Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 9 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по математике 9 класс

библиотека
материалов




«Согласовано»:

Зам. директора по УВР

__________ М.В.Герман

«Утверждаю»:

Директор школы

__________ О.М.Немыкина




Муниципальное казенное общеобразовательное учреждение Краснолимановская средняя общеобразовательная школа Панинского муниципального района Воронежской области



Рабочая программа

по _математике_

в _9_ классе

на 2015-2016 учебный год



Составил

учитель _1_ категории

_Чегодаева М.В.______

Рассмотрено на заседании МО

естественно-математического цикла

протокол №2 от 29.08.2015













1.Пояснительная записка


Рабочая программа по математике к учебникам Макарычева Ю.Н. и др. «Алгебра»,9 класс, изд. «Просвещение», 2015 и Атанасяна Л.С. и др. «Геометрия 7-9», 9 класс



Учебники: 1. Алгебра. Учебник для 9 класса./ Ю.Н.Макрычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова. - М.:

Просвещение, 2015. Рекомендован Министерством образования и науки РФ к использованию в

образовательном процессе в общеобразовательных учреждениях на 2015-2016 учебный год.

  1. Геометрия. Учебник для 9 класса./ Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. - М.: Просвещение, 2015. Рекомендован Министерством образования и науки РФ к использованию в образовательном процессе в общеобразовательных учреждениях на 2015-2016 учебный год



Материалы для рабочей программы составлены на основе:

  • федерального компонента государственного стандарта общего образования,

  • примерной программы по математике основного общего образования,

  • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2015-16 учебный год,

  • с учетом требований к оснащению образовательного процесса в соответствии с содержанием учебных предметов компонента государственного стандарта общего образования,


Место предмета в базисном учебном плане.

Согласно Федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации для изучения математики в 9 (общеобразовательном ) классе отводится 175 часов из расчета 5 часов в неделю.

Для более широкого и глубокого знакомства с математикой введен курс «Элементы статистики и теории вероятностей» в количестве 8 часов. На этом этапе продолжается решение задач путем перебора возможных вариантов, изучается статистический подход к понятию вероятности. Формируются умения вычислять вероятности с помощью формул комбинаторики. Особое внимание уделяется правилу сложения и умножения вероятностей.

Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.

Количество часов по темам изменено в связи со сложностью тем.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Домашнее задание описано на блок уроков. По ходу работы, в зависимости от темпа прохождение материала номера заданий распределяются по урокам так, что по окончании изучения блока все задания выполнены учащимися в обязательном порядке.

Для развития устойчивого интереса к учебному процессу, уроки математики интегрируются с уроками информатики. Некоторые разделы алгебры закрепляются посредством тестов на ПК, которые разработали сами учащиеся.


В задачи обучения математики входит:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;

  • овладение навыками дедуктивных рассуждений;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, необходимой, в частности, для освоения курса информатики;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и т.д.);

  • воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;

  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

Программа направлена на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;

  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.



Требования к уровню подготовки учащихся

B результате изучения курса математики учащиеся должны уметь:

  • строить график квадратичной функции; находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак;

  • понимать содержательный смысл важнейших свойств функции; по графику функции отвечать на вопросы, касающиеся её свойств;

  • бегло и уверенно выполнять арифметические действия с рациональными числами; вычислять значения числовых выражений, содержащих степени и корни;

  • решать простейшие системы, содержащие уравнения второй степени с двумя переменными; решать текстовые задачи с помощью составления таких систем;

  • решать квадратные уравнения и уравнения, сводящиеся к ним, используя приемы и формулы для решения различных видов квадратных уравнений, графический способ решения уравнений;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • вычислять значения тригонометрических функций по известному значению одной из них; выполнять несложные преобразования тригонометрических выражений;

  • использовать приобретенные знания, умения, навыки в практической деятельности и повседневной жизни для:

    • решения несложных практических расчетных задач, в том числе с использованием при необходимости справочной литературы, калькулятора, компьютера;

устной прикидки, и оценки результата вычислений, проверки результата вычислений выполнением обратных действий;

    • интерпретации результата решения задач.

  • пользоваться геометрическим языком для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;

  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;


2.Учебно-тематический план



Алгебра


Повторение

5

к/р№


I

Квадратичная функция.(Квадратик функция)

24

к/р№ 1,№2


II

Уравнения с одной переменной

15

к/р№4


III

Уравнения и системы уравнений

18

к/р№6


IV

Прогрессии

14

к/р№8,№9


V

Элементы статистики и теории вероятностей

8

к/р№11


VI

Итоговое повторение курса алгебры 9 класса

9



VII

Итоговое повторение курса алгебры 7- 9 классов

(Подготовка к ГИА)

13

к/р

































Геометрия



Вводное повторение

1



I

Векторы

10



II

Метод координат

12

к/р№3


III

Соотношение между сторонами и углами треугольника

13

к/р№5


IV

Длина окружности и площадь круга

12

к/№7


V

Движения

11

к/р№10



Итоговое повторение курса геометрии 9 класса

10























3.Содержание курса предмета


Алгебра


1. Квадратичная функция

Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Решение задач путем выделения квадрата двучлена из квадратного трехчлена. Функция y=ax2+bx, её свойства, график. Простейшие преобразования графиков функций. Решение неравенств второй степени с одной переменной. Решение рациональных неравенств методом интервалов. Четная и нечетная функции. Функция y=xn, Определение корня n-й степени.

 Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где аhello_html_3967b081.gif0.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квад­ратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где аhello_html_3967b081.gif0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида hello_html_m7165eaf4.gif, hello_html_m187d0ff8.gif. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.


Знать: основные свойства функций, уметь находить промежутки знакопостоянства, возрастания, убывания функций; определение и свойства четной и нечетной функций

Уметь: находить область определения и область значений функции, читать график функции

Уметь решать квадратные уравнения, определять знаки корней

Уметь выполнять разложение квадратного трехчлена на множители

Уметь строить график функции у=ах2 , выполнять простейшие преобразованияграфиков функций

Уметь строить график квадратичной функции, выполнять простейшие преобразования графиков функций

Уметь строить график квадратичной функции» находить по графику нули функции, промежутки, где функция принимает положительные и отрицательные значения.

Уметь построить график функции y=ax2 и применять её свойства. Уметь построить график функции y=ax2 + bx + с и применять её свойства

Уметь находить токи пересечения графика Квадратичной функции с осями координат. Уметь разложить квадратный трёхчлен на множители.

Уметь решать квадратное уравнение.

Уметь решать квадратное неравенство алгебраическим способом. Уметь решать квадратное неравенство с помощью графика квадратичной функции

Уметь решать квадратное неравенство методом интервалов. Уметь находить множество значений квадратичной функции.

Уметь решать неравенство ах2 +вх+с≥0 на основе свойств квадратичной функции

строить график функции у=хn , знать свойства степенной функции с натуральным показателем, уметь решать уравнения хn=а при: а) четных и б)нечетных значениях n.

Знать определение корня n- й степени, при каких значениях а имеет смысл выражение hello_html_m2dfc77fb.gif.

Уметь выполнять простейшие преобразования и вычисления выражений, содержащих корни, применяя изученные свойства арифметического корня n-й степени.

Знать, что степень с основанием, равным 0 определяется только для положительного дробного показателя и знать, что степени с дробным показателем не зависят от способа записи r в виде дроби.

Знать свойства степеней с рациональным показателем, уметь выполнять простейшие преобразования выражений, содержащих степени с дробным показателем.

Уметь выполнять преобразования выражений, содержащих степени с дробным показателем.


2. Уравнения и системы уравнений

Целое уравнение и его корни. Решение уравнений третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введения вспомогательной переменной.

Уравнение с двумя переменными и его график. Уравнение окружности. Решение систем, содержащих одно уравнение первой, а другое второй степени. Решение задач методом составления систем. Решение систем двух уравнений второй степени с двумя переменными.

Цель: систематизировать и обобщить сведения о решении целых с одной переменной, Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограни­чиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Знать: методы решения уравнений:

а) разложение на множители;

б) введение новой переменной;

в) графический способ.

Уметь: решать целые уравнения методом введения новой переменной

Уметь решать системы 2 уравнений с 2 переменными графическим способом

Уметь решать уравнения с 2 переменными способом подстановки и сложения

Уметь решать задачи «на работу», «на движение» и другие составлением систем уравнений.

3. Прогрессии

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

Добиться: понимания терминов «член последовательности», «номер члена последовательности», «формула n –го члена арифметической прогрессии»

Знать: формулу n –го члена арифметической прогрессии, свойства членов арифметической прогрессии, способы задания арифметической прогрессии

Уметь: применять формулу суммы n –первых членов арифметической прогрессии при решении задач

Знать, какая последовательность является геометрической, уметь выявлять, является ли последовательность геометрической, если да, то находить q

Уметь вычислять любой член геометрической прогрессии по формуле, знать свойства членов геометрической прогрессии

Уметь применять формулу при решении стандартных задач

Уметь применять формулу S =hello_html_m4250c608.gif при решении практических задач

Уметь находить разность арифметической прогрессии

Уметь находить сумму n первых членов арифметической прогрессии. Уметь находить

любой член геометрической прогрессии. Уметь находить сумму n первых членов геометрической прогрессии. Уметь решать задачи.


5. Элементы комбинаторики, статистики и теории вероятностей

Комбинаторные задачи. Перестановки, размещения, сочетания. Относительная частота. Вероятность случайного события

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитатьих число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

Знать: формулы числа перестановок, размещений, сочетаний и уметь пользоваться ими.

Уметь: пользоваться формулой комбинаторики при вычислении вероятностей.

7. Повторение

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 9 класса).


Геометрия

  1. Векторы Метод координат

Векторы

Понятие вектора. Длина (модуль) вектора. Равенство векторов. Операции над векторами: сложение и вычитание векторов, умножение на число, скалярное произведение.

Метод координат

Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Угол между векторами. Простейшие задачи в координатах. Уравнение окружности, прямой. Применение векторов и координат при решении задач.

Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание дол­жно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число):

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.


  1. Соотношение между сторонами и углами треугольника. Скалярное произведение векторов.

Синус, косинус, тангенс угла. Соотношения между сторонами и углами треугольника. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помо­щью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольни­ки (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение для векторов на косинус угла между ними). Рас­сматриваются свойства скалярного произведения и его примене­ние при решении геометрических задач.

Основное внимание следует уделить выработке прочных на­выков в применении тригонометрического аппарата при реше­нии геометрических задач.


3.Длина окружности и площадь круга

Многоугольники. Длина ломаной, периметр многоугольника. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Построение правильных многоугольников.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника. Длина окружности. Площадь круга и площадь сектора.

Цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоуголь­ника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помо­щью описанной окружности решаются задачи о построении пра­вильного шестиугольника и правильного 2л-угольника, если дан правильный л-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружно­сти и площади круга. Вывод опирается на интуитивное представ­ление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его пери­метр стремится к длине этой окружности, а площадь — к площа­ди круга, ограниченного окружностью.


4. Геометрические преобразования. Движения

Отображение плоскости на себя. Понятие движения. Примеры движений фигур. Симметрия фигур. Осевая симметрия и параллельный перенос. Поворот и центральная симметрия. Понятие о гомотетии. Подобие фигур. На­ложения и движения.

Цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотре­нии видов движении основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основ­ных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движени­ем плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий нало­жения и движения.


5. Об аксиомах геометрии.

Беседа об аксиомах геометрии.

Цель: дать более глубокое представление о си­стеме аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

6. Начальные сведения из стереометрии

Предмет стереометрия. Геометрические тела и поверхности. Многогранник. Призма. Параллелепипед. Цилиндр. Конус. Сфера и шар. Формулы для вычисления их площа­дей поверхностей и объемов.

Цель: дать начальное представление о телах и поверхностях в пространстве; познакомить обучающихся с основ­ными формулами для вычисления площадей; поверхностей и объ­емов тел.

Рассмотрение простейших многогранников (призмы, парал­лелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе нагляд­ных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площа­дей боковых поверхностей цилиндра и конуса получаются с по­мощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

Повторение.

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса.



4.Требования к уровню подготовки учащихся


В результате изучения математики ученик должен

знать/понимать1

  1. существо понятия математического доказательства; примеры доказательств;

  2. существо понятия алгоритма; примеры алгоритмов;

  3. как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  4. как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  5. как потребности практики привели математическую науку к необходимости расширения понятия числа;

  6. вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  7. каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  8. смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.


уметь

  1. составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  2. выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  3. применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  4. решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  5. решать линейные и квадратные неравенства с одной переменной и их системы;

  6. решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  7. изображать числа точками на координатной прямой;

  8. определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  9. распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  10. находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  11. определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

описывать свойства изученных функций, строить их графики.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  1. выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  2. моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

  3. описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  4. интерпретации графиков реальных зависимостей между величинами.

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где кhello_html_3967b081.gif0, у=кх+b, у=х2, у=х3, у =hello_html_mf1cc089.gif, у=hello_html_m221ecc8f.gif, у=ах2+bх+с, у= ах2+n у= а(х- m) 2 ), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;

Элементы логики, комбинаторики,
статистики и теории вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.


Геометрия

знать/понимать2

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;


уметь

  1. пользоваться языком геометрии для описания предметов окружающего мира;

  2. распознавать геометрические фигуры, различать их взаимное расположение;

  3. изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  4. распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  5. в простейших случаях строить сечения и развертки пространственных тел;

  6. проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  7. вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  8. решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  9. проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  10. решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  1. описания реальных ситуаций на языке геометрии;

  2. расчетов, включающих простейшие тригонометрические формулы;

  3. решения геометрических задач с использованием тригонометрии

  4. решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  5. построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).


Сокращения, используемые в рабочей программе:

Типы уроков:

УОНМ — урок ознакомления с новым материалом.

УЗИМ — урок закрепления изученного материала.

УПЗУ — урок применения знаний и умений.

УОСЗ — урок обобщения и систематизации знаний.

УПКЗУ — урок проверки и коррекции знаний и умений.

КУ — комбинированный урок.

УИТ – урок с использованием ИТ

Виды контроля:

ФО — фронтальный опрос.

ИРД — индивидуальная работа у доски.

ИРК — индивидуальная работа по карточкам.

СР — самостоятельная работа.

ПР — проверочная работа.

МД---математический.диктант -







.

5.Календарно-тематическое планирование

Наименование раздела программы

Тема урока

Кол-во часов

Тип урока

Элементы содержания образования

Требования к уровню подготовки обучающихся

Вид кон-троля

Дата проведения урока

план

факт

1


Повторение курса математики 8 класса

1

УПЗУ

Квалратные корни

-уметь извлекать квадратные корни -знать свойства корней

ФО



2


Повторение курса математики 8 класса

1

УПЗУ

Квадратные уравнения

-уметь решать квадратные уравнения -знать способы решения квадратных уравнений

ИРД



3


Повторение курса математики 8 класса

1

УПЗУ

четырехугольники

-кметь решать задачи на четырехугольники

ФО СР



4


Повторение курса математики 8 класса

1

УПЗУ

Текстовые задачи

-уметь решать текстовые задачи

ИРД



5


Контрольная работа на начало учебного года

1

УПЗУ



КР



I

Квадра

тичная функция.



24







6-7

Область определения и область изменения.


2

УОНМ

КУ


функция, область определения и область изменения

-уметь находить область определения и область значения функции;

-уметь строить более сложные графики функций

ФО

ПР



8-10

Свойства функций.


3

УОНМ

УЗИМ

КУ

нули функции, возрастающая и убывающая функция

-уметь определять нули функции, промежутки возрастания и убывания

ФО

ИРД



11-12

Квадратный трехчлен и его корни.

2

УОНМ

квадратный трехчлен, его корни

-уметь находить корни квадратного трехчлена

ФО

СР



13-15

Разложение квадратного трехчлена на множители.

3

УОНМ УЗИМ

КУ

корни квадратного трехчлена, разложение на множители

-уметь находить корни квадратного трехчлена;

-уметь раскладывать на множители квадратный трехчлен

ФО

СР



16

Контрольная работа №1 «Квадратичный трехчлен, свойство функции»

1



-уметь применять полученные знания по теме в комплексе

КР



17-18

Функция

у = ах2


2

УОНМ КУ

функция, график функции, свойства функции

-уметь строить график функции hello_html_m7e0cfc6b.gif;

-правильно читать график

ФО

ИРД



19-20

Графики функций у=ах2 + п и

у = а(х-m)2 .


2

УОНМКУ


график функции, параллельный перенос

-уметь строить график функции, используя преобразования графиков

ФО

СР



21-24

Построение графика квадратичной функции.

4

УОНМ

УПЗУ

КУ

квадратичная функция, парабола, вершина параболы, ветви параболы

-знать алгоритм построения графика квадратичной функции;

-уметь находить координаты вершины параболы

ФО

СР



25

Функция hello_html_m7f7c988d.gif.

1

УОНМ

степенная функция с натуральным показателем, свойства степенной функции и особенности ее графика при любом натуральном n

-знать свойства функции при n-четном и n-нечетном;

-уметь преобразовывать графики hello_html_m2b0c579a.gif с наиболее высокими степенями

ФО

ИРД




26-28

Корень n-й степени

3

УОНМ УПЗУ КУ


понятие корня n-й степени

-знать определение и свойства четной и нечетной функций

Знать определение корня n- й степени, при каких значениях а имеет смысл выражение hello_html_m2dfc77fb.gif

ФО

СР



29


Контрольная работа №2 «График квадратичной функции»

1




КР








Наименование раздела программы

Тема урока

Кол-во часов

Тип урока

Элементы содержания образования

Требования к уровню подготовки обучающихся

Вид кон-троля

Дата проведения урока





Вводное повторение


1








30


Многоугольники (определение, свойства, формулы площадей).

1

КУ


многоугольник, элементы многоугольника, свойства, площадь многоугольника

-знать свойства основных четырехугольников;

-знать формулы площадей;

-уметь строить многоугольники и по чертежу определять их свойства

ФО

ИРД






Векторы


10








31-32


Понятие вектора.

2

УОНМ КУ

определение вектора, виды векторов, длина вектора

-уметь изображать, обозначать вектор, нулевой вектор;

-знать виды векторов


ИРД

СР





33-35


Сложение и вычитание векторов.


3

УОНМ УПЗУ КУ

вектор, операции сложения и вычитания векторов

-уметь практически складывать и вычитать два вектора, складывать несколько векторов

ФО

ИРД

СР





36-37


Умножение вектора на число.

2

УОНМ

вектор, правило умножения векторов, средняя линия трапеции

-уметь строить произведение вектора на число;

-уметь строить среднюю линию трапеции

ФО

ИРД





38-40


Решение задач.

3

УПЗУ

УЗИМ КУ

правило сложения и вычитания векторов, правило умножения векторов

-уметь на чертеже показывать сумму, разность, произведение векторов;

-уметь применять эти правила при решении задач

ФО

ИРД

ИРК






Метод координат


12








41-42


Координаты вектора.

2

УОНМ КУ


координаты вектора, координаты результатов операций над векторами, коллинеарные вектора

-уметь находить координаты вектора по его разложению и наоборот;

-уметь определять координаты результатов сложения, вычитания, умножения на число

ФО

ИРД

СР




43-44


Решение задач

2

УПЗУ

КУ


координаты вектора, координаты результатов операций над векторами

-уметь применять знания при решении задач в комплексе

ФО

ИРД





45-46


Простейшие задачи в координатах.

2

УПЗУ КУ


радиус-вектор, координата вектора, метод координат, координата середины отрезка, длина вектора, расстояние между двумя точками

-уметь определять координаты радиус-вектора;

-уметь находить координаты вектора через координаты его начала и конца;

- уметь вычислять длину вектора по его координатам, координаты середины отрезка и расстояние между двумя точками

ФО

ИРД

ИРК

СР





47-48


Уравнение окружности.

2

УОНМ


уравнение окружности

-знать уравнение окружности;

-уметь решать задачи на применение формулы

ФО

ИРД




49


Уравнение прямой.

1

УОНМ


уравнение прямой

-знать уравнение прямой;

-уметь решать задачи на применение формулы

ФО

ИРД

СР




50-51


Решение задач.

2

УПЗУ КУ

уравнение окружности и прямой

-знать уравнения окружности и прямой;

-уметь решать задачи

ФО

ИРД

ИРК





52


Контрольная работа

№3 «Метод координат»

1



-уметь применять полученные знания в комплексе при решении задач на определение координат вектора, на определение вектора суммы, разности, произведения

-уметь решать простейшие задачи в координатах;

-уметь решать задачи на составлении уравнений окружности и прямой

КР




II

Уравнения с одной переменной


15








53-56

Целое уравнение и его корни.

4

УОНМ

УПЗУ

целое уравнение, равносильные уравнения, степень уравнения, корни уравнения, графический способ решения уравнений

-уметь определять степень уравнения;

-уметь решать уравнения третьей и более степеней, используя разложение на множители, графический способ

ФО

ИРД

СР



57-60

Дробно-рациональные уравнения

4

КУ

УПЗУ УЗИМ УПКЗУ

робно-рациональные уравнения

-уметь решать дробно-рациональные уравнения

-уметь решать уравнения с помощью введения вспомогательной переменной;

-уметь решать биквадратные уравнения

ФО

ИРК,

ИРД




61-63

Решение неравенств второй степени.

3

УОНМ

УПЗУ КУ

неравенства второй степени с одной переменной

-знать и понимать алгоритм решения неравенств;

-уметь правильно найти ответ в виде числового промежутка

ФО

ИРД





64-66

Метод интервалов.

3

УОНМ

УОСЗ КУ

нули функции, метод интервалов

-знать алгоритм решения неравенств методом интервалов;

-уметь решать неравенства, используя метод интервалов

ФО

ИРД

СР



67


Контрольная работа №4 «Решение неравенств второй степени с одной переменной».

1




-уметь применять полученные знания по теме в комплексе

КР











Соотношение между сторонами и углами треугольника






13








68-69


Синус, косинус, тангенс угла.

2


УОНМ УЗИМ

единичная полуокружность, основное тригонометрическое тождество, формулы приведения

-знать определение основных тригонометрических функций и их свойства;

-уметь решать задачи на применение формулы для вычисления координат точки

ФО

ИРД

СР




70


Площадь треугольника

1

УОНМ

теорема о площади треугольника, формула площади

-уметь выводить формулу площади треугольника;

-уметь применять формулу при решении задач

ФО

ИРД





71


Теорема синусов.

1

УОНМ

теорема синусов

-знать теорему синусов и уметь решать задачи на её применение

ФО

ИРД




72


Теорема косинусов.

1

УОНМ

теорема косинусов

-знать вывод формулы;

-уметь применять формулу при решении задач

ФО

ИРД

СР




73-75


Решение треугольников.


3

УОНМ УПЗУ КУ


теорема синусов, теорема косинусов

-уметь находить все шесть элементов треугольника по каким-нибудь трем данным элементам, определяющим треугольник


ФО

ИРД

ИРК

СР




76


Угол между векторами.

1

УОНМ УЗИМ




-уметь находить угол между векторами

ФО

ИРД





77


Скалярное произведение векторов.

1

КУ

скалярное произведение векторов

-знать определение скалярного

произведения векторов, ус-

ловие перпендикуляр-ности

ненулевых векторов

ФО

ИРД

СР





78-79


Скалярное произведение в координатах. Свойства скалярного произведения векторов.

2

УОНМ КУ

скалярное произведение в координатах.

Уметь применять выражения скалярного произведения в координатах и его

свойства.

ФО

ИРД




80


Контрольная работа №5 «Соотношение между сторонами и углами треугольника»

1



-знать таблицу значений тригонометрических функций, формулы приведения;

-уметь выполнять несложные преобразования тригонометрических выражений;

КР




III

Уравнения и системы уравнений


18








81-82

Уравнение с двумя переменными и его график.

2

УОНМ



-выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными

ФО






83-85

Графический способ решения систем уравнений.

3

КУ УПЗУ УОНМ


график функции, системы уравнений, графический способ решения систем

-знать виды графиков и уметь их строить;

-уметь определять количество решений системы по графику;

-уметь решать системы графически

ФО

ИРД

СР





86-88

Решение систем уравнений второй степени.

3

УОНМ УПЗУ УОСЗ КУ

системы уравнений второй степени, способы решения

-знать алгоритм решения систем второй степени;

-уметь их решать, используя известные способы (способ подстановки и способ сложения)

ФО

ИРД,

ИРК,

ПР




89-93

Решение задач с помощью систем уравнений второй степен

5







УОНМ УОСЗ

КУ УПЗУ

УПКЗУ

алгоритм решения задач с помощью систем уравнений, способы решения





-уметь составлять причинно-следственные связи между данными в задаче и составлении уравнений, используя формулы;

-уметь решать системы уравнений различными способами

ФО

ИРД

СР




94




Контрольная работа №6 «Уравнения и системы уравнений»



1




-уметь решать квадратные уравнения;

-уметь решать уравнения третьей и более степеней с помощью разложения на множители и введения вспомогательной переменной;

-уметь решать простейшие системы, содержащие одно уравнение первой, а другое второй степени;

-уметь решать текстовые задачи методом составления систем

КР













95-96



Неравенство с двумя переменными


2



-знать и понимать алгоритм решения неравенств;

-уметь правильно найти ответ в виде числового промежутка

-знать виды графиков и уметь их строить;


УОНМ





97-98


Система неравенств с двумя переменными

2



-знать алгоритм решения систем второй степени;

-уметь их решать,

-уметь решать системы графически


КУ

УИТ




IV

Длина окружности и площадь круга





12








99-100


Правильные многоугольники.


2

КУ

УОСЗ

правильный многоугольник, вписанная и описанная окружность

-уметь вычислять угол правильного многоугольника по формуле;

-уметь вписывать окружность в правильный многоугольник и описывать

ФО

ИРД

ИРК





101-106


Нахождение сторон правильного многоугольника через радиусы описанной и вписанной окружностей.

6

КУ УПЗУ УОНМ

УЗИМ УПКЗУ


площадь правильного многоугольника, его сторона, периметр, радиусы вписанной и описанной окружностей

-уметь решать задачи на применение формул зависимости между R, r, an;

-уметь строить правильные многоугольники

ФО

ИРД

СР










107-109


Длина окружности и площадь круга.

3

КУ УПЗУ УОСЗ


длина окружности, площадь круга, площадь кругового сектора

-знать формулы для вычисления длины окружности и площади круга;

-уметь выводить формулы и решать задачи на их применение

ФО

ИРД

СР




110


Контрольная работа №7 «Длина окружности и площадь круга»

1



-уметь решать задачи на зависимости между R, r, an;

-уметь решать задачи, используя формулы длины окружность, площади круга и кругового сектора

КР




II

Арифметик и геомет рик прогрессия


14








111-112

Последовательности.


2

УОНМ КУ


последовательность, члены последовательности, формулы n-го члена последовательности, рекуррентные формулы

-приводить примеры последовательностей;

-уметь определять член последовательности по формуле

ФО

ИРД,

МД




113-114

Арифметическая прогрессия. Формула n-го члена арифметической прогрессии.

2

УОНМ КУ


арифметическая прогрессия, разность, формула n-го члена арифметической прогрессии: hello_html_30d0633d.gif

-уметь определять вид прогрессии по её определению;

-знать и применять при решении задач указанную формулу

ФО

ИРД

ПР




115-116

Формула суммы n первых членов арифметической прогрессии.

2

УОНМ УПЗУ КУ


арифметическая прогрессия, формула суммы членов арифметической прогрессии: hello_html_62f19048.gif

-уметь находить сумму арифметической прогрессии по формуле

ФО

СР




117

Контрольная работа №8 «Арифметическая прогрессия»

1



-уметь находить нужный член арифметической прогрессии;

-пользоваться формулой суммы членов арифметической прогрессии;

-определять является ли данное число членом арифметической прогрессии

КР




118-120

Геометрическая прогрессия. Формула n-го члена геометрической прогрессии

3

УЗОМ

УПЗУ КУ

геометрическая прогрессия, знаменатель геометрической прогрессии, формула n-го члена геометрической прогрессии: hello_html_5cd90ac9.gif

-знать определение геометрической прогрессии;

-уметь распознавать геометрическую прогрессию;

-знать данную формулу и уметь использовать ее при решении задач

ФО

ИРД

МД




121-123

Формула суммы n первых членов геометрической прогрессии.

3

УЗОМ КУ


геометрическая прогрессия, формула суммы членов геометрической прогрессии: hello_html_m22a9d653.gif

-знать и уметь находить сумму геометрической прогрессии по формуле

ФО

ИРД

СР




124

Контрольная работа №9 «Геометрическая прогрессия»

1



-уметь находить нужный член геометрической прогрессии;

-пользоваться формулой суммы n членов геометрической прогрессии;

-представлять в виде обыкновенной дроби бесконечную десятичную дробь

КР




V

Движения


11








125


Понятие движения.

1

УОНМ

отображение плоскости на себя

-знать , что является движением плоскости

ФО

ИРД




126-127


Симметрия.

2

КУ УПЗУ

осевая и центральная симметрия

-знать какое отображение на плоскости является осевой симметрией, а какое центральной

ФО

СР




128-131


Параллельный переносб

4

КУ УПЗУ УОНМ

УОСЗ

параллельный перенос

-знать свойства параллельного переноса;

-уметь строить фигуры при параллельном переносе на вектор hello_html_m57ecd902.gif.

ФО

ИРД






132-134


Поворот.

3

КУ

УОСЗ

УПКЗУ

УЗИМ

поворот

-уметь строить фигуры при повороте на угол hello_html_m589835fe.gif

ФО

ИРД

СР




135


Контрольная работа №10 «Движения»

1



-уметь строить фигуры при параллельном переносе и повороте

КР




VI

Элементы статистики и теории вероятностей






8








136

Примеры комбинаторных задач.

1

КУ


перебор возможных вариантов, комбинаторное правило умножения

-ориентироваться в комбинаторике;

-уметь строить дерево возможных вариантов

ФО




137-138

Перестановки, размещения, сочетания.

2

УОНМ

УПЗУ КУ


перестановки, число всевозможных перестановок, размещения, сочетания

-знать и уметь пользоваться формулами для решения комбинаторных задач

ФО




139-140

Вероятность случайного события.

2

КУ

случайное событие, относительная частота, классическое определение вероятности

-определять количество равновозможных исходов некоторого испытания;

-знать классическое определение вероятности

ФО




141-142

Сложение и умножение вероятностей.

2

УОНМ УЗИМ

КУ

противоположные события, независимые события, несовместные и совместные события

-знать формулу вычисления вероятности в случае исхода противоположных событий

ФО




143

Контрольная работа№11 «Элементы статистики и теории вероятностей».

1




-уметь применять полученные знания по теме в комплексе

КР




VII

Итоговое повторение курса алгебры 9 класса






9








144-145


Графики функций.


2

КУ УПЗУ

область определения и область значений функций

-знать алгоритм построения графика функции;

-уметь строить графики функции;

-уметь по графику определять свойства функции

ФО

ИРД




146-148

Уравнения, неравенства, системы.

3

КУ УПЗУ

УОСЗ

квадратные уравнения, неравенства второй степени, системы уравнений

-уметь решать уравнения третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введения вспомогательной переменной;

-уметь решать неравенства методом интервалов;

-уметь решать системы уравнений

ФО

ИРД




149-153

Текстовые задачи

4

КУ

УПЗУ

УЗИМ

УОСЗ

решение текстовых задач

-уметь решать задачи с помощью составления систем

ФО

ИРД





Итоговое повторение курса геометрии 9 класса






9








154-155


Об аксиомах планиметрии.

2

КУ

УПКЗУ


аксиомы планиметрии

-знать все об аксиомах планиметрии

ФО

ИРД




156-158


Решение задач в координатах.

3

КУ

УОСЗ


координаты вектора, метод координат

-уметь находить координаты вектора через координаты его начала и конца;

- уметь вычислять длину вектора по его координатам, координаты середины отрезка и расстояние между двумя точками

ФО

ИРД

ИРК




159-162


Теоремы синусов и косинусов.

4

КУ УПЗУ

УПКЗУ


теорема синусов, теорема косинусов

- уметь находить все элементы треугольника по каким-нибудь трем данным элементам, определяющим треугольник

ФО

ИРД






Итоговое повторение

(Подготовка к ГИА)


13








163-164


Арифметическая и геометрическая прогрессии.

2

КУ

УПКЗУ

разность арифметической прогрессии, знаменатель геометрической прогрессии, сумма n-го члена арифметической и геометрической прогрессии

-знать формулы n-го члена и суммы n членов арифметической и геометрической прогрессий и уметь их применять при решении задач

ФО

ИРД




165-167


Алгебраические выражения

3

УПЗУ

УПКЗУ


алгебраические выражения

-уметь преобразовывать алгебраические выражения ,используя формулы сокращенного умножения

ФО

ИРД

СР




168-170


Уравнения. Системы уравнений.

3

УПЗУ

УПКЗУ


уравнения ,системы уравнений

-уметь решать уравнения и системы уравнений

ФО

ИРД

СР




171-172


Неравенства. Системы неравенства

2

УПЗУ

УПКЗУ


неравенства ,

системы неравенств

-уметь решать неравенства и системы неравенств

ФО

ИРД

СР




173-174


Итоговая административная контрольная работа.

2

УПЗУ

УПКЗУ



-уметь применять все полученные знания за курс алгебры и геометрии

КР




175


Заключительный урок

1















6.Список литературы учителя и школьника


1.Тесты 7-9 классы, Издательский дом «Дрофа»1998 П.И. Алтынов

2.Жохов В. И., Макарычев Ю. Н., Миндюк Н. Г. Дидактические материалы по алгебре, 9 класс. – М.: Просвещение, 2014.

3.Звавис А. И., Шляпочкин Л. Я. Контрольные и проверочные по алгебре 7-9 классы. М.: Просвещение, 2014.

4.Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. Алгебра 9. – М.: Просвещение, 2014.

5.Макарычкв Ю. Н., Миндюк Н. Г. Элементы статистики и теории вероятностей, алгебра 7-9 классы. – М.: Просвещение, 2012.

6.Миндюк Н. Г. Разноуровневые дидактические материалы по алгебре, 9 класс. – М.: Просвещение

7.Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И.

Геометрия 7-9. М. : Просвещение

8.Зив Б. Г., Мейлер В. М. Дидактические материалы по геометрии за 9 класс. –

М.: Просвещение

9. Поурочное планы. Издательство»Учитель», Волгоград.


1


2




Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 25.12.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров141
Номер материала ДВ-284522
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх