахождения произ­водной; вычислять ско­рость изменения функ­ции в точке; передавать информацию сжато, пол­но, выборочно.

Умение вывести форму­лы нахождения произ­водной; вычислять ско­рость изменения функ­ции в точке. Осуществ­ление проверки выводов, положений, закономер­ностей, теорем.

Опорные конспекты учащихся

Иллюстрации на доске, сборник за­дач

Поиск нужной информа­ции в раз­личных источни­ках

Составле­ние обоб­щающих информа­ционных таблиц (конспек­тов)

Производная сложной функции.

1

Комби­ниро­ванный.


Проблем­ные задачи, индивиду­альный оп­рос.

Формулы дифференцирова­ния, правила дифференциро­вания сложной функции.

Уметь:

- находить произ­водные сложных функций;

- собрать материал для сообщения по заданной теме.

Уметь:

- находить произ­водные суммы, разности, произве­дения, частного; производные ос­новных элементар­ных функций;

- работать с учеб­ником, отбирать

и структурировать материал.

Умение применять формулы производных сложных функций.

Сборник за­дач, тетрадь с конспек­тами


Производные тригонометрических функций.

3

Комби­ниро­ванный.

Учеб­ный практи­кум

Проблем­ные задачи, индивиду­альный оп­рос.

Практикум, фронталь­ный опрос, работа с раздаточ­ными мате­риалами

Формулы дифференцирова­ния, правила дифференциро­вания тригонометрических функции.

Уметь:

- находить произ­водные тригонометрических функций;

- собрать материал для сообщения по заданной теме.


Умение применять формулы производных тригонометрических функций.

Раздаточный дифферен­цированный материал


Контрольная работа по теме «Производная».

1

Кон­троль, оценка и кор­рекция знаний

Решение контроль­ных зада­ний


Уметь:

- расширять

и обобщать сведе­ния по нахождению произ­водной;

- владеть навыками самоанализа и са­моконтроля.

Умение решать задачи на применение производной; предвидеть возможные последствия своих дей­ствий.

Дифферен­цированный контрольно-измеритель­ный мате­риал

Создание базы тес­товых заданий по теме

Применение непрерывности.

3

Комби­ниро­ванный.

Учеб­ный практи­кум

Проблем­ные задачи, индивиду­альный оп­рос.

Практикум, фронталь­ный опрос, работа с раздаточ­ными мате­риалами

Предел числовой последовательно­сти, последова­тельность сходит­ся и расходится, экспонента, горизонтальная асимптота, свойства сходящихся последовательно­стей.

Знать определение предела числовой последовательности; свойства сходящих­ся последовательно­стей. Уметь:

- составлять текст научного стиля;

- собрать материал для сообщения

по заданной теме.

Умение находить предел числовой последователь­ности, используя свойст­ва сходящихся последо­вательностей. Воспроиз­ведение изученной ин­формации с заданной степенью свернутости, подбор аргументов, соот­ветствующих решению, правильное оформление работы.

Раздаточный дифферен­цированный материал

Поиск нужной информа­ции в раз­личных источни­ках

Составле­ние обоб­щающих информа­ционных таблиц (конспек­тов)

Уравнение касательной к графику функции

3

Комби­ниро­ванный

Фронталь­ный опрос; демонстра­ция слайд-лекции

Касательная к графику, угловой коэф­фициент, алго­ритм составле­ния уравнения касательной к графику функ­ции

Уметь:

- составлять уравне­ния касательной к графику функции по алгоритму;

- привести примеры, подобрать аргумен­ты, сформулировать выводы;

- решать проблем­ные задачи и ситуа­ции.

Умение составлять урав­нения касательной к гра­фику функции при до­полнительных условиях; извлекать необходимую информацию из учебно-научных текстов. Поиск нескольких способов ре­шения, аргументация ра­ционального способа, проведение доказатель­ных рассуждений.

Слайд-лекция «Уравнение касательной к функции»

Создание презента­ции своего проекта по обобще­нию прой­денного материала

Приближенные вычисления

1

Комби­ниро­ванный.

Учеб­ный практи­кум

Проблем­ные задачи, индивиду­альный оп­рос.


Приближенные вычисления

Знать применение производной для приближенных вычислений.

Уметь применять производные для вычислений.

Умение находить практическое применение производной для приближенных вычислений.

Раздаточный дифферен­цированный материал


Производная в физике и технике

2

Комби­ниро­ванный.

Учеб­ный практи­кум

Проблем­ные задачи, индивиду­альный оп­рос.


Вычисление скорости, ускорения.

Знать определение скорости, ускорения.

Умение находить силу, кинетическую энергию и т.д.

Сборник за­дач, тетрадь с конспек­тами


Признаки возрастания (убывания) функции

4

Комби­ниро­ванный

Фронталь­ный опрос; демонстра­ция слайд-лекции

Возраста­ющая и убываю­щая функ­ция на про­межутке, монотон­ность, точки экстремума, алгоритм исследова­ния функ­ции на мо­нотонность и экстре­мумы

Уметь:

- исследовать простейшие функции на монотонность и на экстремумы, строить графики простейших функций;

- использовать для решения познаватель­ных задач справочную литературу;

- работать по задан­ному алгоритму, аргументировать решение и найденные ошибки, участвовать

в диалоге.

Умение использовать производные при реше­нии уравнений и нера­венств, текстовых, физи­ческих и геометрических задач, нахождении наи­больших и наименьших значений. Проведение информационно-смыслового анализа прочитанного текста, составление конспекта, работа с чертежными инструментами (П)

Слайд-лекция «Ис­следование функции»

Создание презента­ции своего проекта по обобще­нию прой­денного материала

Критические точки функции, максимумы и минимумы.

3

Учеб­ный практи­кум

Проблем­ные задачи, фронталь­ный опрос; построение алгоритма действий, решение упражне­ний

Точки экстремума. Точки максимума и минимума.

Уметь:

- исследовать простейшие функции на монотонность и на экстремумы, строить графики простейших функций;

- извлекать необходи­мую информацию из учебно-научных тек­стов;

- воспринимать уст­ную речь, проводить информационно-смысловую лекцию, составлять кон­спект, разбирать примеры.

Умение использовать производные при реше­нии уравнений и нера­венств, текстовых, физи­ческих и геометрических задач, нахождении наи­больших и наименьших значений. Воспроизведе­ние изученной информа­ции с заданной степенью свернутости, подбор ар­гументов, соответствую­щих решению.

Проблемные дифферен­цированные задания

Создание компью­терной презентации об исследовании функ­ций.

Примеры применения производной к исследованию функции.

4

Комби­ниро­ванный.

Учеб­ный практи­кум

Проблем­ные задачи, фронталь­ный опрос; построение алгоритма действий, решение упражне­ний

План для исследования функции.

Уметь, пользуясь планом, исследовать функция и построить её график.

Умение, пользуясь планом, исследовать сложную функция и построить её график.

Проблемные дифферен­цированные задания


Применение производной для отыска­ния наи­больших и наименьших значений ве­личин

4

Комби­ниро­ванный

Фронталь­ный опрос; демонстра­ция слайд-лекции

Нахождение наибольшего и наименьшего значений не­прерывной функции на промежутке, алгоритм нахо­ждения наименьшего и наибольшего значений непрерывной функции на отрезке, задачи на оты­скание наи­больших и наи­меньших значе­ний величин, задачи на оптимиза­цию

Уметь:

- исследовать

в простейших случа­ях функции на мо­нотонность, нахо­дить наибольшие и наименьшие зна­чения функций;

- составлять текст научного стиля;

- выступать с ре­шением проблемы, аргументировано отвечать на вопро­сы собеседников.

Умение решать задачи на нахождение наибольших и наименьших значений величин; составить набор карточек с заданиями. Воспроизведение изу­ченной информации с заданной степенью свернутости, подбор ар­гументов, соответствую­щих решению (П)

Слайд-лекция «Применение производ­ной»

Создание презента­ции своего проекта по обобще­нию прой­денного материала

Контрольная работа по теме «Применение производной»

1

Кон­троль, оценка и кор­рекция знаний

Решение контроль­ных зада­ний


Уметь:

- расширять

и обобщать сведе­ния по исследова­нию функции с помощью произ­водной;

- составлять урав­нения касательной к графику функции;

- владеть навыками самоанализа и са­моконтроля.

Умение строить график функции при полном исследовании функции и совершать преобразо­вания графиков; решать задачи на нахождение наибольших и наимень­ших значений величин; предвидеть возможные последствия своих дей­ствий.

Дифферен­цированный контрольно-измеритель­ный мате­риал

Создание базы тес­товых заданий по теме



Тема 6. Обобщающее повторение курса алгебры и начала ана­лиза за 10 класс (6 часов)


Основная цель:

- обобщить и систематизировать курс алгебры и начала анализа за 10 класс, решая тестовые задания по сборнику Ф. Ф. Лысенко «Математика ЕГЭ-2013 Вступительные экзамены»;

- создать условия для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовы­вать свою деятельность.



Тема

раздела, урока

Кол-во часов

Тип урока

Вид контроля, измерители

Элементы

содержания

урока

Требования

к уровню

подготовки

обучающихся

Дополнительные знания,

умения (требования повышенного

уровня).

Оборудование для демонст­рация, лабора­торных, прак­тических ра­бот

Домашнее задание

Графики тригономет­рических функций


1

Комби­ниро­ванный

Решение качествен­ных задач

Тригонометри­ческие функции числового ар­гумента, тригонометрические соотношения одного аргу­мента, тригонометрические функции:

у = sin х,

у= cosx,

у=tgx,

y=ctgx,

y=arcsinx, y=arсcosx,

y=arсtgx,

у=arcctgx, график и свой­ства функций.

Знать тригономет­рические функции, их свойства и графики, периодичность, основной период.

Уметь:

- работать с учебником, отбирать

и структурировать материал;

- отражать в письменной форме своих решений, рассуждать, выступать с решением проблемы, аргументировано отвечать на вопросы собеседников.

Умение использовать формулы и свойства тригонометрических функций; составлять текст научного стиля; рассуждать и обобщать, видеть применение знаний в практических ситуациях, выступать с решением проблемы, аргументировано отвечать на вопросы собеседников.

Сборник тес­товых зада­ний

Создание базы тес­товых заданий по теме

Тригономет­рические уравнения

1

Комби­ниро­ванный

Решение качествен­ных задач

Метод разложе­ния на множи­тели, однород­ные тригоно­метрические уравнения пер­вой и второй степени, алго­ритм решения уравнения

Уметь:

- преобразовывать простые тригоно­метрические выра­жения; решать три­гонометрические уравнения;

- извлекать необхо­димую информацию из учебно-научных текстов.

Умение преобразовывать сложные тригонометри­ческие выражения, ре­шать сложные тригоно­метрические уравнения, вычислять значения вы­ражений с обратными тригонометрическими функциями. Восприятие устной речи, проведение информационно-смыслового анализа лек­ции, работа с чертежны­ми инструментами.

Сборник тес­товых зада­ний

Создание базы тес­товых заданий по теме

Преобразо­вание триго­нометриче­ских выра­жений

1

Комби­ниро­ванный

Решение качествен­ных задач

Тригонометри­ческие форму­лы одного, двух и половинного аргумента, формулы при­ведения, фор­мулы перевода произведения функций в сум­му и наоборот

Уметь:

- преобразовывать простые тригоно­метрические выра­жения, применяя различные форму­лы и приемы;

- собрать материал для сообщения

по заданной теме;

- правильно оформлять работу, отражать в пись­менной форме свои решения, высту­пать с решением проблемы.

Умение преобразовывать сложные тригонометри­ческие выражения, при­меняя различные форму­лы и приемы; отражать в письменной форме свои решения, вести диалог, сопоставлять, классифи­цировать, аргументиро­вано отвечать на вопро­сы собеседников; вос­принимать устную речь, участвовать в диалоге.

Сборник тес­товых зада­ний

Создание базы тес­товых заданий по теме

Применение производной

1

Комби­ниро­ванный

Работа со сборником задач, отве­ты на вопро­сы

Применение производной для исследова­ния функций, построения графика функ­ции, нахожде­ния наибольших и наи­меньших значе­ний величин

Уметь:

- использовать производную для нахождения наилучшего реше­ния в прикладных, в том числе социально-экономических задачах;

- развернуто обо­сновывать сужде­ния;

- воспринимать устную речь, уча­ствовать в диалоге.

Умение находить скоро­сти для процесса, задан­ного формулой или гра­фиком; находить и ис­пользовать информацию. Восприятие устной речи, проведение информаци­онно-смыслового анализа

текста и лекции, состав­ление конспекта, приве­дение и разбор примеров.

Сборник тестовых за­даний

Создание

базы

тестовых

заданий

по теме

Итоговая

контрольная

работа

2

Кон­троль, оценка и кор­рекция знаний

Индивидуальная; ре­шение кон­трольных заданий


Проверить умение обобщения и систе­матизации знаний по основным темам курса математики 10 класса. Уметь проводить самооценку собст­венных действий.

Проверка умения обоб­щения и систематизации знаний по задачам по­вышенной сложности. Умение формулировать полученные результаты; развернуто обосновывать суждения.

Дифферен­цированный контрольно-измеритель­ный мате­риал

Создание базы тес­товых заданий по теме




Рабочая программа учебного курса математика. 10 класс. Блок геометрия


п/п

Наименование раздела

Тема урока

Количество часов

Тип урока

Элементы содержания урока

Требования к уровню подготовки учащихся

Вид контроля

Элементы дополнительного содержания

Домашнее задание

Дата

план

Факт.

1

2

3

4

5

6

7

8

9

10

11

12

1

Введение. Аксиомы стереометрии (3ч.)

Предмет стереометрии. Аксиомы стереометрии

1

УОНМ

1)Стереометрия как ра-здел геометрии.

2) Основные понятия стереометрии:точка,прямая,плоскость,пространство

Знать: основные понятия стереометрии

Уметь: распознавать на чертежах и моделях пространственные формы

Входной контроль (основные понятия планиметри)

Геометрические тела в окружающем мире

п.1,2,повторить теорему косинусов. Задачи (планиметрически)

25.09



2

Некоторые следствия из аксиом

1

КУ

1)Понятие об аксиоматическом построении стереометрии

2)Следствия из аксиом

Знать: основные аксиомы стереометрии.

Уметь: описывать взаимное расположение точек, прямых, плоскостей с помощью аксиом стереометрии

УО

Демонстрация аксиомы А1 с помощью окружающих предметов. Запись взаимного расположения точек, прямых и плоскостей с помощью символов

п.3 №4,7

26.09



3

Решение задач на применение аксиом стереометрии и их следствий

1

УЗИМ


Знать: основные аксиомы стереометрии

Уметь: применять аксиомы при решении задач

СР №1 ДМ (15мин)

п.1-3 №12-14

27.09



4

Параллельность прямых и плоскостей (16 ч.)







Параллельные прямые в пространстве

1

УОНМ

1)Взаимное расположение прямых в пространстве

2)Параллельные прямые, свойство параллельных прямых



Знать: определение параллельных прямых в пространстве

Уметь: анализировать в простейших случаях взаимное расположение прямых в пространстве, используя определение параллельных прямых

Экспресс-контроль (5мин)

Параллельные прямые в архитектуре и строительстве

п.4,5 №18,19

30.09



5

Параллельность прямой и плоскости

1

КУ

Параллельность прямой и плоскости, признак параллельности прямой и плоскости

Знать: признак параллельности прямой и плоскости, их свойства.

Уметь: описывать взаимное расположение прямой и плоскости в пространстве

ФО


п.6 №20,22,23

01.10



6

Решение задач по теме : «параллельность прямой и плоскости »

1

УЗИМ

Признак параллельности прямой и плоскости, их свойства

Знать: признак параллельности прямой и плоскости.

Уметь: применять признак при доказательстве параллельности прямой и плоскости

Текущий


п. 1-6 №27,30

2.10



7

Решение задач по теме параллельность прямой и плоскости»

1

КУ

Отработка навыков решения задач на применение теории о параллельность прямой и плоскости

Знать: возможные случаи взаимного расположения прямой и плоскости в пространстве; понятие параллельности прямой и плоскости; признак параллельности прямой и плоскости

Уметь: решать задачи по теме

Теоретический опрос

Проверка Д.З

п. 6 №31-33

3.10



8

Скрещивающиеся прямые

1

УОНМ

Скрещивающиеся прямые

Знать: определение и признак скрещивающихся прямых

Уметь: распознавать на чертежах и моделях скрещивающиеся прямые

Графическая работа (10 мин)


п.7. №34,36

4.10



9

Углы с сонаправленными сторонами.

1

КУ

Угол между двумя прямыми

Иметь представление об углах между пересекающимися параллельными и скрещивающимися прямыми в пространстве

Уметь: находить угол между прямыми в пространстве на модели куба

Текущий


п.8,9 №40,46а

7.10



10

Решение задач по теме : «Взаимное расположение прямых в пространстве»

1

УОСЗ

Задачи на нахождение угла между двумя прямыми

Знать: как определяется угол между прямыми

Уметь: решать простейшие стереометрические задачи на нахождение углов между прямыми

Текущий

Параллельное проектрирование

п.4-9 №43,47

8.10



11

Контрольная работа по теме: «Взаимное расположение прямых в пространстве»

1

УПЗУ

Контроль знаний и умений

Знать: определение и признак параллельности прямой и плоскости

Уметь: решать задачи по теме

КР №1 ДМ


Повторить п.1-9

9.10



12

Параллельные плоскости

1

КУ

Параллельность плоскостей. Признак паралельности двух плоскостей

Знать: определение, признак паралельности плоскостей.

Уметь: решать задачи на доказательство параллельности плоскостей с помощью признака параллельности плоскостей

Текущий


п.10, 11 №55, 58

07.11



13

Свойства параллельных плоскостей

1

УОНМ

Свойства параллельных плоскостей

Знать: свойства параллельных плоскостей

Уметь: применять признак и свойства при решении задач

Тест (10мин)


п.10, 11 №59, 63 а

08.11



14

Тетраэдр

1

КУ

Работа над ошибками. Понятие тетраэдра, его граней, ребер, вершин, боковых граней и основания. Задачи,связанные с тетраэдром.

Знать: понятие тетраэдра, его граней, ребер, вершин, боковых граней и основания.

Уметь: решать задачи по теме

Проверка Д.З, самостоятельное решение задач


п.12, № 71,102, 103

11.11



15

Параллелепипед

1

КУ

Понятие параллелепипеда, егограней, ребер,вершин, диагоналей, боковых граней и оснований. Свойства параллелепипеда. Задачи, связанные с параллелепипедом.

Знать: понятие параллелепипеда,его граней, ребер,вершин, диагоналей, боковых граней и оснований; свойства параллелепипеда с доказательствами.

Уметь: решать задачи по теме.

Теоретический опрос,проверка Д.З, самостоятельное решение задач


п.13, № 81,109,110

12.11



16

Построение сечений

2

КУ

Решение простейших задач на построение сечений тетраэдра и параллелепипеда

Знать: понятие секущей плоскости; правила построения сечений

Уметь: решать задачи по теме

Теоретический опрос,проверка Д.З, самостоятельное решение задач

Развертка тетраэдра, параллелепипеда

п.14 № 83-86

13.11




18


Зачет по теме: « Параллельность прямых и плоскостей»


1


КУ


Подготовка к К.Р. Систематизация знаний, умений, навыков по теме.

Знать: понятие параллельных плоскостей, признак параллельности двух плоскостей, свойство параллельных плоскостей, теорему о существовании и единственности плоскости, параллельной данной и проходящей через данную точку пространства, понятие параллелепипеда и тетраэдра, их граней, ребер, вершин, диагоналей, боковых граней и оснований, свойств параллелепипеда

Уметь: решать задачи по теме




Карточка (др.вариант)


15.11



19

Контрольная работа по теме: « Параллельность прямых и плоскостей»

1

Урок контроля ЗУН учащихся

Проверка ЗУН по теме

Контрольная работа


Заданий нет

18.11



20

Перпендикулярность прямых и плоскостей (17ч)

Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости

1

УОНМ

Перпендикулярность прямых, прямой и плоскости, свойство прямых, перпендикулярных к плоскости

Знать: определение перпендикулярных прямых, теорему о параллельных прямых, перпендикулярных к третьей прямой, определение прямой, перпендикулярной к плоскости, свойства прямых, перпендикулярных к плоскости.

Уметь: распознавать на моделях перпендикулярные прямые, использовать при решении стереометрических задач теорему Пифагора

ФО

Перпендикулярность прямых и плоскостей в строительстве и архитектуре

п.15, 16 №117,119а

25.12



21

Признак перпендикулярности прямой и плоскости

1

УОНМ

Признак перпендикулярности прямой и плоскости

Знать: признак перпендикулярности прямой и плоскости.

Уметь: применять признак при решении задач.

Экспресс-контроль (7 мин)

п.17 №124, 126

9.01



22

Теорема о прямой, перпендикулярной к плоскости

1

КУ

Перпендикулярность прямой и плоскости

Знать: теорему о прямой, Перпендикулярной к плоскости

Уметь: применять теорему при решении задач

УО

п.18 №123,125

10.01



23

Решение задач по теме: «Перпендикулярность прямой и плоскости»

2

УПЗУ

Перпендикулярность прямых, прямой и плоскости

Уметь: находить расстояние от точки, лежащей на прямой, перпендикулярной к плоскости квадрата, правильного треугольника, ромба, до их вершин, используя соотношения в прямоугольном треугольнике

СР (20 мин)


п.15-18 №132,133, С-7, С-8, (ДМ)

13.01

14.01



24

25

Расстояние от точки до плоскости

1

КУ

Понятие перпендикуляра, проведенного из точки к плоскости.

Знать: понятие перпендикуляра, поведенного из точки к плоскости, основание перпендикуляра, наклонной, проведенной из точки к плоскости. Расстояние от точки до плоскости.

Пооверка Д.З


п.19 №138б, 141

15.01



26

Теорема о трех перпендикулярах

1

КУ

Теорема о трех перпендикулярах и обратная ей теорема. Применение изученной теории при решении задач

Знать: теорему о трех перпендикулярах и обратную ей с доказательством

Уметь: решать задачи по теме

Теоретический опрос, проверка Д.З


п.20 №148-150

16.01



27

Теорема о трех перпендикулярах

1

УЗИМ

Закрепление теоремы о трех перпендикулярах и обратной ей при решении задач

Знать: теорему о трех перпендикулярах и обратную ей

Уметь: решать задачи по теме

Теоретический опрос, проверка Д.З, Сам.решение задач


п.20 №155, 159,204

17.01



28

Решение задач по теореме о трех перпендикулярах

2

УПЗУ

Перпендикуляр и наклонная.

Уметь: находить наклонную, ее проекцию.

Знать: длину перпендикуляра.

СР №8 ДМ (20 мин)


п. 19.20. № 160,205,206

20.01

21.01


29

30

Угол между прямой и плоскостью

1

КУ

Понятие проекции фигуры на плоскости, угла между прямой и плоскостью. Задачи, в которых используются эти понятия.

Знать: понятие проекции фигуры на плоскость, угла между прямой и плоскостью.

Уметь: решать задачи по теме

Проверка Д.З., сам.решение задач


п.21 №163-165

22.01



31

Двугранный угол

2

УОНМ

Перпендикулярность плоскостей. Определение, признак

Знать: определение и признак перпендикулярности двух плоскостей, определение двугранного угла

Уметь: строить линейный угол двугранного угла

ФО

Двугранный угол, линейный угол двугранного угла

п.23 №173.174,176 повторить п.13

23.01

24.01



32

33

Прямоугольный параллелепипед, куб

1

КУ

Определение и свойство прямоугольного параллелепипеда, куб

Знать: определение прямоугольного параллелепипеда и куба и их свойства

Уметь: применять свойства при нахождении диагоналей прямоугольного параллелепипеда

СР №11 ДМ (20 мин)


п.24 № 187б, 190 а,б, 193 в,б.

27.01



34

Решение задач по теме: «Перпендикулярность плоскостей»

1

УОСЗ

Перпендикулярность прямых и плоскостей: признаки, свойства

Знать: определение куба, параллелепипеда

Уметь: находить диагональ куба по ребру и наоборот, находить угол между диагональю куба и плоскостью его грани, угол между диагональю прямоугольного параллелепипеда и его гранью,находить угол между гранью и диагональным сечением параллелепипеда и куба.

Работа по карточкам


п.23,24 № 185,191, индивидуальное задание

28.01



35

Контрольная работа по теме: «Перпендикулярность прямых и плоскостей»

Зачет №2

2

Проверка знаний и умений

Перпендикулярность прямых и плоскостей: признаки, свойства. Наклонная и ее проекция. Угол между прямой и плоскостью.

Уметь: находить наклонную и ее проекцию, используя соотношения в прямоугольном треугольнике, находить угол между диагональю и гранью параллелепипеда. Доказывать перпендикулярность прямой и плоскости, используя признак перпендикулярности, теорему о трех перпендикулярах

КР №3 ДМ


п.15-24 индивидуальное задание

29.01

30.01



36

37

Многогранники (14 ч)

Понятие многогранника

1

Проверка коррекции знаний и умений

Многогранники:вершны. Ребра, грани.

Иметь представление о многограннике.

Знать: элементы многогранника: вершины, ребра, грани.

ФО

Развертка, многогранные углы, выпуклые многогранники. Теорема Эйлера

п.25 № 219,220

05.03



38

Призма. Площадь поверхности призмы

1

УОНМ

Призма, ее основание, боковые ребра, высота, боковая поверхность. Прямая призма.

Иметь представление о призме как о пространственной фигуре.

Знать: формулу площади полной поверхности прямой призмы

Уметь: изображать призму, выполнять чертеж по условию задачи


Наклонная призма

п.27 №229б, 231

06.03



39

Решение задач по теме: «Призма»

1

УПЗУ

Площадь боковой и полной поверхности призмы

Уметь: находить площадь боковой и полной поверхности прямой призмы, основание которой - треугольник

СР № 13 ДМ (20мин)

Наклонная призма

п.25-27 №229г,233

07.03



40

1

УОСЗ

Призма. Прямая призма. Правильная призма

Знать: определение правильной призмы

Уметь: изображать правильную призму на чертежах, строить ее сечение, находить полную и боковую поверхности правильной n-угольной призмы при n=3, 4, 6.

Работа по карточкам


п.27. № 237,298

10.03



41

Пирамида

1

УОНМ

Пирамида: основание, боковые ребра, высота, боковая поверхность, сечение пирамиды

Знать: определение пирамиды, ее элементов.

Уметь: изображать пирамиду на чертежах, строить сечение, параллельное основанию и диагональное.

Экспресс-контроль-повторение

Египетские пирамиды и их удивительные свойства. Усеченная пирамида

п.28 №239,241

11.03



42

Усеченная пирамида

1

КУ

Усеченная пирамида, площадь боковой поверхности

Уметь: находить площадь боковой поверхности пирамиды, основание которой — равнобедренный или прямоугольный треугольник.

УО

п.28 №248

12.03



43

Правильная пирамида

1

КУ

Правильная пирамида

Знать: определение правильной пирамиды

Уметь: решать задачи на нахождение апофемы, бокового ребра, площади основания правильной пирамиды

ФО

п. 29 №254а,б,256б

13.03



44

Решение задач по теме: «Пирамида»

1

УЗИМ

Площадь боковой поверхности пирамиды

Знать: элементы пирамиды, виды пирамид

Уметь: использовать при решении задач планиметрические факты, вычислять площадь полной поверхности

Текущий


п. 28.29 задачи из ЕГЭ

14.03



45

1

УПЗУ

Задачи на нахождение площади боковой поверхности пирамиды

С.Р. №16 ДМ (20 мин)


Задачи из ЕГЭ

17.03



46

Понятие правильного многогранника

1

УОНМ

Правильные многогранники (тетраэдр, куб, октаэдр, додекаэдр, икосаэдр)

Иметь представление о правильных многогранниках.

Уметь: распознавать на чертежах и моделях правильные многогранники

Проверка Д.З

Симметрия в пространстве, в окружающем мире

п. 32. №271,273

18.03



47

Симметрия в кубе, в параллелепипеде

1

УОНМ

Виды симметрии (осевая, центральная, зеркальная). Симметрия в кубе, в параллелепипеде

Знать: виды симметрии в пространстве.

Уметь: определять центры симметрии, оси симметрии, плоскости симметрии для куба и параллелепипеда

Графическая работа (15 мин)

Симметрия в призме и пирамиде

п.33. №272,289

19.03



48

Решение задач по теме: «Многогранники»

1

УОСЗ

Многогранники.

Знать: основные многогранники, уметь распознавать на моделях и чертежах, выполнять чертеж по условию задачи

ФО

Сечение куба, призмы, пирамиды

п.32.33, карточки

20.03



49



Зачет №3

Контрольная работа по теме: «Многогранники»

2

Проверка знаний и умений

Пирамида. Призма.Площадь боковой и полной поверхности

Уметь: строить сечение призмы, пирамиды, плоскостью, параллельной грани. Уметь находить элементы правильной n-угольной пирамиды (n=3,4), находить площадь боковой поверхности пирамиды, призмы, основание которых — равнобедренный или прямоугольный треугольник

Работа по карточкам

КР №4 ДМ


Повторить п 32,33; др.вариант

21.03

31.03



50

51

Повторение (17 ч)









21.04



52











53











54











55











56











57











58











59











60











61











62











63











64











65











66











67











68




















Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 24.12.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров191
Номер материала ДВ-282746
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх