Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 5-6класс

Рабочая программа по математике 5-6класс

  • Математика

Поделитесь материалом с коллегами:

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Статус документа

Рабочая  программа по математике составлена на основе федерального государственного образовательного стандарта основного общего образования. Она конкретизирует содержание предметных тем образовательного стандарта и даёт распределение учебных часов по разделам курса.

Данная рабочая программа ориентирована на учащихся 5-6 классов и реализуется на основе следующих документов:

  1. Примерная основная образовательная программа основ общего образования (Пр. заседания от 8 апреля 2015 года) .

  2. Федеральный государственный образовательный стандарт основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года №1897.

  3. В.И. Жохов. Программа. Планирование учебного материала. Математика 5 – 6 классы.

Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Главной целью образования является развитие ребёнка как компетентной личности путём включения его в различные виды ценностной человеческой деятельности: учёба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями.

Это определило цели обучения математике:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых  человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание  средствами математики культуры личности, знакомство с жизнью и деятельностью видных отечественных и зарубежных ученых-математиков, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Цели и задачи курса

Целями изучения курса математики в 5 – 6 классах являются систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии.

Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно - интуитивном уровне, математические методы и законы формулируются в виде правил.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

Задачи:

  • овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  • способствовать интеллектуальному развитию, формировать качества личности, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • формировать представления об идеях и методах математики как универсального языка науки итехники, средствах моделирования явлений и процессов;

  • воспитывать культуру личности, отношение к математике как к части общечеловеческой культуры, играющей особуюроль вобщественном развитии.

На основании требований  Государственного образовательного стандарта в содержании рабочей программы  предполагается  реализовать актуальные в настоящее время компетентностный и  деятельностный  подходы, которые определяют задачи обучения:

  • приобретение знаний и умений для использования в практической деятельности и повседневной жизни;

  • овладение способами познавательной, информационно-коммуникативной и рефлексивной  деятельностей;

  • освоение познавательной, информационной, коммуникативной, рефлексивной компетенций.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ

В результате изучения математики  в 5-6 классе программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:

I) личностные:

1)ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

2)формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;

3)умения ясно, точно, грамотно излагать свои мыслив устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

4)первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

5)критичности мышления, умения распознавать логические корректные высказывания, отличать гипотезу от факта;

6)креативности мышления, инициативы, находчивости, активности при решении арифметических задач;

7)умения контролировать процесс и результат учебной математической деятельности;

8)формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

II) метапредметные:

1)способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

2)умения осуществлять контроль по образцу и вносить необходимые коррективы;

3)способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

4)умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

5)умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

6)развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

7)формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

8)первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;

9)развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;

10)умения находить в различных источниках информацию, необходимую для решения математических проблем,и представлять её в понятной форме; принимать решение условиях неполной и избыточной, точной и вероятностной информации;

11)умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

12)умения выдвигать гипотезы при решении учебных задачи понимания необходимости их проверки;

13)понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;

14)умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

15)способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

III) предметные:

1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;

2) владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;

3)умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

4)умения пользоваться изученными математическими формулами;

5)знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;

6)умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

  • решения практических задач в повседневной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • выполнения расчетов по формулам;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • построения геометрическими инструментами (линейка, угольник, циркуль, транспортир);

владеть компетенциями:

  • учебно-познавательной, ценностно-ориентационной, рефлексивной, коммуникативной, информационной, социально-трудовой.

Результаты освоения учебного предмета

Изучение математики в основной школе дает возможность учащимся достичь следующих результатов развития:

1) в личностном направлении:

уметь ясно; точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • уметь распознавать логически некорректные высказывания, критически мыслить, отличать гипотезу от факта;

  • представлять математическую науку как сферу человеческой деятельности, представлять этапы ее развития и ее значимость для развития цивилизации;

  • вырабатывать креативность мышления, инициативу, находчивость, активность при решении математических задач;

  • уметь контролировать процесс и результат учебной математической деятельности;

  • выработать способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

    1. в метапредметном направлении:

  • иметь первоначальные представления об идеях и методах математики как об универсальном языке науки и техники, о средствах моделирования явлений и процессов;

  • уметь видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • уметь выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  • умета применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  • понимать сущность алгоритмических предписаний и умений действовать в соответствии с предложенным алгоритмом;

  • уметь самостоятельно ставить цели, выбирать и создавать алгоритм для решения учебных математических проблем;

  • уметь планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

  1. в предметном направлении:

  • овладение базовыми понятиями по основным разделам содержания; представление об основных изучаемых понятиях как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

  • умение работать с математическим текстом, точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики;

  • развитие представлений о числе, овладение навыками устных, письменных, инструментальных вычислений;

  • умение выполнять арифметические операции с обыкновенными дробями;

  • умение переходить от одной формы записи чисел к другой, представлять проценты - в виде дроби и дробь - в виде процентов;

  • умение выполнять арифметические действия с рациональными числами;

  • умение решать текстовые задачи, включая задачи, связанные с отношением и пропорциональностью величин, дробями и процентами;

  • распознавать и изображать перпендикулярные прямые с помощью линейки и треугольника; определять координаты точки на координатной плоскости, отмечать точки по заданным координатам.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования в 5-6 классах отводится 5 ч в неделю за 35 учебных недель. Итого за два года обучения – 350 часов.

Из общего количества часов на тематические контрольные работы отводится 30 часов: 14 часов – в 5 классе и 16 часов – в 6 классе.

В настоящей рабочей программе изменено соотношение часов на изучение некоторых тем. Это изменение отражено в таблице:

п/п

Название темы

В данной

рабочей

программе

5 класс


35 недель

Вводное повторение

4

Натуральные числа и шкалы

15

Сложение и вычитание натуральных чисел

20

Умножение и деление натуральных чисел

26

Площади и объёмы

15

Обыкновенные дроби

28

Десятичные дроби. Сложение и вычитание десятичных дробей

13

Умножение и деление десятичных дробей

26

Инструменты для вычислений и измерений

15

Повторение. Решение задач

13

6 класс


35 недель

Вводное повторение

4

Делимость чисел

16

Сложение и вычитание дробей с разными знаменателями

25

Умножение и деление обыкновенных дробей

33

Отношения и пропорции

17

Положительные и отрицательные числа

13

Сложение и вычитание положительных и отрицательных чисел

12

Умножение и деление положительных и отрицательных чисел

9

Решение уравнений

18

Координаты на плоскости

11

Повторение. Решение задач

17


В зависимости от динамики и качества усвоения материала в течение учебного года может быть произведено перераспределение часов / тем.

Преобладающие формы организации учебной работы учащихся: фронтальная, индивидуальная, парная, реже групповая. В данных классах ведущими методами обучения предмету являются: поисковый, объяснительно-иллюстративный и репродуктивный. На уроках используются элементы следующих технологий: внутриклассной дифференциации, ИКТ, здоровьесберегающие, обучение в сотрудничестве.

Текущий контроль осуществляется с помощью взаимоконтроля, опросов, самостоятельных, тестовых и контрольных работ, устных и письменных математических диктантов, практических работ.

Результаты обучения представлены в требованиях к уровню подготовки учащихся 5-6 класса и в содержании тем, в которых отражены следующие компоненты: знать/понимать – перечень необходимых для усвоения каждым учащимся знаний; уметь – перечень конкретных умений и навыков по математики, основных видов речевой деятельности; владеть компетенциями; выделена также группа знаний и умений, востребованных в практической деятельности ученика и его повседневной жизни.

С учётом уровневой специфики класса выстроена система учебных занятий (уроков), спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты). Задачи учебных занятий (планируемый результат)  определены как закрепление умений разделять процессы на этапы, звенья, выделять характерные причинно-следственные связи, определять структуру объекта познания, значимые функциональные связи и отношения между частями целого, сравнивать, сопоставлять, классифицировать, ранжировать объекты по одному или нескольким предложенным основаниям, критериям.

Срок реализации рабочей учебной программы – два учебных года.

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

Основное содержание

Математика

(350 ч)

1) Числа и вычисления. Натуральные числа. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Степень с натуральным показателем.

Делители и кратные числа. Признаки делимости. Простые числа. Разложение числа на простые множители.

Обыкновенные дроби. Основное свойство дроби.

Сокращение дробей. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части числа и числа по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление обыкновенных дробей десятичными. Среднее арифметическое.

Отношения. Пропорции. Основное свойство пропорции.

Проценты. Основные задачи на проценты. Решение текстовых задач арифметическими приёмами.

Положительные и отрицательные числа. Противоположные числа. Модуль числа. Сравнение чисел. Арифметические действия с положительными и отрицательными числами, свойства арифметических действий.

Рациональные числа. Изображение чисел точками координатной прямой.

Приближённые значения. Округление натуральных чисел и десятичных дробей. Прикидка результатов вычислений.

2) Выражения и их преобразования. Буквенные выражения. Числовые подстановки в буквенные выражения. Вычисления по формулам. Буквенная запись свойств арифметических действий.

3) Уравнения и неравенства. Уравнения с одной переменной. Корни уравнения. Решение текстовых задач методом составления уравнений.

Числовые неравенства.

4) Функции. Прямоугольная система координат на плоскости. Таблицы и диаграммы. Графики реальных процессов. Геометрические фигуры и их свойства. Измерение геометрических величин. Представление о начальных понятиях геометрии и геометрических фигурах. Равенство фигур. Отрезок. Длина отрезка и её свойства. Расстояние между точками. Угол. Виды углов. Градусная мера угла. Параллельные прямые. Перпендикулярные прямые. Многоугольники. Правильные многоугольники. Окружность и круг. Длина окружности и площадь круга. Формула объёма прямоугольного параллелепипеда.

5) Множества и комбинаторика. Множества. Элемент множества, подмножество. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

Содержание тем учебного курса

5 класс

(5 часов в неделю,  всего 175 часов)

Плановых контрольных работ – 14.

Вводное повторение (4ч)

1. Натуральные числа и шкалы (15 ч)

Десятичная система счисления. Римская нумерация. Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч.

Основная цель – систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.

Учащиеся знакомятся с десятичной позиционной системой счисления и  на примере римских цифр с непозиционной системой счисления.

Систематизация сведений о натуральных числах позволяет восстановить у учащихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков. Вводится понятие двойного неравенства. Продолжается изучение единиц измерения длины, времени, скорости, массы.

В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче, определить по координатам расположение точек относительно друг друга (правее-левее).

В этой же теме можно познакомить учащихся решением ряда простейших комбинаторных задач.

2. Сложение и вычитание натуральных чисел (20 ч)

Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Бук венное выражение (выражения с переменными) и его числовое значение. Решение линейных уравнений, корень уравнения.

Основная цель – закрепить и развить навыки сложения и вычитания натуральных чисел.

Начиная с этой темы основное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями.

В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание). Учащиеся должны понимать, что решить уравнение – значит найти все его корни (или убедиться, что это уравнение не имеет ни одного корня).

3. Умножение и деление натуральных чисел (26 ч)

Умножение и деление натуральных чисел, свойства умножения. Деление с остатком. Степень числа. Квадрат и куб числа. Степень с натуральным показателем.  Решение текстовых задач.

Основная цель – закрепить и развить навыки арифметических действий с натуральными числами.

В этой теме проводится целенаправленное развитие и за крепление навыков умножения и деления многозначных чисел, порядок выполнения действий, использование скобок, прикидки и оценки результатов вычислений. Вводятся понятия квадрата и куба числа, степени числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий.

Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», «что больше на... (в...)», «что меньше на... (в...)»,  а также задачи на известные учащимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

4. Площади и объемы (15 ч)

Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей и объема.

Основная цель – расширить представления учащихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.

При изучении темы учащиеся встречаются с формулами, определяющими зависимость между величинами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.  Можно познакомить учащихся с понятием факториала.

5. Обыкновенные дроби (28 ч)

Окружность и круг. Обыкновенная дробь. Нахождение части от целого и целого по его части. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.

Основная цель – познакомить учащихся с понятием дроби в объеме, достаточном для введения десятичных дробей.

В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от учащихся.

6. Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч)

Десятичная дробь. Сравнение, округление, сложение и вычитание десятичных дробей. Решение текстовых задач.

Основная цель – выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.

При введении десятичных дробей важно добиться у учащихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.

Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам.

Определенное внимание уделяется решению текстовых за дач на сложение и вычитание, данные в которых выражены десятичными дробями.

При изучении операции округления числа вводится новое понятие – «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.

7.Умножение и деление десятичных дробей (26 ч)

Умножение и деление десятичных дробей. Представление обыкновенной дроби в виде десятичной. Среднее арифметическое нескольких чисел. Решение текстовых задач.

Основная цель – выработать умения умножать и де лить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.

Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.

8. Инструменты для вычислений и измерений (15 ч)

Начальные сведения о вычислениях на калькуляторе. Про центы. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла. Единицы измерения углов. Измерение углов. Построение угла заданной величины.

Основная цель – сформировать умения решать простейшие задачи на проценты, выполнять измерение и по строение углов.

У учащихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны на учиться решать три вида задач на проценты: нахождение процента от величины, величины по ее проценту, сколько процентов одно число составляет от другого.

Продолжается работа по распознаванию и изображению геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы, что пригодится при изучении геометрии.

Круговые диаграммы дают представления учащимся о наглядном изображении распределения отдельных составных частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах, журналах и интернете.

Т.ккабинет обеспечен интерактивной доской, можно научить школьников использовать компьютер для наглядного представления информации.

9. Повторение. Решение задач (13 ч)

6 класс 

(5 часов в неделю, всего –175 часов)

Плановых контрольных работ – 16.

Вводное повторение (4 ч)

1. Делимость чисел (16 ч)

Делители и кратные. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9 и 10. Простые и составные числа. Разложение натурального числа на простые множители.

Основная цель – завершить изучение натуральных чисел, подготовить основу для  освоения действий с обыкновенными дробями.

В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству с понятиями «делитель» и «кратное», которые находят применение при сокращении дробей и при приведении к НОЗ.

Упражнения полезно выполнять с опорой на таблицу умножения прямым подбором. Понятия «наибольший общий делитель» и «наименьшее общее кратное» вместе с алгоритмами их нахождения можно не рассматривать.

Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.

Учащиеся должны уметь разложить число на множители. Например, они должны понимать, что 36 = 6 · 6 = 4 · 9. Вопрос о разложении числа на простые множители не относится к числу обязательных.

2. Сложение и вычитание дробей с разными знаменателями (25 ч)

Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.

Основная цель – выработать прочные навыки преобразования дробей, сложения и вычитания дробей.

Одним из важнейших результатов обучения является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. При этом рекомендуется излагать материал без опоры на понятия НОД и НОК. Умение приводить дроби к общему знаменателю используется для сравнения дробей.

При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Важно обратить внимание на случай вычитания дроби из целого числа. Что касается сложения и вычитания смешанных чисел, которые не находят активного применения в последующем изучении курса, то учащиеся должны лишь получить представление о принципиальной возможности выполнения таких действий.

3. Умножение и деление обыкновенных дробей (33 ч)

Умножение и деление обыкновенных дробей. Основные задачи на дроби.

Основная цель – выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.

В этой теме завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования умений выполнять действия с алгебраическими дробями.

Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби, выполняя соответственно умножение или деление на дробь.

4.Отношения и пропорции (17 ч)

Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятие о прямой и обратной пропорциональности величин. Задачи на пропорцию. Масштаб. Формулы длины окружности и площади круга. Шар.

Основная цель – сформировать понятия пропорции, прямой и обратной пропорциональности величин.

Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.

Понятия о прямой и обратной пропорциональностях величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.

В данной теме даются представления о длине окружности и площади круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.

5. Положительные и отрицательные числа (13 ч)

Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координаты точки.

Основная цель – расширить представления учащихся о числе путём введения отрицательных чисел.

Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой, с тем чтобы она могла служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел, рассматриваемых в следующей теме.

Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем для овладения и алгоритмами арифметических действий с положительными и отрицательными числами.

6. Сложение и вычитание положительных и отрицательных чисел (12 ч)

Сложение и вычитание положительных и отрицательных чисел.

Основная цель – выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.

Действия с отрицательными числами вводятся на основе представлений об изменении величин: сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек числовой оси. При изучении данной темы целенаправленно отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.

7. Умножение и деление положительных и отрицательных чисел (9 ч)

Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.

Основная цель – выработать прочные навыки арифметических действий с положительными и отрицательными числами.

Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.

При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить числитель на знаменатель. В каждом конкретном случае они должны знать, в какую десятичную дробь обращается данная обыкновенная дробь — конечную или бесконечную. При этом необязательно акцентировать внимание на том, что бесконечная десятичная дробь оказывается периодической.

8. Решение уравнений (18 ч)

Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.

Основная цель – подготовить учащихся к выполнению преобразований выражений, решению уравнений.

Преобразования буквенных выражений путем раскрытия скобок, и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения несложных уравнений:

Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приёмами решения линейных уравнений с одним неизвестным.

9. Координаты на плоскости (11 ч)

Построение перпендикуляра к прямой и параллельных прямых с помощью чертёжного треугольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.

Основная цель – познакомить учащихся с прямоугольной системой координат на плоскости.

Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и угольника, не требуя точных определений.

 Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.

Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.

10. Повторение. Решение задач (17 ч)

Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 6 класса.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА МАТЕМАТИКИ

В 5-6 КЛАССАХ

Рациональные числа

Ученик научится:

1)понимать особенности десятичной системы счисления;

2)владеть понятиями, связанными с делимостью натуральных чисел;

3)выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

4)сравнивать и упорядочивать рациональные числа;

5)выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

6)использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Ученик получит возможность:

1)познакомиться с позиционными системами счисления с основаниями, отличными от 10;

2)углубить и развить представления о натуральных числах и свойствах делимости;

3)научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Ученик научится:

использовать начальные представления о множестве действительных чисел.

Ученик получит возможность:

1)развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

2)развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Ученик научится:

использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Ученик получит возможность:

1)понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

2)понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Наглядная геометрия

Ученик научится:

1)распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

2)распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

3)строить развёртки куба и прямоугольного параллелепипеда;

4)определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

5)вычислять объём прямоугольного параллелепипеда.

Ученик получит возможность:

1)вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

2)углубить и развить представления о пространственных геометрических фигурах;

3)применять понятие развёртки для выполнения практических расчётов.

Учебно-методическое обеспечение:

  1. Виленкин Н.Я и др.Математика, 5 класс: учебник для общеобразовательных учреждений. – М.: Мнемозина, 2012.

  2. Виленкин Н.Я и др.Математика, 6 класс: учебник для общеобразовательных учреждений. – М.: Мнемозина, 2008.

  3. Учебное издание «Программы общеобразовательных учреждений: Математика. 5-6 кл.»/ Сост. Т.А.Бурмистрова. – 2-е изд.– М. Просвещение, 2009.

Дополнительная литература:

  1. Попова Л.П. Поурочные разработки по математике: 5 класс. – М.:ВАКО, 2009.

  2. Попова Л.П. Контрольно – измерительные материала. Математика: 5 класс. – М.:ВАКО, 2010.

  3. Попова Л.П. Контрольно – измерительные материала. Математика: 6 класс. – М.:ВАКО, 2010.

  4. Юрченко Е.В. Математикака. Тесты. 5-6 классы. – М.: Дрофа, 2003.

  5. Еженедельное учебно-методическое приложение к газете «Первое сентября» Математика.

  6. Научно-теоретический и методический журнал «Математика в школе».

  7. Интернет-ресурс «Единая коллекция цифровых образовательных ресурсов». – http://school-collection.edu.ru.

  8. Интернет-ресурс «Открытый банк заданий по математике». – http://mathege.ru:8080/or/ege/Main.

  9. Мультимедийные презентации.



Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 19.02.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров84
Номер материала ДВ-469089
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх