Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 5 класс

Рабочая программа по математике 5 класс

  • Математика

Поделитесь материалом с коллегами:

I. Пояснительная записка


Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования,

примерной программы основного общего образования по математике . Математикка. 5-9 классы.- 3-е изд., перераб.-М:Просвещение, 2011. Руководители проекта: академик РАО А.А.Кузнецов, академик РАО М.В.Рыжаков, член-корреспондент РАО А.М.Кондаков; учебного плана образовательного учреждения на 2015-2016 учебный год

и обеспечена УМК для 5–6-го классов авторов Н.В.Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд, УМК для 7-9-го классов авторов Ю.Н.Макарычев и др. УМК 7-9-го классов автор Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев.


Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся. При этом когнитивная составляющая данного курса позволяет обеспечить как требуемый государственным стандартом необходимый уровень математической подготовки, так и повышенный уровень, являющийся достаточным для углубленного изучения предмета.

Вместе с тем, очевидно, что положение с обучением предмету «Математика» в основной школе требует к себе самого серьёзного внимания. Анализ состояния преподавания свидетельствует, что школа не полностью обеспечивает функциональную грамотность учащихся.

В основу настоящей программы положены педагогические и дидактические принципы вариативного развивающего образования, изложенные в концепции образовательной программы «Перспективная школа», и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС.

А. Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения.

Б. Культурно ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип.

В. Деятельностно ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.


Математическое образование является обязательной и не­отъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении:

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

3) в предметном направлении:

  • овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.


В организации учебно – воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.

Целью изучения курса математике в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.

Целью изучения курса математике в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.

Целью изучения курса геометрии в 7-9 классах является систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.


В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.

Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.



II. Общая характеристика учебного предмета «Математика»

Настоящая программа по математике для основной школы является логическим продолжением программы для начальной школы и вместе с ней составляет описание непрерывного курса математики с 1-го по 9-й класс общеобразовательной школы.

В основе содержания обучения математике лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены главные содержательно-целевые направления развития учащихся средствами предмета «Математика».

Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция. Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция. Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.


Содержание математического образования в основной школе формируется на основе фундаментального ядра школь­ного математического образования. В программе оно пред­ставлено в виде совокупности содержательных разделов, кон­кретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламен­тирует объем материала, обязательного для изучения в основ­ной школе, а также дает его распределение между 5—6 и 7—9 классами.

Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и обще­культурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую ли­нию, пронизывающую все основные разделы содержания ма­тематического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для даль­нейшего изучения учащимися математики, способствует разви­тию их логического мышления, формированию умения поль­зоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие поня­тия о числе в основной школе связано с рациональными и ир­рациональными числами, формированием первичных пред­ставлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирова­ние у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружа­ющей реальности. Язык алгебры подчеркивает значение мате­матики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразова­ние символьных форм вносит специфический вклад в разви­тие воображения учащихся, их способностей к математическо­му творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с ир­рациональными выражениями, с тригонометрическими функ­циями и преобразованиями, входят в содержание курса мате­матики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разно­образных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вно­сит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный ком­понент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамот­ности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, про­водить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том чис­ле в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его ис­следования, формируется понимание роли статистики как ис­точника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у учащих­ся пространственное воображение и логическое мышление пу­тем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометри­ческой интуиции. Сочетание наглядности со строгостью явля­ется неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значи­тельной степени несет в себе межпредметные знания, кото­рые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изуча­ется и используется распределенно — в ходе рассмотрения различных вопросов курса. Соответствующий материал наце­лен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназна­чен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролиру­ется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рас­смотрении проблематики основного содержания математичес­кого образования.

Ценностные ориентиры содержания учебного предмета

Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формировани­ем способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей куль­туры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реально­го мира: пространственные формы и количественные отноше­ния — от простейших, усваиваемых в непосредственном опы­те, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математиче­ских знаний затруднено понимание принципов устройства и ис­пользования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится вы­полнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими прие­мами геометрических измерений и построений, читать инфор­мацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, со­ставлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисцип­лин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специально­стей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, био­логия, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляю­щегося в определенных умственных навыках. В процессе ма­тематической деятельности в арсенал приемов и методов че­ловеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построе­ний, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мыш­ление. Ведущая роль принадлежит математике в формирова­нии алгоритмического мышления и воспитании умений дей­ствовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у уча­щихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, сим­волические, графические) средства.

Математическое образование вносит свой вклад в форми­рование общей культуры человека. Необходимым компонен­том общей культуры в современном толковании является об­щее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенно­стях применения математики для решения научных и при­кладных задач.

Изучение математики способствует эстетическому воспита­нию человека, пониманию красоты и изящества математиче­ских рассуждений, восприятию геометрических форм, усвое­нию идеи симметрии.

История развития математического знания дает возмож­ность пополнить запас историко-научных знаний школьни­ков, сформировать у них представления о математике как ча­сти общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математи­ческой науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.


III. Описание места учебного предмета «Математика» в учебном плане


На изучение математики в основной школе отводит 5 учебных часов в не­делю в течение каждого года обучения, всего 875 уроков.

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика» изучается с 5-го по 9-й класс в виде следующих учебных курсов: 5–6 класс – «Математика» (интегрированный предмет), 7–9 классах предмет «Математика» (Алгебра и Геометрия).


Распределение учебного времени между этими предметами представлено в таблице.



Классы

Предметы математического цикла

Количество часов на ступени основного образования


5-6

Математика

350


7-9

Математика (Алгебра)

315


Математика (Геометрия)

210


Всего

875




Предмет «Математика» в 5—6 классах включает арифмети­ческий материал, элементы алгебры и геометрии, а также эле­менты вероятностно-статистической линии.

Предмет «Алгебра» включает некоторые вопросы арифме­тики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции, а также элементы вероятностно-статистической линии.

В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

Изучение вероятностно-статистического материала отнесено к 5—6, к 7—9 классам



























































IV. Личностные, метапредметные и предметные результаты освоения учебного

предмета «Математика»


Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:

личностные:

1) ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

2) формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

3) умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

4) первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

5) критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

6) креативности мышления, инициативы, находчивости, активности при решении арифметических задач;

7) умения контролировать процесс и результат учебной математической деятельности;

8) формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;


метапредметные:

Регулятивные УУД:

1) самостоятельно обнаруживать и формулировать учебную проблему, определять цель УД;

2) выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

3) составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

4) работая по плану, сверять свои действия с целью и при необходимости исправлять ошибки самостоятельно;

5) в диалоге с учителем совершенствовать самостоятельно выбранные критерии оценки.

Познавательные УУД:

1) проводить наблюдение и эксперимент под руководством учителя;

2) осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;

3) осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;

4) анализировать, сравнивать, классифицировать и обобщать факты и явления;

5) давать определения понятиям.

Коммуникативные УУД:

1) самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

2) в дискуссии уметь выдвинуть аргументы и контраргументы;

3) учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его;

4) понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты (гипотезы, аксиомы, теории);



Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно- деятельностного обучения.

Предметными результатами изучения предмета «Математика» являются следующие умения.

Ученик научится

Ученик получит возможность научиться

5-6 класс

Элементы теории множеств и математической логики

Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;

задавать множества перечислением их элементов;

находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

распознавать логически некорректные высказывания




Числа

Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

использовать свойства чисел и правила действий при выполнении вычислений;

использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

выполнять округление рациональных чисел в соответствии с правилами;

сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

оценивать результаты вычислений при решении практических задач;

выполнять сравнение чисел в реальных ситуациях;

составлять числовые выражения при решении практических задач и задач из других учебных предметов












Уравнения и неравенства

Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, проверять справедливость числовых равенств и неравенств;

Статистика и теория вероятностей

Представлять данные в виде таблиц, диаграмм, графиков;

читать информацию, представленную в виде таблицы, диаграммы, графика.







Текстовые задачи

Решать несложные сюжетные задачи разных типов на все арифметические действия;

строить схематический чертёж или другую краткую запись (таблица, схема, рисунок) как модель текста задачи, в которой даны значения тройки взаимосвязанных величин, с целью поиска решения задачи;

осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию, при поиске решения задач, или от требования к условию;

составлять план процесса решения задачи;

выделять этапы решения задачи;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

решать задачи на нахождение части числа и числа по его части;

решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

выдвигать гипотезы о возможных предельных значениях числового ответа задачи (делать прикидку)















Геометрические фигуры

Оперировать на базовом уровне понятиями: фигура на плоскости и тело в пространстве, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар.

В повседневной жизни и при изучении других предметов:

решать практические задачи с применением простейших свойств фигур.



Измерения и вычисления

выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников


Построения

Изображать изучаемые плоские фигуры и объёмные тела от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

выполнять простейшие построения на местности, необходимые в реальной жизни


История математики

описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей

Элементы теории множеств и математической логики

Оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

В повседневной жизни и при изучении других предметов:

распознавать логически некорректные высказывания;

строить цепочки умозаключений на основе использования правил логики;

Числа

Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

понимать и объяснять смысл позиционной записи натурального числа;

выполнять вычисления, в том числе с использованием приёмов рациональных вычислений, обосновывать алгоритмы выполнения действий;

использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения при выполнении вычислений и решении задач, обосновывать признаки делимости;

выполнять округление рациональных чисел с заданной точностью;

упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

находить НОД и НОК и использовать их при решении задач.

оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

Уравнения и неравенства

Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство;


Статистика и теория вероятностей

Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

извлекать, информацию, представленную в таблицах, на диаграммах;

составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений

Текстовые задачи

Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

моделировать рассуждения при поиске решения задач с помощью граф-схемы;

выделять этапы решения задачи и содержание каждого этапа;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

решать разнообразные задачи «на части»,

решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов.

В повседневной жизни и при изучении других предметов:

выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

решать задачи на движение по реке, рассматривая разные системы отсчета

Геометрические фигуры

Оперировать понятиями фигура на плоскости и тело в пространстве, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар, пирамида, цилиндр, конус;

извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах.

В повседневной жизни и при изучении других предметов:

решать практические задачи с применением простейших свойств фигур

Измерения и вычисления

выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

вычислять площади прямоугольников, квадратов, объёмы прямоугольных параллелепипедов, кубов

В повседневной жизни и при изучении других предметов:

вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объёмы комнат.

Построения

Изображать изучаемые плоские фигуры и объёмные тела от руки и с помощью линейки, циркуля, компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

выполнять простейшие построения на местности, необходимые в реальной жизни;

оценивать размеры реальных объектов окружающего мира

История математики

Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей

7-9 классы

Элементы теории множеств и математической логики

Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;

задавать множества перечислением их элементов;

находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов










Числа

Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, арифметический квадратный корень;

использовать свойства чисел и правила действий при выполнении вычислений;

использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

выполнять округление рациональных чисел в соответствии с правилами;

оценивать значение квадратного корня из положительного целого числа;

распознавать рациональные и иррациональные числа;

сравнивать числа.

В повседневной жизни и при изучении других предметов:

оценивать результаты вычислений при решении практических задач;

выполнять сравнение чисел в реальных ситуациях;

составлять числовые выражения при решении практических задач и задач из других учебных предметов










Тождественные преобразования

Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

выполнять несложные преобразования дробно-линейных выражений.

В повседневной жизни и при изучении других предметов:

понимать смысл числа, записанного в стандартном виде;

оперировать на базовом уровне понятием «стандартная запись числа»


















Уравнения и неравенства

Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

проверять справедливость числовых равенств и неравенств;

решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

решать системы несложных линейных уравнений, неравенств;

проверять, является ли данное число решением уравнения (неравенства);

решать квадратные уравнения одним из способов;

изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах






















Функции

находить значение функции по заданному значению аргумента;

находить значение аргумента по заданному значению функции в несложных ситуациях;

определять положение точки по её координатам, координаты точки по её положению на плоскости;

по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значение функции;

строить график линейной функции;

проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

примерно определять координаты точки пересечения графиков функций;

оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчётом без применения формул.

В повседневной жизни и при изучении других предметов:

использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

использовать свойства линейной функции и ее график при решении задач из других учебных предметов



Статистика и теория вероятностей

Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

решать простейшие комбинаторные задачи методом прямого и организованного перебора;

представлять данные в виде таблиц, диаграмм, графиков;

читать информацию, представленную в виде таблицы, диаграммы, графика;

определять основные статистические характеристики числовых наборов;

оценивать вероятность события в простейших случаях;

иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

оценивать количество возможных вариантов методом перебора;

иметь представление о роли практически достоверных и маловероятных событий;

сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

оценивать вероятность реальных событий и явлений в несложных ситуациях







Текстовые задачи

Решать несложные сюжетные задачи разных типов на все арифметические действия;

строить схематический чертёж или другую краткую запись (таблица, схема, рисунок) как модель текста задачи, в которой даны значения тройки взаимосвязанных величин, с целью поиска решения задачи;

осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию, при поиске решения задач, или от требования к условию;

составлять план процесса решения задачи;

выделять этапы решения задачи;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

решать задачи на нахождение части числа и числа по его части;

решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

выдвигать гипотезы о возможных предельных значениях числового ответа задачи (делать прикидку)





































Геометрические фигуры

Оперировать на базовом уровне понятиями геометрических фигур;

извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;

применять для решения задач геометрические факты, если условия их применения заданы в явной форме;

решать задачи на нахождение геометрических величин по образцам или алгоритмам.

В повседневной жизни и при изучении других предметов:

использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания


Отношения

Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

В повседневной жизни и при изучении других предметов:

использовать отношения для решения простейших задач, возникающих в реальной жизни






Измерения и вычисления

Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

применять формулы периметра, площади и объёма, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;

применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

В повседневной жизни и при изучении других предметов:

вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни





Построения

Изображать типовые плоские фигуры и объёмные тела от руки и с помощью простейших снять инструментов.

В повседневной жизни и при изучении других предметов:

выполнять простейшие построения на местности, необходимые в реальной жизни









Преобразования

Строить фигуру, симметричную данной фигуре относительно оси.

В повседневной жизни и при изучении других предметов:

распознавать движение объектов в окружающем мире;

распознавать симметричные фигуры в окружающем мире









Векторы и координаты на плоскости

Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

определять приближённо координаты точки по её изображению на координатной плоскости.

В повседневной жизни и при изучении других предметов:

использовать векторы для решения простейших задач на определение скорости относительного движения










История математики

Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

понимать роль математики в развитии России

Методы математики

Применять известные методы при решении стандартных математических задач;

замечать и характеризовать математические закономерности в окружающей действительности;

приводить примеры математических закономерностей в природе, в том числе характеризующих эстетику окружающего мира и произведений искусства

Элементы теории множеств и математической логики

Оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

изображать множества и отношение множеств с помощью кругов Эйлера;

определять принадлежность элемента множеству, объединению и пересечению множеств;

задавать множество с помощью перечисления элементов, словесного описания;

оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

строить цепочки умозаключений на основе использования правил логики;

использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений

Числа

Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, квадратный корень, действительное число, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

понимать и объяснять смысл позиционной записи натурального числа;

выполнять вычисления, в том числе с использованием приёмов рациональных вычислений;

использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения при выполнении вычислений и решении задач;

выполнять округление рациональных чисел с заданной точностью;

сравнивать рациональные и иррациональные числа;

упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

находить НОД и НОК и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

записывать и округлять числовые данные реальных величин с использованием разных систем измерения

Тождественные преобразования

Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

выделять квадрат суммы и разности одночленов;

раскладывать на множители квадратный трёхчлен;

выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

выполнять преобразования выражений, содержащих квадратные корни;

выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

выполнять преобразования и действия с числами, записанными в стандартном виде;

выполнять преобразования целых выражений при решении задач других учебных предметов


Уравнения и неравенства

Оперировать понятиями: уравнение, неравенство, решение уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

решать дробно-линейные уравнения;

решать простейшие иррациональные уравнения: hello_html_3848c767.gif, hello_html_m3dd80791.gif;

решать уравнения вида hello_html_1b8ed95d.gif;

решать уравнения способом разложения на множители и замены переменной;

использовать метод интервалов для решения целых и дробно-рациональных неравенств;

решать линейные уравнения и неравенства с параметрами;

решать несложные квадратные уравнения с параметром;

решать несложные системы линейных уравнений с параметрами;

решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

составлять и решать линейные и квадратные уравнения и уравнения, к ним сводящиеся, системы линейных уравнений и неравенств при решении задач других учебных предметов;

выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

выбирать уравнения, неравенства или их системы, для составления математической модели заданной реальной ситуации или прикладной задачи;

уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи

Функции

Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, чётность/нечётность функции;

строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: hello_html_7451015c.gif, hello_html_7a338828.gif, hello_html_m3d83b40f.gif, hello_html_19d5bf3d.gif;

на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций hello_html_m146e0aa3.gif;

составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

исследовать функцию по её графику;

находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

осуществлять выбор графика реальной зависимости или процесса по его характеристикам;

использовать свойства и график квадратичной функции при решении задач из других учебных предметов

Статистика и теория вероятностей

Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

извлекать, информацию, представленную в таблицах, на диаграммах, графиках;

составлять таблицы, строить диаграммы и графики на основе данных;

оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

представлять информацию с помощью кругов Эйлера;

решать задачи на вычисление вероятности с подсчетом количества вариантов по формулам комбинаторики.

В повседневной жизни и при изучении других предметов:

извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

оценивать вероятность реальных событий и явлений.

Текстовые задачи

Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

моделировать рассуждения при поиске решения задач с помощью граф-схемы;

выделять этапы решения задачи и содержание каждого этапа;

уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

анализировать затруднения при решении задач;

выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

решать разнообразные задачи «на части»,

решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение). выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

владеть основными методами решения задач на смеси, сплавы, концентрации;

решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

решать несложные задачи по математической статистике;

овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

решать задачи на движение по реке, рассматривая разные системы отсчета

Геометрические фигуры

Оперировать понятиями геометрических фигур;

извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;

формулировать в простейших случаях свойства и признаки фигур;

доказывать геометрические утверждения

владеть стандартной классификацией плоских фигур (треугольников и четырёхугольников).

В повседневной жизни и при изучении других предметов:

использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин

Отношения

Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;

характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

использовать отношения для решения задач, возникающих в реальной жизни

Измерения и вычисления

Оперировать представлениями о длине, площади, объёме как величинами. Применять формулы площади, объёма при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объёма, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;

проводить простые вычисления на объёмных телах;

формулировать простейшие задачи на вычисление длин, площадей и объёмов и решать их.

В повседневной жизни и при изучении других предметов:

проводить вычисления на местности;

применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности

Построения

Изображать геометрические фигуры по текстовому и символьному описанию;

свободно оперировать чертёжными инструментами в несложных случаях,

выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;

изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

выполнять простейшие построения на местности, необходимые в реальной жизни;

оценивать размеры реальных объектов окружающего мира

Преобразования

Оперировать понятием движения и преобразования подобия, владеть приёмами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;

строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;

применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

применять свойства движений и применять подобие для построений и вычислений

Векторы и координаты на плоскости

Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;

выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;

применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам

История математики

Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

понимать роль математики в развитии России



Методы математики

Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

применять основные методы решения математических задач;

на основе математических закономерностей в природе, характеризовать эстетику окружающего мира и произведений искусства;

применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач


5-й класс


Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

  • как образуется каждая следующая счётная единица;

  • названия и последовательность разрядов в записи числа;

  • названия и последовательность первых трёх классов;

  • сколько разрядов содержится в каждом классе;

  • соотношение между разрядами;

  • сколько единиц каждого класса содержится в записи числа;

  • как устроена позиционная десятичная система счисления;

  • единицы измерения величин (длина, масса, время, площадь), соотношения между ними;

  • десятичных дробях и правилах действий с ними;

- сравнивать десятичные дроби;

  • выполнять операции над десятичными дробями;

  • преобразовывать десятичную дробь в обыкновенную и наоборот;

  • округлять целые числа и десятичные дроби;

  • находить приближённые значения величин с недостатком и избытком;

  • выполнять приближённые вычисления и оценку числового выражения;


  • функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).

Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

  • выполнять умножение и деление с 1000;

  • вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;

  • решать простые и составные текстовые задачи;

  • выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

  • находить вероятности простейших случайных событий;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

  • строить простейшие линейные, столбчатые и круговые диаграммы;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

6-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • раскладывать натуральное число на простые множители;

  • находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;

- отношениях и пропорциях; основном свойстве пропорции;

  • прямой и обратной пропорциональных зависимостях и их свойствах;

  • процентах;

  • целых и дробных отрицательных числах; рациональных числах;

  • правиле сравнения рациональных чисел;

  • правилах выполнения операций над рациональными числами; свойствах операций.

  • делить число в данном отношении;

  • находить неизвестный член пропорции;

  • находить данное количество процентов от числа и число по известному количеству процентов от него;

  • находить, сколько процентов одно число составляет от другого;

  • увеличивать и уменьшать число на данное количество процентов;

  • решать текстовые задачи на отношения, пропорции и проценты;

  • сравнивать два рациональных числа;

  • выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;

  • решать комбинаторные задачи с помощью правила умножения;

  • находить вероятности простейших случайных событий;

  • решать простейшие задачи на осевую и центральную симметрию;

  • решать простейшие задачи на разрезание и составление геометрических фигур;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


7-й класс.

Алгебра


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • натуральных, целых, рациональных, иррациональных, действительных числах;

  • степени с натуральными показателями и их свойствах;

  • одночленах и правилах действий с ними;

  • многочленах и правилах действий с ними;

  • формулах сокращённого умножения;

  • тождествах; методах доказательства тождеств;

  • линейных уравнениях с одной неизвестной и методах их решения;

  • системах двух линейных уравнений с двумя неизвестными и методах их решения.

  • Выполнять действия с одночленами и многочленами;

  • узнавать в выражениях формулы сокращённого умножения и применять их;

  • раскладывать многочлены на множители;

  • выполнять тождественные преобразования целых алгебраических выражений;

  • доказывать простейшие тождества;

  • находить число сочетаний и число размещений;

  • решать линейные уравнения с одной неизвестной;

  • решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;

  • решать текстовые задачи с помощью линейных уравнений и систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


7-й класс.

Геометрия


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;

  • определении угла, биссектрисы угла, смежных и вертикальных углов;

  • свойствах смежных и вертикальных углов;

  • определении равенства геометрических фигур; признаках равенства треугольников;

  • геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;

  • определении параллельных прямых; признаках и свойствах параллельных прямых;

  • аксиоме параллельности и её краткой истории;

  • формуле суммы углов треугольника;

  • определении и свойствах средней линии треугольника;

  • теореме Фалеса.

  • Применять свойства смежных и вертикальных углов при решении задач;

  • находить в конкретных ситуациях равные треугольники и доказывать их равенство;

  • устанавливать параллельность прямых и применять свойства параллельных прямых;

  • применять теорему о сумме углов треугольника;

  • использовать теорему о средней линии треугольника и теорему Фалеса при решении задач;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


8-й класс.

Алгебра


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • алгебраической дроби; основном свойстве дроби;

  • правилах действий с алгебраическими дробями;

  • степенях с целыми показателями и их свойствах;

  • стандартном виде числа;

  • функциях hello_html_m32d1edc9.gif, hello_html_m5058ae9b.gif, hello_html_23768637.gif, их свойствах и графиках;

  • понятии квадратного корня и арифметического квадратного корня;

  • свойствах арифметических квадратных корней;

  • функции hello_html_58f5fa8d.gif, её свойствах и графике;

  • формуле для корней квадратного уравнения;

  • теореме Виета для приведённого и общего квадратного уравнения;

  • основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;

  • методе решения дробных рациональных уравнений;

  • основных методах решения систем рациональных уравнений.

  • Сокращать алгебраические дроби;

  • выполнять арифметические действия с алгебраическими дробями;

  • использовать свойства степеней с целыми показателями при решении задач;

  • записывать числа в стандартном виде;

  • выполнять тождественные преобразования рациональных выражений;

  • строить графики функций hello_html_m32d1edc9.gif, hello_html_m5058ae9b.gif, hello_html_23768637.gif и использовать их свойства при решении задач;

  • вычислять арифметические квадратные корни;

  • применять свойства арифметических квадратных корней при решении задач;

  • строить график функции hello_html_58f5fa8d.gif и использовать его свойства при решении задач;

  • решать квадратные уравнения;

  • применять теорему Виета при решении задач;

  • решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;

  • решать дробные уравнения;

  • решать системы рациональных уравнений;

  • решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


8-й класс.

Геометрия


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;

  • определении трапеции; элементах трапеции; теореме о средней линии трапеции;

  • определении окружности, круга и их элементов;

  • теореме об измерении углов, связанных с окружностью;

  • определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;

  • определении вписанной и описанной окружностей, их свойствах;

  • определении тригонометрические функции острого угла, основных соотношений между ними;

  • приёмах решения прямоугольных треугольников;

  • тригонометрических функциях углов от 0 до 180°;

  • теореме косинусов и теореме синусов;

  • приёмах решения произвольных треугольников;

  • формулах для площади треугольника, параллелограмма, трапеции;

  • теореме Пифагора.

  • Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;

  • решать простейшие задачи на трапецию;

  • находить градусную меру углов, связанных с окружностью; устанавливать их равенство;

  • применять свойства касательных к окружности при решении задач;

  • решать задачи на вписанную и описанную окружность;

  • выполнять основные геометрические построения с помощью циркуля и линейки;

  • находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;

  • применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;

  • решать прямоугольные треугольники;

  • сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;

  • применять теорему косинусов и теорему синусов при решении задач;

  • решать произвольные треугольники;

  • находить площади треугольников, параллелограммов, трапеций;

  • применять теорему Пифагора при решении задач;

  • находить простейшие геометрические вероятности;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



9-й класс.

Алгебра


Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • свойствах числовых неравенств;

  • методах решения линейных неравенств;

  • свойствах квадратичной функции;

  • методах решения квадратных неравенств;

  • методе интервалов для решения рациональных неравенств;

  • методах решения систем неравенств;

  • свойствах и графике функцииhello_html_m1baf31d2.gif при натуральном n;

  • определении и свойствах корней степени n;

  • степенях с рациональными показателями и их свойствах;

  • определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.

  • Использовать свойства числовых неравенств для преобразования неравенств;

  • доказывать простейшие неравенства;

  • решать линейные неравенства;

  • строить график квадратичной функции и использовать его при решении задач;

  • решать квадратные неравенства;

  • решать рациональные неравенства методом интервалов;

  • решать системы неравенств;

  • строить график функцииhello_html_m1baf31d2.gif при натуральном n и использовать его при решении задач;

  • находить корни степени n;

  • использовать свойства корней степени n при тождественных преобразованиях;

  • находить значения степеней с рациональными показателями;

  • решать основные задачи на арифметическую и геометрическую прогрессии;

  • находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.


9-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • признаках подобия треугольников;

  • теореме о пропорциональных отрезках;

  • свойстве биссектрисы треугольника;

  • пропорциональных отрезках в прямоугольном треугольнике;

  • пропорциональных отрезках в круге;

  • теореме об отношении площадей подобных многоугольников;

  • свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;

  • определении длины окружности и формуле для её вычисления;

  • формуле площади правильного многоугольника;

  • определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;

  • правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;

  • определении координат вектора и методах их нахождения;

  • правиле выполнений операций над векторами в координатной форме;

  • определении скалярного произведения векторов и формуле для его нахождения;

  • связи между координатами векторов и координатами точек;

  • векторным и координатным методах решения геометрических задач.

  • формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.

  • Применять признаки подобия треугольников при решении задач;

  • решать простейшие задачи на пропорциональные отрезки;

  • решать простейшие задачи на правильные многоугольники;

  • находить длину окружности, площадь круга и его частей;

  • выполнять операции над векторами в геометрической и координатной форме;

  • находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;

  • решать геометрические задачи векторным и координатным методом;

  • применять геометрические преобразования плоскости при решении геометрических задач;

  • находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



V. Содержание учебного предмета «Математика»



АРИФМЕТИКА 240ч.


Натуральные числа. Натуральный ряд. Десятичная сис­тема счисления. Арифметические действия с натуральными числами. Свойства арифметических действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. По­рядок действий в числовых выражениях, использование ско­бок. Решение текстовых задач арифметическими способами.

Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичные дроби. Сравнение десятичных дробей. Ариф­метические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновен­ной в виде десятичной.

Проценты; нахождение процентов от величины и величи­ны по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел.

Множество рациональных чисел; рациональное число как отношение hello_html_6809f247.gif, где


m — целое число, n — натуральное число. Сравнение рацио­нальных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с це­лым показателем.

Действительные числа. Квадратный корень из числа. Ко­рень третьей степени.

Понятие об иррациональном числе. Иррациональность числа hello_html_1caef8ee.gif и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действи­тельных чисел в виде бесконечных десятичных дробей. Срав­нение действительных чисел.

Координатная прямая. Изображение чисел точками коор­динатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение мно­жителя — степени 10 — в записи числа.

Приближенное значение величины, точность приближе­ния. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.



АЛГЕБРА 200ч.


Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и ее свойства. Одно­члены и многочлены. Степень многочлена. Сложение, вычи­тание, умножение многочленов. Формулы сокращенного умно­жения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разло­жение квадратного трехчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраи­ческих дробей. Степень с целым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказа­тельство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выра­жений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень урав­нения. Свойства числовых равенств. Равносильность уравнений.

Линейное уравнение. Квадратное уравнение: формула кор­ней квадратного уравнения. Теорема Виета. Решение урав­нений, сводящихся к линейным и квадратным. Примеры ре­шения уравнений третьей и четвертой степени. Решение дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с дву­мя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя перемен­ными; решение подстановкой и сложением. Примеры реше­ния систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интер­претация уравнения с двумя переменными. График линейно­го уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простей­ших нелинейных уравнений: парабола, гипербола, окруж­ность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства.

Неравенство с одной переменной. Равносильность нера­венств. Линейные неравенства с одной переменной. Квадрат­ные неравенства. Системы неравенств с одной переменной.


ФУНКЦИИ 65ч.


Основные понятия. Зависимости между величинами. Представление зависимостей формулами. Понятие функции.

Область определения и множество значений функции. Спосо­бы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства. Квадра­тичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства.

Графики функций hello_html_m2e2cb7a0.gif, у =hello_html_662b5178.gif, у = |х|.

Числовые последовательности. Понятие числовой по­следовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметиче­ской и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА 50ч.


Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Ста­тистические характеристики набора данных: среднее арифме­тическое, медиана, наибольшее и наименьшее значения, раз­мах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о слу­чайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и не­возможные события. Равновозможность событий. Классиче­ское определение вероятности.

Комбинаторика. Решение комбинаторных задач перебо­ром вариантов. Комбинаторное правило умножения. Переста­новки и факториал.

ГЕОМЕТРИЯ 255ч.


Наглядная геометрия. Наглядные представления о фигу­рах на плоскости: прямая, отрезок, луч, угол, ломаная, мно­гоугольник, окружность, круг. Четырехугольник, прямоуголь­ник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаим­ное расположение двух прямых, двух окружностей, прямой и окружности.

Длина отрезка, ломаной. Периметр многоугольника. Еди­ницы измерения длины. Измерение длины отрезка, построе­ние отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновели­кие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры се­чений. Многогранники. Правильные многогранники. Приме­ры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зе­ркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикуляр­ные прямые. Теоремы о параллельности и перпендикулярно­сти прямых. Перпендикуляр и наклонная к прямой. Середин­ный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольни­ки; свойства и признаки равнобедренного треугольника. Приз­наки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сум­ма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треуголь­ников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных тре­угольников. Основное тригонометрическое тождество. Форму­лы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и те­орема синусов. Замечательные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и призна­ки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Централь­ный угол, вписанный угол; величина вписанного угла. Взаим­ное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в тре­угольник, и окружность, описанная около треугольника. Впи­санные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фи­гур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Решение задач на вычисление, доказательство и построе­ние с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллель­ными прямыми.

Периметр многоугольника.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной цен­трального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь много­угольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с исполь­зованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоско­сти. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.


ЛОГИКА И МНОЖЕСТВА 10ч.


Теоретико-множественные понятия. Множество, эле­мент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Определение. Аксиомы и теоремы. До­казательство. Доказательство от противного. Теорема, обрат­ная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление ло­гических связок если ..., то в том и только в том слу­чае, логические связки и, или.


МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ.


(Содержание раздела вводится по мере изучения других вопросов.)

История формирования понятия числа: натуральные чи­сла, дроби, недостаточность рациональных чисел для геомет­рических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. От­крытие десятичных дробей. Старинные системы мер. Десятич­ные дроби и метрическая система мер. Появление отрицатель­ных чисел и нуля. J1. Магницкий. JT. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Де­карт. История вопроса о нахождении формул корней алгебраи­ческих уравнений, неразрешимость в радикалах уравнений степени, большей четырех. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Фер­ма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные иг­ры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение с помощью циркуля и линейки. Пост­роение правильных многоугольников. Трисекция угла. Квад­ратура круга. Удвоение куба. История числа я. Золотое сече­ние. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата.

Софизмы, парадоксы.

Резерв времени — 55 ч



Содержание учебного предмета

Математика


Уровень обучения:  базовый.

Формы организации учебного процесса:

 индивидуальные, групповые, фронтальные,

 классные и внеклассные.

Формы контроля:

самостоятельная работа, математический диктант,  контрольная работа, устный опрос, письменный опрос, тестирование, практическая работа, индивидуальные задания, решение задач.

Система оценивания: традиционная.


Содержание  учебного курса по математике  для 5 класса

   


5 часов в неделю, всего 175 часов.

Контрольных работ 14

Содержание


1. Натуральные числа и шкалы. 15 часов

Обозначение и сравнение натуральных чисел. Отрезок. Длина отрезка. Треугольник. Плоскость. Прямая. Луч. Шкалы и координаты. Линейные диаграммы. Решение комбинаторных задач.

Основная цель. Систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков. Ввести понятие координатного луча, единичного отрезка и координаты точки. Формировать умение строить координатный луч и отмечать на нем заданные числа, называть число, соответствующее данному делению на координатном луче. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа № 1 по теме: «Натуральные числа и шкалы».




2. Сложение и вычитание натуральных чисел. 21 часов

Сложение и вычитание натуральных чисел, их свойства. Числовые и буквенные выражения. Решение линейных уравнений. Решение комбинаторных задач.

Основная цель. Закрепить и развить навыки сложения и вычитания натуральных чисел. Начинать алгебраическую подготовку: составление буквенных выражений по условию задачи, решение уравнений на основе зависимости между компонентами действий. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа № 2 по теме: «Сложение и вычитание натуральных чисел».

Контрольная работа № 3 по теме: «Уравнение».



3. Умножение и деление натуральных чисел. 27 часа

Умножение и деление натуральных чисел, свойства умножения. Упрощение выражений. Порядок выполнения действий. Квадрат и куб числа. Систематизация и подсчет имеющихся данных в виде частотных таблиц и диаграмм. Решение текстовых задач.

Основная цель. Закрепить и развить навыки арифметических действий с натуральными числами. Ввести понятия квадрата и куба числа. Совершенствовать навыки по решению уравнений на основе зависимости между компонентами действий. Развивать умение решать текстовые задачи. Познакомить с решением задач с помощью уравнений. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа № 4 по теме: «Умножение и деление натуральных чисел».

Контрольная работа №5 по теме «Упрощение выражений».



4. Площади и объёмы. 12 часов

Вычисления по формулам. Площадь. Площадь прямоугольника. Единицы измерения площадей. Столбчатые диаграммы. Прямоугольный параллелепипед. Объемы. Объем прямоугольного параллелепипеда.

Основная цель. Расширить представления учащихся об измерении геометрических величин на примере вычисления площадей и объёмов и систематизировать известные им сведения о единицах измерения. Отрабатывать навыки вычисления по формулам при решении геометрических задач. Формировать знания основных единиц измерения и умения перейти от одних единиц к другим в соответствии с условием задачи. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа №6 по теме «Площади и объемы».


5. Обыкновенные дроби. 25  часов

Окружность и круг. Обыкновенные дроби. Нахождение части от целого и целого по его части. Сравнение, сложение и вычитание обыкновенных дробей с одинаковыми знаменателями. Смешанные числа. Сложение и вычитание смешанных чисел. Практическая работа по сбору, организации и подсчету данных. Решение комбинаторных задач.

Основная цель. Познакомить учащихся с понятием дроби в объёме, достаточном для введения десятичных дробей. Формировать умения сравнивать дроби с одинаковыми знаменателями; выделять целую часть неправильной дроби; решать три основные задачи на дроби. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа № 7 по теме: «Обыкновенные дроби».

Контрольная работа №8 по теме: «Сложение и вычитание дробей с одинаковыми знаменателями».


6. Десятичные дроби. Сложение и вычитание десятичных дробей. 13 часов

Десятичная дробь. Сравнение, округление, сложение и вычитание десятичных дробей. Решение комбинаторных задач. Решение текстовых задач.

Основная цель. Выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей. Вырабатывать умение решать текстовые задачи. Ввести понятие приближенного значения числа. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа № 9 по теме: «Десятичные дроби. Сложение и вычитание десятичных дробей».



7. Умножение и деление десятичных дробей. 26 часа

Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач. Решение комбинаторных задач. Среднее значение и мода как характеристики совокупности числовых данных.

Основная цель. Выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа №10 по теме «Умножение и деление десятичных дробей на натуральные числа».

Контрольная работа № 11 по теме: «Умножение и деление десятичных дробей».


8. Инструменты для вычислений и измерений. 17 часов

Начальные сведения о вычислениях на калькуляторе. Проценты. Нахождение процента от величины, величины по ее проценту. Угол. Треугольник. Величина угла. Единицы измерения углов. Измерение углов. Построение угла заданной величины. Круговые диаграммы. Решение комбинаторных задач.

Основная цель. Сформировать умения решать простейшие задачи на проценты, выполнять построение и измерение углов. Продолжать работу по распознаванию и изображению геометрических фигур. Познакомить с круговыми диаграммами. Научить использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Контрольная работа № 12по теме: «Проценты».

Контрольная работа № 13 по теме: «Инструменты для вычислений и измерений».

9. Итоговое повторение. 15 часов

Основная цель. Повторить, закрепить, обобщить основные ЗУН, полученные в 5 классе.

Контрольная работа №14 ( Итоговая работа за курс 5 класса). 



Описательная статистика. Вероятность. Комбинаторика.

(Содержание раздела вводится по мере изучения других вопросов.)

Представление данных в виде таблиц, диаграмм. Представление о выборочном исследовании.

Решение комбинаторных задач перебо­ром вариантов. Переста­новки и факториал.

Примеры решения комбинаторных задач: перебор вариантов, перестановки, факториал.

В ходе изучения темы обучающиеся должны

Знать:

- понятия вероятности, среднего арифметического, моды, факториала.

Уметь:

-извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшее и наименьшее значения и др.

- выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ

-выбирать комбинации, отвечающие заданным условиям,

- решать простейшие комбинаторные задачи




6 класс

5 часов в неделю, всего 175 часов.

Контрольных работ 14


Содержание


1. Делимость чисел – 18 часов.

Делители и кратные. Признаки делимости на 10, на 5, и на 2. Признаки делимости на 9 и на 3. Простые и составные числа. Разложение на простые множители. Наибольший общий делитель, Взаимно простые числа. Наименьшее общее кратное.

В ходе изучения темы обучающиеся должны:

  Знать

- определение кратного и делителя натурального числа

- признаки делимости на 2, на 3, на 5, на 9, на 10

- определение простых и составных чисел

- определение наибольшего общего делителя, наименьшего общего кратного и взаимно простых чисел

Уметь

- находить делители и кратные натуральных чисел

- узнавать по записи натурального числа делиться ли оно без остатка на 2, на 3, на 5, на 9,

на 10

- раскладывать числа на простые множители

- находить наибольший общий делитель и наименьшее общее кратное двух и более чисел.

Контрольная работа №1 по теме «Делимость чисел».  


2. Сложение и вычитание дробей с разными знаменателями – 19 часа.

Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Сравнение, сложение и вычитание дробей с разными знаменателями. Сложение и вычитание смешанных чисел.

В ходе изучения темы обучающиеся должны

Знать

- основное свойство дроби

- определение несократимой дроби и сокращением дробей

- алгоритм приведения дробей к общему знаменателю

- правила сравнения, сложения, вычитания дробей с разными знаменателями, сложения и вычитания смешанных чисел

Уметь

- сокращать дроби

- находить дополнительный множитель к дроби, приводить дроби к общему знаменателю

- сравнивать, складывать, вычитать дроби с разными знаменателями

- складывать и вычитать смешанные числа  

Контрольная работа №2 по теме: «Сложение и вычитание дробей с разными знаменателями».

Контрольная работа №3 по теме: «Сложение и вычитание смешанных чисел».


3. Умножение и деление обыкновенных дробей – 28 часов.

Умножение дробей. Нахождение дроби от числа. Применение распределительного свойства умножения. Взаимно обратные числа. Деление. Нахождение числа по его дроби. Дробные выражения.

В ходе изучения темы обучающиеся должны:

Знать

- правила умножения на натуральное число, двух дробей

- свойства умножения дробей

- правила нахождения дроби от числа и числа по его дроби

- определение взаимно обратных чисел

- определение дробных выражений

Уметь

- умножать дробь на натуральное число и дробь на дробь

- применять распределительное свойство умножения при нахождении значений выражений

- записывать числа обратные дроби, натуральному числу, смешанному числу

- выполнять деление смешанных чисел

- находить дроби от числа и числа по его дроби

Контрольная работа №4 по теме: «Умножение дробей».

Контрольная работа №5 по теме: «Деление дробей».

4. Отношения и пропорции – 14 часа.

Отношения. Пропорции. Прямая и обратная пропорциональные зависимости. Масштаб. Длина окружности и площадь круга. Шар.

  В ходе изучения темы обучающиеся должны:

 Знать

- определение отношений, пропорции

- названия членов пропорции

- формулировку основного свойства пропорции

- определения прямо пропорциональных и обратно пропорциональных величин

- что такое масштаб

- формулы для нахождения длины окружности и площади круга

- определения радиуса шара, диаметра шара, сферы

Уметь

- находить, какую часть одно число составляет от другого, сколько процентов одно число составляет от другого

- применять основное свойство пропорции при решении задач и уравнений

- приводить примеры прямо пропорциональных и обратно пропорциональных величин

- находить по формулам площадь круга и длину окружности

Контрольная работа №6 по теме: «Отношения и пропорции».

Контрольная работа №7 по теме: «Масштаб. Длина окружности. Площадь круга».


5. Положительные и отрицательные числа – 14 часов.

  Координаты на прямой. Противоположные числа. Модуль числа. Сравнение чисел. Изменение величин.

 В ходе изучения темы обучающиеся должны:

Знать

- определения координатной прямой, координаты точки на прямой

- какие числа называются противоположными, целыми

- определение модуля числа и его обозначение

- алгоритм сравнения положительных и отрицательных чисел

Уметь

- отмечать точки с заданными координатами на горизонтальных и вертикальных прямых

- находить числа противоположные данным

- находить модуль положительного, отрицательного чисел

- сравнивать положительные и отрицательные числа

Контрольная работа №8 по теме: «Положительные и отрицательные числа».


6. Сложение и вычитание положительных и отрицательных чисел – 12 часов.

  Сложение чисел с помощью координатной прямой. Сложение отрицательных чисел. Сложение чисел с разными знаками. Вычитание.

В ходе изучения темы обучающиеся должны:

Знать

- алгоритм сложения чисел с помощью координатной прямой

- правила сложения отрицательных чисел и чисел с разными знаками

- что означает вычитание отрицательных чисел и каким действием можно заменить вычитание одного числа из другого

 Уметь

- складывать числа с помощью координатной прямой

- выполнять сложение отрицательных чисел и чисел с разными знаками

- вычитать из данного числа другое число

Контрольная работа №9 по теме: «Сложение и вычитание положительных и отрицательных чисел».


7. Умножение и деление положительных и отрицательных чисел -18 часов.

   Умножение. Деление. Рациональные числа. Свойства действий с рациональными числами.

 В ходе изучения темы обучающиеся должны:

 Знать

- правило умножения двух чисел с разными знаками и двух отрицательных чисел

- правило деления отрицательного числа на отрицательное и правило деления чисел, имеющих разные знаки

- определение рациональных чисел

- свойства сложения и умножения рациональных чисел

 Уметь

 - умножать числа с разными знаками и отрицательные числа

- делить отрицательное число на отрицательное

- делить числа с разными знаками

- представлять рациональное число в виде десятичной дроби, либо в виде периодической дроби

- применять свойства действий с рациональными числами при нахождении значений выражений

Контрольная работа №10 по теме: «Умножение и деление положительных и отрицательных чисел».


8. Решение уравнений – 16 часов.

  Раскрытие скобок. Коэффициент. Подобные слагаемые. Решение уравнений.

 В ходе изучения темы обучающиеся должны:

Знать

- правила раскрытия скобок

- определение числового коэффициентом выражения

- определение подобных слагаемых

- алгоритм решения линейных уравнений

Уметь

- упрощать выражения с применением правил раскрытия скобок

- уметь приводить подобные слагаемые

- решать линейные уравнения

Контрольная работа №11 по теме: «Раскрытие скобок. Подобные слагаемые»

Контрольная работа №12 по теме: «Решение уравнений».


9. Координаты на плоскости – 14 часов.

  Перпендикулярные прямые. Параллельные прямые. Координатная плоскость. Столбчатые диаграммы. Графики.

 В ходе изучения темы обучающиеся должны:

Знать

- определения перпендикулярных и параллельных прямых

- определение координатной плоскости, осей абсцисс и ординат

Уметь

- строить перпендикулярные и параллельные прямые с помощью чертёжного треугольника и транспортира

- изображать точки с заданными координатами на координатной плоскости

- определять координаты точки

- строить столбчатые диаграммы

- строить простейшие графики

Контрольная работа №13 по теме: «Координаты на плоскости».



10. Итоговое повторение – 17 часов.

После повторения изученного материала проводится  

итоговая контрольная работа №14.


Описательная статистика. Вероятность. Комбинаторика..

(Содержание раздела вводится по мере изучения других вопросов.)

Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов. 

Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

В ходе изучения темы обучающиеся должны

Знать:

- понятие вероятности, правило умножения.

Уметь:

-выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных задач;

-приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий;

-строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др.

-выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комби­нации, отвечающие заданным условиям.

Резерв времени- 5ч.













7 класс

МАТЕМАТИКА

АЛГЕБРА

3 часа в неделю, всего 102 часа.

Контрольных работ 10




1. Выражения, тождества, уравнения (22 часа).

Числовые выражения с переменными. Простейшие преобразо­вания выражений. Уравнение, корень уравнения. Линейное урав­нение с одной переменной. Решение текстовых задач методом со­ставления уравнений. Статистические характеристики.

Основная цель — систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навы­ков вычислений должно уделяться серьезное внимание и в даль­нейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выра­жений расширяются сведения о неравенствах: вводятся знаки неравенств, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводят­ся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание кото­рых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчер­кивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащи­мися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется реше­нию уравнений вида ах = b при различных значениях а и b. Про­должается работа по формированию у учащихся умения исполь­зовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Изучение темы завершается ознакомлением учащихся с про­стейшими статистическими характеристиками: средним арифме­тическим, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в не­сложных ситуациях.

Контрольных работ: 2



2. Функции (12 часов)

Функция, область определения функции. Вычисление значе­ний функции по формуле. График функции. Прямая пропорцио­нальность и ее график. Линейная функция и ее график.

Основная цель — ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорцио­нальности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие по­нятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной пе­ременной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значе­ние функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.

Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой про­порциональности. Умения строить и читать графики этих функ­ций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у = kх, где и k0, как зависит от зна­чений k и b взаимное расположение графиков двух функций вида у = kх + b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функ­ций сопровождаются рассмотрением примеров реальных зависи­мостей между величинами, что способствует усилению приклад­ной направленности курса алгебры.

Контрольных работ: 1



3. Степень с натуральным показателем (13 часов)

Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.

Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.

В данной теме дается определение степени с натуральным по­казателем. В курсе математики б класса учащиеся уже встреча­лись с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств степени учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материа­ле. Свойства степени с натуральным показателем на­ходят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций у = х2, у = х3 позволяет продолжить работу по формированию умений строить и читать графики функ­ций. Важно обратить внимание учащихся на особенности графи­ка функции у = х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций у = х2 и у = х3 использует­ся для ознакомления учащихся с графическим способом решения уравнений.

Контрольных работ: 1



4. Многочлены (17 часов)

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

Основная цель — выработать умение выполнять сложе­ние, вычитание, умножение многочленов и разложение много­членов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное ме­сто в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны по­нимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вы­читания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. По­этому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению мно­гочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преоб­разования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональ­ными дробями.

В данной теме учащиеся встречаются с примерами использо­вания рассматриваемых преобразований при решении разнооб­разных задач, в частности при решении уравнений. Это позволя­ет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются неслож­ные задания на доказательство тождества.

Контрольных работ: 2


5. Формулы сокращенного умножения (18 часов)

Формулы (а + b)2 = а2 ± b + b2, (а ± b)3 = а3 ± За2b + Заb2 ± b3, (а ± b) (а2 + аb + b2) = а3 ±b3. Применение формул сокращенного умножения в преобразованиях выражений.

Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у уча­щихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам - b) (а + b) = а2 - b2, (а ± b)2 = а2 ± 2аb + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

Наряду с указанными рассматриваются также формулы ± b)3 = а3± За2b + Заb2 ± b3, а3 ± b3 = (а ± b) (а2 + аb + b2). Одна­ко они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использо­вание.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

Контрольных работ: 2


6. Системы линейных уравнений (14часов)

Система уравнений. Решение системы двух линейных урав­нений с двумя переменными и его геометрическая интерпрета­ция. Решение текстовых задач методом составления систем урав­нений.

Основная цель — ознакомить учащихся со способом ре­шения систем линейных уравнений с двумя переменными, выра­ботать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматри­ваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравне­ние с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя пе­ременными в целых числах.

Формируется умение строить график уравнения а + bу = с, где а ≠ 0 или b ≠ 0, при различных значениях а, b, с. Введение гра­фических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя пе­ременными.

Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает про­цесс перевода данных задачи с обычного языка на язык уравнений.

Контрольных работ: 1


7. Повторение (6 часов)

Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 7 классе.

ГЕОМЕТРИЯ

2 часа в неделю, всего 68 часов

Контрольных работ 5


1. Начальные геометрические сведения (11 часов)

Простейшие геометрические фигуры: прямая, точка, отре­зок, луч, угол. Понятие равенства геометрических фигур. Срав­нение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Основная цель — систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе нагляд­ных представлений учащихся путем обобщения очевидных или известных из курса математики 1—6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вво­дится, и сами аксиомы не формулируются в явном виде. Необхо­димые исходные положения, на основе которых изучаются свой­ства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение по­нятия равенства геометрических фигур на основе наглядного
понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Контрольных работ: 1


2. Треугольники (18 часов)

Треугольник. Признаки равенства треугольников. Перпенди­куляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построе­ние с помощью циркуля и линейки.

Основная цель — ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изучен­ных признаков; ввести новый класс задач — на построение с по­мощью циркуля и линейки.

Признаки равенства треугольников являются основным рабо­чим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснова­ние их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников. Применение призна­ков равенства треугольников при решении задач дает возмож­ность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения при­знаков равенства треугольников целесообразно использовать за­дачи с готовыми чертежами.

Контрольных работ: 1



3. Параллельные прямые (12 часов)

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель — ввести одно из важнейших понятий — понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксио­му параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широ­ко используются в дальнейшем при изучении четырехугольни­ков, подобных треугольников, при решении задач, а также в кур­се стереометрии.

Контрольных работ: 1



4. Соотношения между сторонами и углами треугольника (18 часов)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоуголь­ные треугольники, их свойства и признаки равенства. Расстоя­ние от точки до прямой. Расстояние между параллельными пря­мыми. Построение треугольника по трем элементам.

Основная цель — рассмотреть новые интересные и важ­ные свойства треугольников.

В данной теме доказывается одна из важнейших теорем гео­метрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводит­ся на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограни­читься только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутство­вать лишь тогда, когда это оговорено условием задачи.

Контрольных работ: 2


5. Повторение. Решение задач (9 ч.)
















8 класс


АЛГЕБРА

3 часа в неделю, всего 102 часа

Контрольных работ 10


1. Рациональные дроби (22 часа) I

Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция hello_html_1e6089d1.gif и ее график.

Основная цель — выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем буду усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел. Изучение темы завершается рассмотрением свойств графика функции hello_html_1e6089d1.gif.

Контрольных работ: 2


2. Квадратные корни (18 часов) I

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция hello_html_12a5f84e.gif, ее свойства и график.

Основная цель — систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивно представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рацио­нальных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных кор­ней. Доказываются теоремы о корне из произведения и дроби, а также тождество hello_html_m1a614d35.gif, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Спе­циальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида hello_html_m1e244cc4.gif. Умение преобразовывать выражения, содержащие корни, часто использу­ется как в самом курсе алгебры, так и в курсах геометрии, алгеб­ры и начал анализа.

Продолжается работа по развитию функциональных представ­лений учащихся. Рассматриваются функция hello_html_12a5f84e.gif, ее свойства и график. При изучении функции hello_html_12a5f84e.gif показывается ее взаи­мосвязь с функцией у = х2, где х ≥ 0.

Контрольных работ: 2


3. Квадратные уравнения (21 час)

Квадратное уравнение. Формула корней квадратного уравне­ния. Решение рациональных уравнений. Решение задач, приво­дящих к квадратным уравнениям и простейшим рациональным уравнениям.

Основная цель — выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квад­ратных уравнений. Этот материал систематизируется. Рассматри­ваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а ≠ 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выра­жающими связь между корнями квадратного уравнения и его ко­эффициентами. Они используются в дальнейшем при доказатель­стве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональ­ных уравнений, который состоит в том, что решение таких урав­нений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить ап­парат уравнений, используемых для решения текстовых задач.

Контрольных работ: 2


4. Неравенства (20 час)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность при­ближения. Линейные неравенства с одной переменной и их сис­темы.

Основная цель — ознакомить учащихся с применение: неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы. Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Т ремы о почленном сложении и умножении неравенств находить применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности. Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменно: дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решат простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

Контрольных работ: 2


5. Степень с целым показателем. Элементы статистики (11 часов)

Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Основная цель — выработать умение применять свойств, степени с целым показателем в вычислениях и преобразованиях сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других об­ластях знаний.

Учащиеся получают начальные представления об организа­ции статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Учащимся предлагаются задания на нахож­дение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информа­ции. Известные учащимся способы наглядного представления статистических данных с помощью столбчатых и круговых диа­грамм расширяются за счет введения таких понятий, как поли­гон и гистограмма.

Контрольных работ: 1


6. Повторение (10 часов)

Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 8 классе.

Контрольных работ: 1

ГЕОМЕТРИЯ

2 часа в неделю, всего 68 часов

Контрольных работ 5

1. Четырехугольники (14 часов)

Многоугольник, выпуклый многоугольник, четырехуголь­ник. Параллелограмм, его свойства и признаки. Трапеция. Пря­моугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Основная цель — изучить наиболее важные виды четы­рехугольников — параллелограмм, прямоугольник, ромб, квад­рат, трапецию; дать представление о фигурах, обладающих осе­вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства тре­угольников, поэтому полезно их повторить в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразо­вание плоскости, а как свойства геометрических фигур, в част­ности четырехугольников. Рассмотрение этих понятий как дви­жений плоскости состоится в 9 классе.

Контрольных работ: 1


2. Площадь (14 часов)

Понятие площади многоугольника. Площади прямоуголь­ника, параллелограмма, треугольника, трапеции. Теорема Пи­фагора.

Основная цель — расширить и углубить полученные в 5—6 классах представления учащихся об измерении и вычисле­нии площадей; вывести формулы площадей прямоугольника, па­раллелограмма, треугольника, трапеции; доказать одну из глав­ных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квад­рата, обоснование которой не является обязательным для уча­щихся.

Нетрадиционной для школьного курса является теорема об от­ношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство призна­ков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади.

Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Контрольных работ: 1


3. Подобные треугольники (19 часов)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Основная цель — ввести понятие подобных треугольни­ков; рассмотреть признаки подобия треугольников и их примене­ния; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорцио­нальность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных от­резках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — си­нус, косинус и тангенс острого угла прямоугольного треуголь­ника.

Контрольных работ: 2


4. Окружность (16 часов)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Основная цель — расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, свя­занные с окружностью; познакомить учащихся с четырьмя заме­чательными точками треугольника.

В данной теме вводится много новых понятий и рассматрива­ется много утверждений, связанных с окружностью. Для их усво­ения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах бис­сектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения сере­динных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треуголь­ник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного че­тырехугольника.

Контрольных работ: 1



5. Повторение. Решение задач (6 часов)


Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 8 классе.


9 класс

3 часа в неделю, всего 102 часа

Контрольных работ 8

АЛГЕБРА


1. Свойства функций. Квадратичная функция (22 часа)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + Ьх + с, ее свойства и график. Степенная функция.

Основная цель — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции. I

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область опре­деления функции, график. Даются понятия о возрастании и убы­вании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + b, у = а (х - m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = ах2 + Ьх + с может быть получен из графика функции у = ах2 с помощью двух па­раллельных переносов. Приемы построения графика функции y = ах2 + Ьх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащих­ся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функ­ции, а также промежутки, в которых функция сохраняет знак.

Учащиеся знакомятся со свойствами степенной функции у = хп при четном и нечетном натуральном показателе п. Вводит­ся понятие корня га-й степени. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Контрольных работ: 2


2. Уравнения и неравенства с одной переменной (14 часов)

Целые уравнения. Дробные рациональные уравнения. Нера­венства второй степени с одной переменной. Метод интервалов.

Основная цель — систематизировать и обобщить сведе­ния о решении целых и дробных рациональных уравнений с од­ной переменной, сформировать умение решать неравенства вида ах2 + Ьх + с > 0 или ах2 + Ьх + с < 0, где а ≠ 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобще­ние и углубление сведений об уравнениях. Вводятся понятия це­лого рационального уравнения и его степени. Учащиеся знако­мятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспо­могательной переменной. Метод решения уравнений путем введе­ния вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмиче­ских и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + Ьх + + с > 0 или ах2 + Ьх + с < О, где а ≠ 0 , осуществляется с опорой на сведения о графике квадратичной функции.

Учащиеся знакомятся с методом интервалов, с помощью ко­торого решаются несложные рациональные неравенства.

Контрольных работ: 1


3. Уравнения и неравенства с двумя переменными (17 часов)


Уравнение с двумя переменными и его график. Системы урав­нений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя перемен­ными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с дву­мя переменными. Основное внимание уделяется системам, в ко­торых одно из уравнений первой степени, а другое второй.

Из­вестный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помо­щью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными: второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

Контрольных работ: 1


4. Прогрессии (14 часов)

Арифметическая и геометрическая прогрессии. Формулы п-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых га членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

Контрольных работ: 2


5. Элементы комбинаторики и теории вероятностей (12 часов)


Комбинаторное правило умножения. Перестановки, размеще­ния, сочетания. Относительная частота и вероятность случайного события.

Основная цель — ознакомить учащихся с понятиями пе­рестановки, размещения, сочетания и соответствующими форму­лами для подсчета их числа; ввести понятия относительной час­тоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требу­ется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, ко­торое используется в дальнейшем при выводе формул для подсче­та числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внима­ние учащихся на различие понятий «размещение» и «сочета­ние», сформировать у них умение определять, о каком виде ком­бинаций идет речь в задаче.

В данной теме учащиеся знакомятся с начальными сведения­ми из теории вероятностей. Вводятся понятия «случайное собы­тие», «относительная частота», «вероятность случайного собы­тия». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероят­ности можно применять только к таким моделям реальных собы­тий, в которых все исходы являются равновозможными.

Контрольных работ: 1


6. Повторение (итоговое) - (23 часа)

Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 9 классе.

Контрольных работ: 1


ГЕОМЕТРИЯ

9 класс

2 часа в неделю, всего 68 часов

Контрольных работ 5

  1. Векторы. Метод координат (18 часов)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простей­шие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. Е. как действия с направленными отрезками. Основное внимание дол­жно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и па­раллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Контрольных работ: 1


  1. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (11 часов)

Синус, косинус и тангенс угла. Теоремы синусов и косину­сов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помо­щью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольни­52А (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рас­сматриваются свойства скалярного произведения и его примене­ние при решении геометрических задач.

Основное внимание следует уделить выработке прочных на­выков в применении тригонометрического аппарата при реше­52А52 геометрических задач.

Контрольных работ: 1


  1. Длина окружности и площадь круга (11 часов)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности Площадь круга.

Основная цель — расширить знание учащихся о много­угольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описание около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2п-угольника, если дан правильный п-угольник.

Формулы, выражающие сторону правильного многоугольник и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

Контрольных работ: 1

  1. Движения (8 часов)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Основная цель — познакомить учащихся с понятие: движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, поворот. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не являете обязательным, однако следует рассмотреть связь понятий наложения и движения.

Контрольных работ: 1


  1. Начальные сведения из стереометрии (8 часов)

Предмет стереометрии. Геометрические тела и поверхности Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.

Основная цель — дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основ новыми формулами для вычисления площадей поверхностей и объемов тел.

Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращений (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площади ­и боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования


  1. Об аксиомах геометрии (2 часа)

Беседа об аксиомах геометрии.

Основная цель — дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.


  1. Повторение. Решение задач (10 часов)


Основная цель. Повторить, закрепить и обобщить основные ЗУН за основную школу.

Контрольных работ: 1
























Основные технологии


С целью обеспечения эффективности и результативности учебного процесса используются различные технологии обучения.

Главной задачей использования новых технологий является расширение интеллектуальных возможностей человека. Все используемые технологии направлены на сохранение физического, психического и нравственного здоровья каждого ученика.

На уроках используются элементы следующих технологий:

Проблемное обучение

Создание в учебной деятельности проблемных ситуаций и организация активной самостоятельной деятельности учащихся по их разрешению, в результате чего происходит творческое овладение знаниями, умениями, навыками, развиваются мыслительные способности.

Индивидуально-развивающее обучение

Знакомство с новыми методами мыслительной деятельности при решении творческих заданий с чертежами, технологическими картами в индивидуальном порядке

Разноуровневое обучение

У учителя появляется возможность помогать слабому, уделять внимание сильному, реализуется желание сильных учащихся быстрее и глубже продвигаться в образовании. Сильные учащиеся утверждаются в своих способностях, слабые получают возможность испытывать учебный успех, повышается уровень мотивации учения.

Технология проектного обучения

Учитель организует учебно-познавательную, исследовательскую, творческую или игровую деятельность обучающихся, которые овладевают навыками самостоятельного поиска, обработки и анализа нужной информации для решения какой-либо проблемы, значимой для участников проекта.

Работа с использованием этой технологии дает возможность развивать индивидуальные творческие способности учащихся, более осознанно подходить к профессиональному и социальному самоопределению.

Технология использования в обучении игровых методов: ролевых, деловых и других видов обучающих игр

Расширение кругозора, развитие познавательной деятельности, формирование определенных умений и навыков, необходимых в практической деятельности, развитие общеучебных умений и навыков.

Тестовые технологии

Оценка уровня обученности по конкретной теме, позволяющая реально оценить готовность обучающихся к итоговому контролю, установление количественных и качественных индивидуальных различий.

Обучение в сотрудничестве (командная, групповая работа)

Сотрудничество трактуется как идея совместной развивающей деятельности взрослых и детей. Суть индивидуального подхода в том, чтобы идти не от учебного предмета, а от ребенка к предмету, идти от тех возможностей, которыми располагает ребенок, применять психолого-педагогические диагностики личности. Обучающиеся и учитель занимаются совместной деятельностью. Эффективность метода не только в академических успехах обучающихся, но и в их интеллектуальном и нравственном развитии.

Информационно-коммуникационные технологии

Использование ПК в учебном процессе. Создание рефератов, слайдов, презентаций и др. Поиск нужной информации в Интернет. Применение полученных знаний в практической деятельности.

Здоровье сберегающие технологии

Использование данных технологий позволяют равномерно во время урока распределять различные виды заданий, чередовать мыслительную деятельность с физминутками, определять время подачи сложного учебного материала, выделять время на проведение самостоятельных работ, нормативно применять ТСО.

Основные типы учебных занятий:

  • урок изучения нового учебного материала;

  • урок закрепления и применения знаний;

  • урок обобщающего повторения и систематизации знаний;

  • урок контроля знаний и умений.

Основным типом урока является комбинированный.

Формы организации учебного процесса: индивидуальные, групповые, индивидуально-групповые, фронтальные.

На уроках используются такие формы занятий как:

  • практические занятия;

  • тренинг;

  • консультация;

Формы контроля: текущий и итоговый. Проводится в форме контрольных работ, рассчитанных на 40 минут, тестов и самостоятельных работ на 15 – 20 минут с дифференцированным оцениванием.

Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала; содержание определяются учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся класса. Итоговые контрольные работы проводятся:

- после изучения наиболее значимых тем программы,

- в конце учебной четверти.


Требования к речи обучающихся

Обучающиеся должны уметь:

  • излагать материал логично и последовательно;

  • отвечать громко, четко, с соблюдением логических ударений, пауз и правильной интонации.

Для речевой культуры обучающихся важны и такие умения, как умение слушать и понимать речь учителя и товарищей, внимательно относиться к высказываниям других, умение поставить вопрос, принять участие в обсуждении проблемы.

Текущий контроль осуществляется в форме контрольных, самостоятельных работ; промежуточный контроль - в виде административной контрольной работы.

Для всех учащихся в качестве подготовки к отчетной проектной деятельности за курс основной школы мы предполагаем выполнение учебного проекта по предмету.

Работа по проекту проводится в течение года. Защита проекта проходит на учебном занятии или во внеурочное время. Ребятам, показавшим высокий результат при защите учебного проекта рекомендуется участие в школьной конференции «Шаг в будущее».

Рекомендуемые темы учебных проектов для учащихся 5 класса:

1. Счет у первобытных людей.

2. Измеряй на свой аршин!

3. Танграм. Геометрическая головоломка.

4. Шоколад.

5. Откуда взялись дроби?

6. Лед на земле.

7. Питьевая вода.

8. Цифры у различных народов.

9. Числовые великаны.

3. Критерии оценки проектной работы:

Результаты выполнения проекта оцениваются по итогам рассмотрения комиссией представленного продукта с краткой пояснительной запиской, презентацией обучающегося и отзыва руководителя.

Тематическое планирование по математике 5 класс.


Кол-во часов

Содержание учебного материала

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

1. Натуральные числа и шкалы

15

Обозначение натуральных чисел.

Решение комбинаторных задач.

Описывать свойства натурального ряда.

Читать и записывать натуральные числа, сравнивать и упорядочивать их.

Выполнять вычисления с натуральными числами; вычислять значения степеней.

Чертить отрезок по данным двум точкам и называть его, измерять и сравнивать отрезки с помощью циркуля, находить длину отрезка с помощью линейки и вычислений. Строить треугольник, обозначать его стороны и вершины, объяснять, чем отличается прямая от отрезка, чертить ее и обозначать.

Анализировать и осмысливать текст задачи, переформулировать условия, извлекать необходимую информацию, моделировать условия с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, проверять ответ на соответствие условию. Распознавать на чертежах, рисунках и моделях геометрические фигуры, конфигурации фигур.

Изображать геометрические фигуры на клетчатой бумаге.

Измерять и сравнивать отрезки .

Выражать одни единицы измерения длин через другие

Определять цену деления шкалы.

Строить шкалы с помощью выбранных единичных отрезков.

Находить координаты точек и строить точки по их координатам.

Решать комбинаторные задачи перебо­ром вариантов.

Отрезок. Длина отрезка. Треугольник.

Плоскость, прямая, луч.

Шкалы и координаты.

Линейные диаграммы.

Меньше или больше.

Контрольная работа №1

2. Сложение и вычитание натуральных чисел

21

Сложение натуральных чисел и его свойства.

Выполнять вычисления с натуральными числами; вычислять сумму и неизвестные слагаемые, если известен результат сложения и другое слагаемое, использовать свойства сложения для упрощения вычислений.

Находить длину отрезка по его частям и часть отрезка, зная величину всего отрезка и других его частей, периметр многоугольника.

Решать задачи, используя действия сложения.

Раскладывать число по разрядам и наоборот, выполнять сложение чисел в скобках.

Выполнять действия вычитания, использовать свойства вычитания для упрощения вычитания.

Читать и записывать числовые выражения, находить значения выражений, записывать решения задачи в виде числовых или буквенных выражений.

Вычислять числовое значение буквенного выражения при заданных значениях букв.

Применять свойства сложения и вычитания для упрощения выражений.

Решать уравнения – находить его корни, задачи с помощью уравнений.

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.

Решать комбинаторные задачи перебором вариантов.

Вычитание.

Решение комбинаторных задач.

Числовые и буквенные выражения.

Буквенная запись свойств сложения и вычитания.

Контрольная работа №2

Анализ контрольной работы.

Уравнение.

Контрольная работа №3

3. Умножение и деление натуральных чисел

27 часов

Умножение натуральных чисел и его свойства.


Формулировать, записывать с помощью букв основные свойства умножения.

Формулировать определения действия умножения, множителя, произведения, неизвестного множителя. Заменять действие умножения сложением и наоборот

Применять свойства умножения для упрощения вычислений.

Формулировать определения делителя, делимого, частного, неполного частного и остатка.

Упрощать выражения, решать уравнения.

Выполнять вычисления с натуральными числами; вычислят значения степеней.

Находить действия первой и второй ступени в выражениях, выполнять их, расставляя порядок действий.

Деление.

Деление с остатком

Контрольная работа №4

Анализ контрольной работы.

Упрощение выражений.

Порядок выполнения действий.

Степень числа. Квадрат и куб числа.

Контрольная работа №5

4. Площади и объемы







12 часов


Формулы.

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.

Анализировать и осмысливать текст задачи, переформулировать условия, извлекать необходимую информацию, моделировать условия с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, проверять ответ на соответствие условию.

Распознавать на чертежах, рисунках и моделях геометрические фигуры. Приводить примеры аналогов геометрических фигур в окружающем мире.

Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов.

Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и площади прямоугольника.

Выражать одни единицы измерения площади через другие.

Вычислять объемы куба и прямоугольного параллелепипеда, используя объема куба и объема прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.

Решать задачи на нахождение площадей квадратов и прямоугольников, объемов кубов и прямоугольных параллелепипедов.

Площадь. Формула площади прямоугольника.

Единицы измерения площадей.

Столбчатые диаграммы.

Прямоугольный параллелепипед.

Объемы. Объем прямоугольного параллелепипеда.

Контрольная работа №6

5. Обыкновенные дроби

25 часов

Окружность и круг

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби.

Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями.

Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями.

Формулировать определения правильных, неправильных и смешанных дробей.

Уметь складывать (вычитать) дроби с одинаковыми знаменателями.

Записывать смешанное число в виде неправильной дроби и обратно. Выполнять действия с смешанными дробями.

Выполнять операции по сбору, организации и подсчёту данных.

Решать комбинаторные задачи перебо­ром вариантов

Доли. Обыкновенные дроби.

Сравнение дробей.

Правильные и неправильные дроби.

Контрольная работа №7.


Сложение и вычитание дробей с одинаковыми знаменателями.


Деление и дроби.

Смешанные числа.

Сложение и вычитание смешанных чисел.

Контрольная работа №8

6. Десятичные дроби. Сложение и вычитание десятичных дробей.

13 часов

Десятичная запись дробных чисел.

Читать и записывать десятичные дроби.

Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных; находить десятичные приближения обыкновенных дробей.

Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями.

Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях.

Выполнять прикидку и оценку в ходе вычислений.

Формулировать правило округления чисел.

Анализировать и осмысливать текст задачи, переформулировать условия, извлекать необходимую информацию, моделировать условия с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, проверять ответ на соответствие условию.

Решать комбинаторные задачи.

Сравнение десятичных дробей.

Сложение и вычитание десятичных дробей.

Решение комбинаторных задач.

Приближенные значение чисел. Округление чисел.

Контрольная работа №9

7. Умножение и деление десятичных дробей

26 часов

Умножение десятичных дробей на натуральные числа.

Формулировать определения умножения и деления десятичных дробей.

Формулировать определение среднего арифметического нескольких чисел

Выполнять вычисления с десятичными дробями: умножение и деление десятичных дробей.

Анализировать и осмысливать текст задачи, переформулировать условия, извлекать необходимую информацию, моделировать условия с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, проверять ответ на соответствие условию.

Решать комбинаторные задачи переборов вариантов.

Находить среднюю скорость движения, сравнивать величины, находить наибольшее и наименьшее значение.

Деление десятичных дробей на натуральные числа.

Контрольная работа №10.

Анализ контрольной работы

Умножение десятичных дробей.

Деление на десятичную дробь.

Решение комбинаторных задач.

Среднее арифметическое.

Контрольная работа №11.

8. Инструменты для вычислений и измерений

17 часов

Микрокалькулятор.

Объяснять, как вводить в микрокалькулятор натуральное число, десятичную дробь. Выполнять операции на микрокалькуляторе.

Объяснять, что такое процент. Представлять процент в виде дробей и дроби в виде процентов.

Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их.

Решать задачи на проценты и дроби (в том числе задачи из реальной практики), используя при необходимости калькулятор.

Формулировать определения угла, виды углов, элементы углов.

Уметь измерять углы с помощью транспортира

Знать, что называют биссектрисой угла.

Уметь читать и строить круговые диаграммы.

Решать комбинаторные задачи перебором вариантов.

Проценты.

Контрольная работа №12

Анализ контрольной работы.

Угол: прямой и развернутый. Чертежный треугольник.

Измерение углов. Транспортир.

Решение комбинаторных задач.

Круговые диаграммы.

Контрольная работа №13

9. Итоговое повторение.

15 часов

Сложение и вычитание натуральных чисел.

Десятичные дроби.

Знать материал, изученный в курсе математики за 5 класс

Уметь применять полученные знания на практике.

Уметь логически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде.



Проценты.

Решение уравнений.

Решение задач с помощью уравнений.

Контрольная работа №14 (итоговая)

Анализ контрольной работы.

175

Итого




КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ

урока

Вид

Тема

18

Контрольная работа №1

«Обозначение натуральных чисел»

28

Контрольная работа №2

«Сложение и вычитание натуральных чисел»

39

Контрольная работа №3

«Числовые и буквенные выражения», «Уравнение»

55

Контрольная работа №4

«Умножение и деление натуральных чисел»

66

Контрольная работа №5

«Упрощение выражений»

78

Контрольная работа №6

«Площади и объемы»

90

Контрольная работа №7

«Доли. Обыкновенные дроби»

101

Контрольная работа №8

«Сложение и вычитание дробей с одинаковыми знаменателями и смешанных чисел»

114

Контрольная работа №9

«Сложение и вычитание десятичных дробей»

123

Контрольная работа №10

«Умножение и деление десятичных дробей на натуральные числа»

140

Контрольная работа №11

«Умножение и деление десятичных дробей»

148

Контрольная работа №12

«Проценты»

157

Контрольная работа №13

«Измерение углов. Транспортир»

174

Контрольная работа №14

( итоговая)

Итоговая контрольная работа


КОЛИЧЕСТВО КОНТРОЛЬНЫХ РАБОТ ПО ЧЕТВЕРТЯМ



Период обучения

Число часов

Число контрольных работ

1 четверть



2 четверть



3 четверть



4 четверть



За год

175

14




VII1. Планируемые результаты


Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

1) в личностном направлении:

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • представление о математической науке как сфере чело­веческой деятельности, об этапах ее развития, о ее значимо­сти для развития цивилизации;

  • креативность мышления, инициатива, находчивость, активность при решении математических задач;

  • умение контролировать процесс и результат учебной математической деятельности;

  • способность к эмоциональному восприятию математи­ческих объектов, задач, решений, рассуждений;


2) в метапредметном направлении:

  • первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, сред­стве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проб­лемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, представ­лять ее в понятной форме, принимать решение в условиях не­полной и избыточной, точной и вероятностной информации;

  • умение понимать и использовать математические сред­ства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении учебных за­дач, понимать необходимость их проверки;

  • умение применять индуктивные и дедуктивные спосо­бы рассуждений, видеть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алго­ритмом;

  • умение самостоятельно ставить цели, выбирать и созда­вать алгоритмы для решения учебных математических проб­лем;

  • умение планировать и осуществлять деятельность, на­правленную на решение задач исследовательского характера;

3) в предметном направлении:

  • овладение базовым понятийным аппаратом по основ­ным разделам содержания, представление об основных изуча­емых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моде­лях, позволяющих описывать и изучать реальные процессы и явления;

  • умение работать с математическим текстом (анализиро­вать, извлекать необходимую информацию), грамотно приме­нять математическую терминологию и символику, использо­вать различные языки математики;

  • умение проводить классификации, логические обосно­вания, доказательства математических утверждений;

  • умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;

  • развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыка­ми устных, письменных, инструментальных вычислений;

  • овладение символьным языком алгебры, приемами вы­полнения тождественных преобразований рациональных вы­ражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

  • овладение системой функциональных понятий, функ­циональным языком и символикой, умение на основе функ­ционально-графических представлений описывать и анализи­ровать реальные зависимости;

  • овладение основными способами представления и ана­лиза статистических данных; наличие представлений о стати­стических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

  • овладение геометрическим языком, умение использо­вать его для описания предметов окружающего мира, разви­тие пространственных представлений и изобразительных уме­ний, приобретение навыков геометрических построений;

  • усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

  • умения измерять длины отрезков, величины углов, ис­пользовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

  • умение применять изученные понятия, результаты, ме­тоды для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютере.

VII. Описание учебно-методического и материально-технического обеспечения

образовательного процесса по предмету «Математика»

Оснащение процесса обучения математике обеспечивается библио­течным фондом, печатными пособиями, а также информационно-комму­никативными средствами, экранно-звуковыми пособиями, техническими средствами обучения, учебно-практическим и учебно-лабораторным обо­рудованием.

В библиотечный фонд входят Стандарт по математике, примерные программы, авторские программы, комплекты учебников, рекомендован­ных или допущенных Министерством образования и науки Российской Федерации. В состав библиотечного фонда входят ра­бочие тетради, дидактические материалы, сборники контрольных и са­мостоятельных работ, практикумы по решению задач, соответствующие используемым комплектам учебников; сборники заданий, обеспечиваю­щих диагностику и контроль качества обучения в соответствии с требо­ваниями к уровню подготовки выпускников, закрепленными в Стандарте по математике; учебная литература, необходимую для подготовки докла­дов, сообщений, рефератов, творческих работ.

В комплект печатных пособий включены таблицы по математике, в которых представлены правила действий с числами, таблицы метрических мер, основные сведения о плоских и пространственных геометрических фигурах, основные математические формулы, соотношения, законы, графики функций.

Информационные средства обуче­ния - мультимедийные обучающие программы и электронные учебные издания, ориентированные на систему дистанционного обучения либо имеющие проблемно-тематический характер и обеспечивающие дополни­тельные условия для изучения отдельных тем и разделов Стандарта. Эти пособия предоставляют техническую возможность построения системы текущего и итогового контроля уровня подготовки учащихся (в том числе в форме тестового контроля). Инструментальная среда предоставляет возможность построения и исследования геомет­рических чертежей, графиков функций, проведения числовых и вероят­ностно-статистических экспериментов.
































п/п


Название


Автор

Издательство, дата издания

Математика. 5 класс: учебник для общеобразовательных учреждений

Н.Я. Виленкин, В.И. Жохов,

А.С. Чесноков,

С.И. Шварцбурд.

М: Мнемозина,

2013 г.

Дидактические материалы по математике для 5 класса.

А.С. Чесноков, К.И. Нешков

М.: Просвещение 2008г.

Математика. 5 класс. Контрольные работы для учащихся общеобразовательных учреждений.

В.И.Жохов, Л.Б. Крайнева

М: Мнемозина, 2011г.


Математические диктанты: 5 класс.

В.И.Жохов, И. М. Митяева

М: Мнемозина, 2011г.


Преподавание математики в 5 – 6 классах: методическое пособие.

В.И.Жохов

М: Мнемозина, 2012г.

Математические тренажер: 5 класс.

В.И.Жохов, И. М. Митяева

М: Мнемозина, 2010г.


За страницами учебника математики. Пособие для учащихся 5-6 классов средней школы.

И.Я. Депман,

Н.Я. Виленкин

М.: Просвещение 2009г.

Сборник диагностических работ по математике 5 – 6 класс

под редакцией Р.Б. Копелевич

Краснодар: «Просвещение – Юг» 2010г.






















































Материально-техническое обеспечение


п/п

Наименование объектов и средств материально-технического обеспечения


Электронные учебные пособия:

1.

Презентации в программе PowerPoint.

2

Диск «Математика. Справочник для школьника

3

Интерактивное учебное пособие «Наглядная математика 5 класс»


Информационные источники

4

http://urokimatematiki.ru

5

http://intergu.ru/

6

http://www.openclass.ru/

7

http://festival.1september.ru/articles/subjects/1

8

http://www.uchportal.ru/load/23

9

http://karmanform.ucoz.ru

10

http://le-savchen.ucoz.ru/


Учебно-лабораторное оборудование

11

Мультимедийный компьютер

12

Мультимедиапроектор

















































































Календарно-тематическое планирование


п/п

Дата

Тема

Планируемые результаты



Предметные

УУД

Повторение (3 ч.)

1



Повторение Порядок выполнения действий.

Выполнять действия с натуральными числами.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

2



Повторение Решение текстовых задач

3



Повторение. Решение текстовых задач.

§ 1. Натуральные числа и шкалы (15 ч.)

4



Обозначение натуральных чисел

Описывать свойства натуральных чисел. Верно использовать в речи термины: цифра, число, называть классы, разряды в записи натурального числа.

Сформированы первоначальные представления о целостности математической науки, об этапах ее развития, о ее значимости в развитии цивилизации.

сформированы первоначальные представления о числах, как о средстве выполнения математических действий


5



Десятичная система счета. Таблица разрядов.

Читать и записывать натуральные числа, определять значимость числа, сравнивать и упорядочивать их.

6



Решение упражнений по теме «Обозначение натуральных чисел»

Грамматически правильно читать встречающиеся математические выражения.

7



Отрезок (определение, обозначение)

Распознают на чертежах, рисунках, в окружающем мире геометрические фигуры: точку, отрезок, прямую. Строят отрезки, называть его элементы. Приводят примеры аналогов геометрических фигур в окружающем мире.

Формированы аккуратность и терпеливость при выполнении чертежей.

приводят примеры аналогов треугольников, отрезков в окружающем мире.

8



Длина отрезка.

Измеряют длину отрезков, выражают одни единицы измерения через другие.

9



Треугольник.

Измеряют длины отрезков, вычисляют периметр треугольников. Строят отрезки заданной длины с помощью линейки и циркуля. Строят треугольники.

10



Плоскость. Прямая. Луч.

Распознают на чертежах, рисунках, в окружающем мире геометрические фигуры: луч, дополнительные лучи, плоскость, многоугольник.

Формирован навык изображения величин; работы по алгоритму.

Сопоставляют предмет и окружающий мир.

11



Решение упражнений по теме «Плоскость. Прямая. Луч.»

Изображают геометрические фигуры на клетчатой бумаге. Описывают свойства геометрических фигур, моделируют разнообразные ситуации расположения объектов на плоскости.

12



Шкалы и координаты

Пользуются различными шкалами. Изображаю координатный луч, наносят единичные отрезки.

Формирован навык изображения величин; работы по алгоритму.

Сопоставляют предмет и окружающий мир.

13



Шкалы и координаты. Приборы, имеющие шкалы.

Определяют координаты точек, отмечают точки на координатном луче по заданным координатам.

14



Решение упражнений по теме «Шкалы и координаты»

Определяют координаты точек, отмечают точки на координатном луче по заданным координатам.

Формирован навык изображения величин; работы по алгоритму.

Сопоставляют предмет и окружающий мир.

15



Сравнение натуральных чисел на координатном луче.

Сравнивают натуральные числа, определяют на координатном луче расположение точка с меньшей (большей) координатой

Сравнивают, проводят аналогии, выстраивают логические цепочки.

Располагают объекты в соответствии с их числовыми характеристиками; дают качественные характеристики объектам в соответствии с их числовыми значениями. Действуют по правилу, алгоритму

16



Правило сравнения натуральных чисел.

Сравнивают числа по разрядам, по значимости. Выполняют перебор всех возможных вариантов для пересчета объектов или комбинаций, выделяют комбинации, отвечающие заданным условиям. Записывают результат сравнения с помощью знаков «<», «>», «=»Записывают двойные неравенства.

17



Решение упражнений по теме «Меньше или больше»

Исследуют ситуацию, требующую сравнения чисел, их упорядочения. (фронтальная, индивидуальная)

18



Контрольная работа №1 «Обозначение натуральных чисел»


Используют различные приёмы проверки правильности выполняемых заданий.(индивидуальная)

§2. Сложение и вычитание натуральных чисел (21 ч)

19



Сложение натуральных чисел. с помощью координатного луча.

Выполняют сложение натуральных чисел. Верно используют в речи термины: сумма, слагаемое.

Устанавливают взаимосвязи между компонентами и результатом при сложении.

Формированы креативность мышления, находчивость, инициативность при решении математических задач.

Оценивают правильность или ошибочность выполнения поставленной задачи, ее объективную трудность и собственные возможности ее решения.

20



Правило сложения натуральных чисел.

Грамматически верно читают числовые выражения, содержащие действия сложения Решают примеры на сложение многозначных чисел.

21



Свойства сложения натуральных чисел

Выводят свойства сложения. Складывают натуральные числа, используя свойства сложения

22



Задачи, решаемые сложением.

Решают задачи.

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов.

23



Решение упражнений по теме «Сложение натуральных чисел и его свойства

Грамматически верно читают числовые выражения, содержащие действия сложения. Решают примеры и задачи.

Осуществляют самоконтроль, проверяя ответ на соответствие условию

24



Вычитание.

Выполняют вычитание натуральных чисел. Верно используют в речи термины: разность, уменьшаемое, вычитаемое.

Устанавливают взаимосвязи между компонентами и результатом при вычитании.

25



Правило вычитания многозначных чисел

Грамматически верно читают числовые выражения, содержащие действия вычитания. Решают примеры на вычитание многозначных чисел.

Составляют план и последовательность действий

26



Свойства вычитания.

Называют свойства вычитания натуральных чисел. Записывают свойства вычитания с помощью букв, умеют читать числовые выражения, содержащие действие вычитания

Составляют математическую модель текстовых задач в виде буквенных выражений.

27



Задачи, решаемые вычитанием.

Грамматически верно читают числовые выражения, содержащие действия вычитания. Решают примеры и задачи.

Составляют математическую модель текстовых задач в виде буквенных выражений. Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия

28



Контрольная работа №2 по теме «Сложение и вычитание натуральных чисел»


Используют различные приёмы проверки правильности нахождения значения числового выражения.

29



Числовые выражения. Значение числового выражения.

Верно используют в речи термины: числовое выражение, значение числового выражения. Записывают числовые и буквенные выражения

Выделяют характерные свойства в изучаемых объектах; выполняют действия в соответствии с имеющимся алгоритмом.

30



Буквенные выражения. Значение буквенного выражения.

Вычисляют числовое значение буквенного выражения при заданных значениях букв

31



Решение задач на составление числового и буквенного выражения»

Составляют буквенное выражение по условию задачи.

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов.

32



Буквенная запись свойств сложения

Читают и записывают свойства сложения и вычитания с помощью букв.

Ясно и точно излагают свои мысли..

Выделяют характерные свойства в изучаемых объектах; выполняют действия в соответствии с имеющимся алгоритмом

33



Буквенная запись свойств вычитания

Записывают свойства сложения и вычитания натуральных чисел с помощью букв, преобразуют и используют их для рационализации письменных и устных выражений, составляют буквенные выражения по условию задач.

34



Решение упражнений по теме «Буквенная запись свойств сложения и вычитания»


Составляют план выполнения задач, решения проблем творческого и поискового характера. Записывать буквенные выражения, составлять буквенные выражения по условиям задач. Вычислять периметры многоугольников. (фронтальная, индивидуальная)

35



Уравнение. Кони уравнения.

Верно использовать в речи термины: уравнение, корень уравнения. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Строят логическую цепочку рассуждений, критически оценивают полученный ответ, осуществляют самоконтроль, понимают смысл поставленной задачи, аргументируют, приводят примеры и контрпримеры.


36



Решение уравнений на основе зависимостей между компонентами арифметических действий

37



Решение задач при помощи уравнений

Составляют простейшие уравнения по условиям задач.

Соотносят условие задач с имеющимися моделями и выбирают необходимую модель. Строят логическую цепочку рассуждений, критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию задачи.

38



Решение задач при помощи уравнений

Решают уравнения, задачи, с помощью уравнений.

Выполняют перебор всех возможных вариантов для пересчета объектов или комбинаций, выделяют комбинации, отвечающие заданным условиям. .

39



Контрольная работа №3 по темам «Числовые и буквенные выражения», «Уравнение»


Используют различные приёмы проверки правильности нахождения значения числового выражения.

Умножение и деление натуральных чисел (27 ч)

  1. 40



Определение умножения. Частные случаи умножения.

Выполняют умножение натуральных чисел. Верно используют в речи термины: произведение, множитель.

Работают по составленному плану, используют основные и дополнительные средства получения информации, выполняют действия по алгоритму; выявляют и используют аналогии; сопоставляют свою работу с образцами; анализируют условие задачи и выделяют необходимую для решения информацию; находят информацию, представленную в неявном виде; группируют объекты по определенным признакам; осуществляют анализ объектов и выделяют их существенные характеристики

41



Правило умножения натуральных чисел.

42



Свойства умножение натуральных чисел

Формулируют и применяют переместительное, сочетательное и распределительное свойства умножения натуральных чисел, свойства нуля и единицы при умножении. Грамматически верно читают числовые и буквенные выражения, содержащие действие умножение. Читают и записывают буквенные выражения.

43



Задачи, решаемые умножением.

Составляют буквенные выражения по условиям задач.

Исследуют простейшие числовые закономерности, проводить числовые эксперименты. Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов.

44



Решение упражнений по теме «Умножение натуральных чисел и его свойства»

Выполнять умножение натуральных чисел. Вычислять числовое значение буквенного выражения при заданных значениях букв.

Определяют цель учебной деятельности, осуществляют поиск средства её осуществления.

45



Деление. Определение, частные случаи.

Выполняют деление натуральных чисел. Верно используют в речи термины: частное, делимое, делитель. Формулировать свойства нуля и единицы при делении. Решают простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Выделяют характерные свойства в изучаемых объектах; выполняют действия в соответствии с имеющимся алгоритмом.

46



Правило деления натуральных чисел

47



Деление многозначных чисел.

Грамматически верно читают числовые и буквенные выражения, содержащие действие деление. Записывают свойства умножения и деления натуральных чисел с помощью букв, преобразовывают на их основе числовые и буквенные выражения и используют их для рационализации письменных и устных вычислений, для упрощения буквенных выражений.

48



Зависимость неизвестных компонентов деления.

Устанавливают взаимосвязи между компонентами и результатом при умножении и делении, используют их для нахождения неизвестных компонентов действий с числовыми и буквенными выражениями.

49



Задачи, решаемые делением.

Решают текстовые задачи.

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов.

50



Свойства деления.

Выполняют деление натуральных чисел. Решают простейшие уравнения на основе зависимостей между компонентами арифметических действий. Решают текстовые задачи.

51



Решение упражнений по теме «Деление»


Моделируют ситуации, иллюстрирующие арифметическое действие и ход его выполнения; при решении нестандартной задачи находят и выбирают алгоритм решения (фронтальная, индивидуальная)

52



Деление с остатком

Выполняют деление с остатком.

Понимают смысл поставленной задачи, оценивают результат своей деятельности, осознанно выбирают наиболее эффективные способы решения задач, устанавливают причинно-следственные связи, строят логические рассуждения, делают выводы.

53



Нахождение неизвестных компонент деления с остатком.

Устанавливают взаимосвязи между компонентами при делении с остатком. Обосновывают способы решения задачи.

54



Решение упражнений по теме «Деление с остатком»

Выполняют деление с остатком. Устанавливают взаимосвязи между компонентами при делении с остатком

55



Контрольная работа №4 по теме «Умножение и деление натуральных»


Используют различные приёмы проверки правильности нахождения значения числового выражения.

56



Упрощение числовых выражений.

Называют распределительное свойство умножения относительно сложения и относительно вычитания. Находят значения выражений.

Излагают свои мысли в устной и письменной речи, осуществляют контроль по образцу и вносят необходимые коррективы, делают выводы.

57



Распределительный закон умножения относительно сложения

Формулируют распределительное свойство умножения относительно сложения

58



Распределительный закон умножения относительно вычитания.

59



Применение распределительного закона при решении уравнений.

60



Решение упражнений по теме «Упрощение выражений»

Находят значения выражений.

Исследовать простейшие числовые закономерности, проводить числовые эксперименты.

61



Порядок выполнения действий

Определяют действия первой ступени - сложение и вычитание, действия второй ступени – умножение и деление, порядок выполнения действий. Находят значения числовых выражений. Изменяют порядок действий на основе свойств, сложения, вычитания и умножения.

Формируется потребность в получении новых знаний.

Устанавливают причинно-следственные связи, строят логические рассуждения, делают выводы.

62



Случаи изменения порядка действий, при использовании свойств действий.

Находят значения числовых выражений, действуя по самостоятельно выбранному алгоритму решения задачи.

63



Решение упражнений по теме «Порядок выполнения действий»

Составляют схему вычислений, находят значения числовых выражений. Обнаруживают и устраняют ошибки логического и арифметического характера.

64



Степень числа. Квадрат и куб числа

Находят значения степени. Верно используют в речи термины: степень и показатель степени, квадрат и куб числа.

Выделяют характерные свойства в изучаемых объектах; выполняют действия в соответствии с имеющимся алгоритмом.

65



Решение упражнений по теме «Квадрат и куб числа»

Вычисляют значения выражений, содержащих степень. Грамматически верно читают числовые и буквенные выражения, содержащие степени.

Выполнять перебор всех возможных вариантов для пересчёта объектов или комбинаций, выделять комбинации, отвечающие заданным условиям.

66



Контрольная работа №5 по теме «Упрощение выражений»


Используют различные приёмы проверки правильности нахождения значения числового выражения.

§ 4. Площади и объемы (12 ч)

67



Понятие формулы. Формула пути.

Верно используют в речи термин формула. Выполняют вычисления по формулам. Грамматически верно читают используемые формулы, выполняют вычисления по формулам.

Создают, применяют и преобразовывают простейшие формулы для решения учебных и познавательных задач.

68



Составление формулы по условию задачи.

Моделируют несложные ситуации с помощью формул; Используют знания о зависимостях между величинами скорость, время, путь при решении текстовых задач.

69



Площадь. Формулы площади прямоугольника

Верно используют в речи термин площадь. Вычисляют площадь фигуры по количеству квадратных сантиметров, уложенных в ней. Вычисляют площади квадратов и прямоугольников по формулам. Решают задачи, используя свойства равновеликих фигур.

Моделируют несложные зависимости с помощью формул площади прямоугольника и площади квадрата, применяют и преобразовывают знаково-символьные средства, модели для решения учебных и познавательных задач.

70



Решение упражнений по теме «Площадь. Формула площади прямоугольника»

71



Единицы измерения площадей

Выражают одни единицы измерения площади через другие.

Решают житейские ситуации, требующие умения находить геометрические величины (планировка, разметка) понимают и используют рисунки и чертежи для иллюстрации, интерпретации, аргументации. Работают с графической информацией.

72



Перевод в более крупные или мелкие единицы измерения.

Вычисляют площади квадратов, прямоугольников и треугольников (в простейших случаях), используя формулы площади квадрата и прямоугольника. Выражают одни единицы измерения площади через другие

73



Решение упражнений по теме «Единицы измерения площадей»

74



Прямоугольный параллелепипед

Распознают на чертежах, рисунках, в окружающем мире геометрические фигуры, имеющие форму прямоугольного параллелепипеда, приводят примеры аналогов куба, прямоугольного параллелепипеда в окружающем мире; изображают прямоугольный параллелепипед Верно используют в речи термины: прямоугольный параллелепипед, куб, грани, рёбра и вершины прямоугольного параллелепипеда.

Решают житейские ситуации, требующие умения находить геометрические величины (планировка, разметка) понимают и используют рисунки и чертежи для иллюстрации, интерпретации, аргументации. Работают с графической информацией.

75



Объемы. Объем прямоугольного параллелепипеда.

Верно используют в речи термин объём. Вычисляют объем фигуры по количеству кубических сантиметров, уложенных в ней. Вычисляют объёмы куба и прямоугольного параллелепипеда, используя формулы объёма куба и прямоугольного параллелепипеда

76



Объемы. Объем прямоугольного параллелепипеда.

Вычисляют объёмы куба и прямоугольного параллелепипеда, используя формулы. Выражают одни единицы измерения объёма через другие.

Моделируют изучаемые геометрические объекты, используя бумагу, пластилин, проволоку и др.

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов; строят логическую цепочку рассуждений; критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию. Выполнять прикидку и оценку в ходе вычислений.

77



Решение упражнений по теме «Прямоугольный параллелепипед»

78



Контрольная работа № 6 по теме «Площади и объемы»


Используют различные приёмы проверки правильности нахождения значения числового выражения. (индивидуальная)

§ 5. Обыкновенные дроби (23 ч )

79



Окружность и круг.

Верно используют в речи термины: окружность, круг, их радиус и диаметр, дуга окружности. Изображают окружность с использованием циркуля Распознают на рисунках, в окружающем мире геометрические фигуры, имеющие форму окружности, круга. Приводят пример аналогов окружности, круга в окружающем мире. циркуля

Видят математическую задачу в других дисциплинах, в окружающей жизни. Понимают и используют рисунки, чертежи для иллюстрации.

80



Решение упражнений по теме «Окружность и круг»

Моделируют изучаемые геометрические объекты, используя бумагу, проволоку и др. Грамотно формулируют свои мысли. Выдвигают гипотезы при решении задач

81



Доли. Получение равных долей. Обыкновенная дробь.

Верно используют в речи термины: доля, обыкновенная дробь, числитель и знаменатель дроби. Грамматически верно читают записи дробей и выражений, содержащих обыкновенные дроби Изображают обыкновенные дроби на координатном луче.

Моделируют в графической, предметной форме понятия и свойства, связанные с понятием доли, обыкновенной дроби.

82



Задачи на нахождение дроби от числа.

Находят дроби от числа и числа по значению дроби. Грамматически верно читают записи дробей и выражений, содержащих обыкновенные дроби , решают задачи

Анализируют и осмысливают текст задачи, извлекают необходимую информацию, сравнивают, выбирают, сопоставляют и обосновывают способы решения задачи . выстраивают логические цепочки , сопоставляют объекты в соответствии с их числовыми характеристиками; дают качественные характеристики объектам в соответствии с их числовыми значениями.

83



Задачи на нахождение числа по значению дроби.

84



Комбинированные задачи на части.

85



Сравнение дробей на координатном луче.

Сравнивают обыкновенные дроби с помощью координатного луча и пользуясь правилом. Решают текстовые задачи арифметическими способами

Выполняют перебор всех возможных вариантов для пересчета объектов или комбинаций, выделяют комбинации, отвечающие заданным условиям.

критически оценивают полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию.

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов.

86



Правило сравнение дробей.

87



Решение упражнений по теме «Сравнение дробей»

88



Правильные и неправильные дроби

Изображают на координатном луче правильные и неправильные дроби. Верно используют термины «правильная» и «неправильная» дробь. Сравнивают правильные и неправильные дроби с единицей и друг с другом.

Грамотно излагают свои мысли в устной и письменной речи, понимают смысл поставленной задачи, аргументируют, приводят примеры и контрпримеры, осуществляют контроль правильности своих действий, понимают сущность алгоритмических предписаний и действуют по предложенному алгоритму.

89



Сравнение правильных и неправильных дробей.

Сравнивают правильные и неправильные дроби с единицей и друг с другом.

90



Контрольная работа №7 по теме «Доли. Обыкновенные дроби»


Используют различные приёмы проверки правильности нахождения значения числового выражения. (индивидуальная)

91



Сложение и вычитание дробей с одинаковыми знаменателями

Формулируют и записывают с помощью букв правила сложения и вычитания дробей с одинаковыми знаменателями. Выполняют сложение и вычитание обыкновенных дробей с одинаковыми знаменателями. Решают уравнения

выявляют и используют аналогии; сопоставляют свою работу с образцами; находят информацию, представленную в неявном виде; осуществляют анализ математических объектов.

92



Решение уравнений, содержащих дробные числа.

93



Решение упражнений по теме «Сложение и вычитание дробей с одинаковыми знаменателями»

Решают текстовые задачи арифметическими способами вычислений

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов.

94



Деление и дроби

Используют эквивалентные представления обыкновенных дробей. Используют свойство деления суммы на число для рационализации вычислений

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов. Выполняют прикидку и оценку в ходе вычислений

95



Деление и дроби

96



Смешанные числа

Выполняют преобразование неправильной дроби в смешанное число и смешанного числа в неправильную дробь. Изображают точками координатном луче правильные и неправильные дроби

Ясно, точно и грамотно излагают свои мысли в устной и письменной речи, понимают смысл поставленной задачи, выстраивают аргументацию, приводят примеры.

Используют наглядность для иллюстрации, интерпретации, аргументации. Планируют и осуществляют деятельность направленную на решение задач.

97



Правило выделения целой части.

Выполняют преобразование неправильной дроби в смешанное число и смешанного числа в неправильную дробь. Записывают единицы измерения массы, времени, длины в виде обыкновенных дробей и смешанных чисел.

98



Сложение смешанных чисел

Грамматически верно читают записи выражений, содержащих смешанные числа. Выполняют сложение и вычитание смешанных чисел. Выполняют сложение смешанных чисел и вычитание смешанных чисел, у которых, дробная часть первого меньше дробной части второго или отсутствует вовсе.

Моделируют в графической и предметной форме понятия и свойства, связанные с понятием смешанного числа.

99



Вычитание смешанных чисел

Выделяют характерные свойства в изучаемых объектах; выполняют действия в соответствии с имеющимся алгоритмом.

100



Решение упражнений по теме «Сложение и вычитание смешанных чисел»

Решают текстовые задачи арифметическими способами вычислений

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов. Выполняют прикидку и оценку в ходе вычислений

101



Контрольная работа №8 по теме «Сложение и вычитание дробей с одинаковыми знаменателями и смешанных чисел»


Используют различные приёмы проверки правильности нахождения значения числового выражения. (индивидуальная)

§6 Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч)

102



Десятичная запись дробных чисел.


Записывают и читают десятичные дроби, представлять обыкновенную дробь в виде десятичной и наоборот. Называют целую и дробную части десятичных дробей

Пошагово контролируют правильность и полноту выполнения алгоритма


103



Перевод десятичной в обыкновенную и обратно.

Грамматически верно читают записи выражений, содержащих десятичные дроби. Записывают в виде десятичных дробей значения величин, содержащих различные единицы измерений.

104



Сравнение десятичных дробей


Уравнивают количество знаков в дробной части числа. Сравнивают десятичные дроби. Сравнивают десятичные дроби, а также значения величин различных единиц измерений. определяют между какими соседними натуральными числами находится данная десятичная дробь

Определяют цель учебной деятельности, осуществляют поиск средств её достижения. Сравнивают, проводят аналогии, выстраивают логические цепочек

105



Сравнение на координатном луче.


Исследуют ситуацию, требующую сравнения чисел, их упорядочения Анализируют условия и требования задачи

106



Решение упражнений по теме «Сравнение десятичных дробей»

Выбирают оптимальные способы выполнения заданий . Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия.

107



Сложение и вычитание десятичных дробей.


Представляют десятичную дробь в виде суммы разрядных слагаемых. Складывают и вычитают десятичных дробей

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия.

108



Разложение по разрядам десятичной дроби.

Складывают и вычитают десятичных дробей. Раскладывают десятичные дроби по разрядам

109



Свойства сложения и вычитания для десятичных дробей.

Записывают переместительный и сочетательный законы сложения при помощи букв и проверяют их при заданных значениях буквы.

Складывают и вычитают десятичных дробей

Проводят анализ способов решения задачи с точки зрения их рациональности)

110



Совместное выполнение действий сложения и вычитания .

Моделируют ситуации, иллюстрирующие арифметическое действие и ход его выполнения . Анализируют и осмысливают текст задачи, критически оценивать полученный ответ.

111



Решение упражнений по теме «Сложение и вычитание десятичных дробей»

Составляют план выполнения задач, решения проблем творческого и поискового характера. Адекватно оценивают правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения.


112



Приближенные значения чисел, округление чисел.


Верно используют в речи термины: приближенное значение числа с недостатком (с избытком), округляют десятичные дроби до заданного разряда

Выбирают оптимальные способы выполнения заданий . Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия.

113



Правило округления десятичной дроби.

Округляют десятичные дроби . Решают текстовые задачи арифметическими способами вычислений

Выбирают оптимальные способы выполнения заданий . Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия. Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов. Выполняют прикидку и оценку в ходе вычислений

114



Контрольная работа № 9 по теме «Сложение и вычитание десятичных дробей»


Используют различные приёмы проверки правильности нахождения значения числового выражения.

(индивидуальная)

§7. Умножение и деление десятичных дробей (26 ч)

115



Умножение десятичных дробей на натуральные числа

Выполняют умножение десятичных дробей на натуральные числа в столбик. Решают примеры в несколько действий

Выбирают оптимальные способы выполнения заданий . Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия.

116



Умножение десятичных дробей на 10, 100, 1000 и т д

Выполняют умножение десятичных дробей на 10; 100;1000 и т.д. Находят значения буквенных выражений при заданных значениях переменной

117



Решение упражнений по теме «Умножение десятичных дробей на натуральные числа»

Решают текстовые задачи арифметическими способами вычислений

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов. Выполняют прикидку и оценку в ходе, выдвигают гипотезы, анализирую информацию, делают выводы. Оценивают результат.

118



Деление десятичных дробей на натуральные числа

Выполняют деление десятичных дробей на натуральные числа уголком. Представляют обыкновенные дроби в виде десятичных с помощью деления числителя дроби на ее знаменатель

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия.

119



Деление десятичных дробей на 10, 100, 1000 и т д

Выполняют деление десятичных дробей на 10; 100; 1000 и т.д. Находят значения буквенных выражений при заданных значениях переменной.



Моделируют ситуации, иллюстрирующие арифметическое действие и ход его выполнения . Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия.

120



Решение уравнений, содержащих деление десятичной дроби на натуральное число.

Решают уравнения с десятичными дробями.

Выбирают оптимальные способы выполнения заданий . Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия.

121



Решение задач с использованием деления десятичной дроби на натуральное число.

Решают текстовые задачи

Анализируют и осмысливают текст задачи, переформулируют условие, извлекают необходимую информацию, моделируют условие с помощью схем, рисунков, реальных предметов. Выполняют прикидку и оценку в ходе, выдвигают гипотезы, анализирую информацию, делают выводы. Оценивают результат. Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия.

122



Решение упражнений по теме «Деление десятичных дробей на натуральные числа»

123



Контрольная работа №10 по теме «Умножение и деление десятичных дробей на натуральные числа»


Используют различные приёмы проверки правильности нахождения значения числового выражения.


124



Умножение десятичных дробей

Выполняют умножение десятичных дробей столбиком. Правильно читают и записывают выражения, содержащие сложение, вычитание, умножение десятичных дробей и скобки.

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия. Выполняют прикидку и оценку в ходе вычислений.

125



Умножение десятичных дроби на 0,1 0,01 и т. д.

Выполняют умножение десятичных дробей на 0,1; 0,01 и т.д Используют математическую терминологию при записи и выполнении арифметического действия. Находят значение выражений, применяя переместительное и сочетательное свойства умножения.

126



Распределительный закон умножения десятичных дробей.

Упрощают выражения, находят значения числовых и буквенных выражений, применяя свойства сложении, умножения, вычитания.

127



Решение задач на умножение десятичных дробей

Решают задачи на нахождение площади участка и на движение Решают примеры и уравнения.

Анализируют и осмысливают текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

128



Решение упражнений по теме «Умножение десятичных дробей»

Выбирают наиболее эффективные способы решения задачи в зависимости от конкретных условий. Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия. Выполняют прикидку и оценку в ходе вычислений.

129



Деление на десятичную дробь

Выполняют деление на десятичную дробь уголком. Владеют терминами «делимое», «делитель» и правильно читать и записывают выражения, содержащие несколько действий и скобки


Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия. Выполняют прикидку и оценку в ходе вычислений.

130



Деление десятичной дроби на 0,1 0,01 и т. д

Выполняют деление на 0,1; 0,01 и т .д.Находят значения числовых и буквенных выражений в несколько действий.

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия. Выполняют прикидку и оценку в ходе вычислений.

131



Решение задач на деление десятичных дробей.

Решают задачи на движение

Анализируют и осмысливают текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

132



Применение свойств деления для десятичных дробей.

Решают задачи на движение

Анализируют и осмысливают текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

133



Совместное выполнение действий умножения и деления.

Решают уравнения и задачи с помощью уравнений.

Анализируют и осмысливают текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

134



Совместное выполнение действий сложения, вычитания, умножения и деления над десятичными дробями

Решают уравнения и задачи с помощью уравнений.

Анализируют и осмысливают текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

135



Решение упражнений по теме «Деление на десятичную дробь»

Выполняют деление на десятичную дробь, решают уравнений и текстовые задачи

Действуют по заданному и самостоятельно составленному плану решения задания

136



Среднее арифметическое

Находят среднее арифметическое нескольких чисел.



Решают задачи на нахождение средней скорости движения




Моделируют несложные зависимости с помощью формул; выполняют вычисления по формулам.

137



Средняя скорость движения.

Анализируют и осмысливают текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

138



Средняя производительность труда, урожайность.

Решают задачи на нахождение средних значений.

Анализируют и осмысливают текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

139



Решение упражнений по теме «Среднее арифметическое»

Выбирают наиболее эффективные способы решения задачи в зависимости от конкретных условий .

140



Контрольная работа №11 по теме «Умножение и деление десятичных дробей»


Используют различные приёмы проверки правильности нахождения значения числового выражения.

§8. Инструменты для вычислений и измерений (17 ч)

141



Микрокалькулятор и его возможности.

Находить значения числовых выражений с помощью микрокалькулятора по алгоритму

Составляют план выполнения задач, решения проблем творческого и поискового характера.

Излагают свои мысли в устной и письменной речи, понимают смысл поставленной задачи, выстраивают аргументацию, приводят примеры.

142



Вычисления, используя микрокалькулятор .

Работают по составленному плану, используют основные и дополнительные средства (справочная литература, средства ИКТ)

143



Проценты. Перевод обыкновенной, десятичной дроби в проценты и обратно.

Объясняют, что такое процент. Представлять проценты в дробях и дроби в процентах.

Обнаруживают и формулируют учебную проблему совместно с учителем

144



Нахождение процента от числа.

Решают задачи на нахождение некоторого процента от данной величины.

Обосновывают способы решения задач

145



Нахождение числа по значению процентов.

Решают задачи на нахождение целого по данному проценту

Выделяют обобщенный смысл и формальную структуру задачи Выполняют прикидку и оценку в ходе вычислений

146



Задачи на нахождение процентного соотношения.

Представляют проценты в дробях и дроби в процентах. Решают задачи на определение количества процентов в данной величине.

Выполнять прикидку и оценку в ходе вычислений


147



Решение упражнений по теме «Проценты»

Решают задачи всех видов на проценты.

Выбирают, сопоставляют способы решения задачи Обнаруживают и устраняют ошибки логического (в ходе решения) и арифметического (в вычислении) характера

148



Контрольная работа №12 по теме «Проценты»


Используют различные приёмы проверки правильности нахождения значения числового выражения.

149



Угол. Элементы угла. Обозначение угла.

Распознают на чертежах, рисунках, в окружающем мире разные виды углов. Изображают углы от руки и с помощью чертежных инструментов.

Приводят примеры аналогов этих фигур в окружающем мире. формируется культура работы с графической информацией

сравнивают предметы, используя их графическое изображение.

150



Виды углов (прямой, острый, тупой, развернутый)

Изображают углы от руки и с помощью чертежных инструментов. Верно используют в речи термины

« угол», «сторона угла», «вершина угла», «биссектриса угла», «тупой угол», «прямой угол», «развернутый угол

151



Чертежный треугольник.

Сравнение углов.

Идентифицируют геометрические фигуры при изменении их положения

на плоскости.

152



Измерение углов. Градусная мера угла.

объясняют: для чего служит транспортир; что такое градус, как его обозначают; сколько градусов содержит развернутый, прямой угол; какой угол называется острым, тупым.

153



Измерение углов, используя транспортир.


Определяют виды углов,. измеряют углы с помощью транспортира

154



Построение углов с помощью транспортира.

Строят углы с помощью транспортира. Решают простейшие геометрические задачи.

155



Круговые диаграммы. Чтение диаграммы.

Распознают круговые диаграммы, читают круговые диаграммы.

Осуществляют поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретируют их с помощью круговых диаграмм

156



Круговые диаграммы.


Построение диаграммы.

Читают круговые диаграммы, строят круговые диаграммы

Анализируют и осмысливают текст задачи, извлекают необходимую информацию, строят логическую цепочку рассуждений, изображают результат в виде круговой диаграммы.

157



Контрольная работа №13 по теме «Измерение углов. Транспортир»


Используют различные приёмы проверки правильности нахождения значения числового выражения.

(индивидуальная)

Итоговое повторение (18 ч.)

158



Натуральные числа. Действия с натуральными числами.

Складывают, вычитают умножают, делят натуральные числа.

Работают по составленному плану, используют основные и дополнительные средства получения информации.

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия

159



Числовые и буквенные выражения

Находят значения числовых выражений, содержащих несколько действий.

160



Буквенные выражения. Преобразование буквенных выражений.

Находят значения буквенных выражений при заданных значения переменных. Решают задачи на составление буквенных выражений.

161



Упрощение выражений

Упрощают буквенные выражения с помощью свойств сложения, вычитания и умножения. Решают задачи на составление буквенных выражений

162



Упрощение выражений

Упрощают буквенные выражения с помощью свойств сложения, вычитания и умножения. Решают задачи на составление буквенных выражений

Обнаруживают и устраняют ошибки логического (в ходе решения) и арифметического (в вычислении) характера

163



Уравнение.

Решают простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Самостоятельно выбирают способ решения задания

164



Уравнение.

Составляют простейшие уравнения по условиям задач.

Умеют строить логическую цепочку рассуждений, критически оценивать полученный ответ, осуществляют самоконтроль, проверяя ответ на соответствие условию задачи.

165



Проценты

Объясняют, что такое процент. Представляют проценты в дробях и дроби в процентах. Решают текстовые задачи на проценты.

166



Проценты

Решают задачи всех видов на проценты.

Выполнять прикидку и оценку в ходе вычислений

167



Формулы. Площадь прямоугольника

Вычисляют площади квадратов, прямоугольников и треугольников (в простейших случаях), используя формулы площади квадрата и прямоугольника. Выражают одни единицы измерения площади через другие.

Работают по составленному плану, используют основные и дополнительные средства получения информации.

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия

168



Объем прямоугольного параллелепипеда

Вычисляют объем прямоугольного параллелепипеда и куба с помощью форму. Находят площадь поверхности прямоугольного параллелепипеда и куба.

Работают по составленному плану, используют основные и дополнительные средства получения информации.

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия

169



Сложение и вычитание смешанных чисел

Выполняют сложение смешанных чисел и вычитание смешанных чисел, у которых, дробная часть первого меньше дробной части второго или отсутствует вовсе

Работают по составленному плану, используют основные и дополнительные средства получения информации.

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия

170



Сложение и вычитание смешанных чисел

Решают текстовые задачи арифметическими способами вычислений

Анализируют и осмысливают текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

171



Действия с десятичными дробями

Складывают, вычитают, умножают и делят десятичные дроби. Решают примеры в несколько действий. решают уравнения с десятичными дробями.

Работают по составленному плану, используют основные и дополнительные средства получения информации.

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия

172



Действия с десятичными дробями


Анализируют и осмысливают текст задачи, выстраивают логическую цепочку решения, критически оценивают полученный ответ

173



Построение углов. Транспортир

Измеряют и строят углы с помощью транспортира. Решают простейшие геометрические задачи.

Работают по составленному плану, используют основные и дополнительные средства получения информации.

Пошагово контролируют правильность и полноту выполнения алгоритма арифметического действия. Анализируют и осмысливают текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

174



Контрольная работа №14 (итоговая)


Используют различные приёмы проверки правильности нахождения значения числового выражения.

(индивидуальная)

175



Анализ ошибок контрольной работы.
















































































7


Автор
Дата добавления 26.12.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров129
Номер материала ДВ-289412
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх