Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 8 класс А.Г.МордковичЛ.С.Атанасян

Рабочая программа по математике 8 класс А.Г.МордковичЛ.С.Атанасян


  • Математика

Поделитесь материалом с коллегами:





МБОУ Верхличская СОШ



«Утверждаю»

Директор МБОУ Верхличская СОШ

______________ Е.М.Тимошенко

Приказ № от « » сентября 2015 г



Рабочая программа

по математике в 8 классе








Учителя математики высшей категории

Струговец Елены Васильевны















ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.

Рабочая программа учебного курса составлена на основе Примерной программы основного общего образования по математике в соответствии с федеральным компонентом государственного стандарта и с учетом рекомендаций авторских программ по алгебре А.Г. Мордковича, и Л.С.Атанасяна по геометрии.

Согласно базисному учебному плану средней (полной) школы, рекомендациям Министерства образования Российской Федерации и в продолжение начатой в 7 классе линии, выбрана данная учебная программа и учебно-методический комплект.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудности;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

В соответствии с федеральным базисным учебным планом для образовательных учреждений Российской Федерации на изучение математики в 8 классе отводится 5 часов в неделю.

Курс математики 8 класса состоит из следующих предметов: «Алгебра», «Геометрия», которые изучаются блоками. В соответствии с этим составлено тематическое планирование.

Количество часов по темам изменено в связи со сложностью материала и с учетом уровня обученности класса.

Контрольных работ – 15: по геометрии – 5, по алгебре – 10, из них одна вводная, а другая итоговая.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных, контрольных работ и математических диктантов.

Календарно-тематическое планирование составлено на 175 уроков.









Содержание программы учебного курса

Алгебраические дроби (21 час)


Основные понятия. Основное свойство алгебраической дроби. Сложение и вычитание алгебраических дробей с одинаковым знаменателем. Сложение и вычитание алгебраических дробей с разным знаменателем.Умножение и деление алгебраических дробей.Возведение алгебраической дроби в степень.Рациональное выражение.рациональное уравнение.Решение рациональных уравнений(первые представления0 Степень с отрицательным показателем.


Четырехугольники (14 часов)


Многоугольник. Выпуклый многоугольник. Четырехугольник. Параллелограмм. Признаки параллелограмма. Трапеция. Прямоугольник. Ромб, квадрат. Осевая и центральная симметрии.


Площадь (14 часов)


Понятие площади многоугольника. Площадь прямоугольника. Площадь параллелограмма. Площадь треугольника. Площадь трапеции. Теорема Пифагора. Теорема, обратная теореме Пифагора



Функция у =hello_html_m7b7bdbf4.gif, свойства квадратного корня (18 часов)


Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Функция y =х ее свойства и график. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня.

Подобные треугольники (19 часов)


Пропорциональные отрезки, определение подобных треугольников. Отношение площадей подобных треугольников. Первый признак подобия треугольников. Второй признак подобия треугольников.

Третий признак подобия треугольников. Средняя линия треугольник. Пропорциональные отрезки в прямоугольном треугольнике. Практическое приложения подобия треугольников. О подобии произвольных фигур. Синус, косинус и тангенс острого угла прямоугольного тр-ка. Значение синуса, косинуса и тангенса для 300, 450 и 600.


Квадратичная функция, функция у = k/х (18 часа)


Модуль действительного числа. График функции у=|x|


Функция у=kx2, ее свойства и график. Функция у=k/x, ее свойства и график. Как построить график функции у=f(x+l), если известен график функции у=f(x) . Как построить график функции у=f(x)+m, если известен график функции у=f(x) . Как построить график функции у=f(x+l)+m, если известен график функции у=f(x) . Функция у=ax2+bx+c, ее график и свойства. Графическое решение квадратных уравнений.


Квадратные уравнения (21час)


Основные понятия. Формулы корней квадратного уравнения. Рациональные уравнения. Рациональные уравнения как математические модели реальных ситуаций. Еще одна формула корней квадратного уравнения. Теорема Виета. Иррациональные уравнения.



Окружность (17 часов)


Взаимное расположение прямой и окружности. Касательная к окружности. Градусная мера дуги окружности. Теорема о вписанном угле. Свойства биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о пересечении высот треугольника. Вписанная окружность. Описанная окружность.


Неравенства (15 часов)


Свойства числовых неравенств. Исследование функций на монотонность. Решение линейных неравенств. Решение квадратных неравенств. Приближенные значения действительных чисел. Стандартный вид положительного числа.


Итоговое повторение ( часов)





Требования к математической подготовке учащихся:


В результате изучения учебного курса "математика" в 8 классе ученик должен:

Знать/ понимать:

  • Существо понятия алгоритма; примеры алгоритмов;

  • Как используются математические формулы, уравнения; примеры их применения при решении  математических и практических задач.

  • Как математически определённые функции  могут описывать реальные зависимости; приводить примеры такого описания.

  • Как  потребности практики  привели математическую науку к необходимости расширения понятия числа.

  • Вероятностный характер многих закономерностей окружающего мира.

  • Смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

  • существо понятия алгоритма;

  • определение многоугольника, параллелограмма, трапеции, прямоугольника, ромба, квадрата;

  • формулировку теоремы Фалеса, основные типы задач на построение;

  • представление о способе измерения площади многоугольника; формулы вычисления площадей прямоугольника, параллелограмма, ромба, трапеции, квадрата, треугольника;

  • формулировку теоремы Пифагора и обратной ей теоремы;

  • формулировки признаков подобия треугольников, теорем об отношении площадей и периметров подобных треугольников; свойство биссектрисы треугольника;

  • формулировки теорем о средней линии треугольника и трапеции, свойство медиан треугольника, теоремы о пропорциональности отрезков в прямоугольном треугольнике;

  • понятие синуса, косинуса, тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30,45,60,90 градусов; соотношения между сторонами и углами прямоугольного треугольника;

  • случаи взаимного расположения прямой и окружности; формулировку свойства касательной, отрезков касательных; формулировки определений вписанного и центрального углов, теоремы об отрезках пересекающихся хорд; четыре замечательные точки треугольника;

  • понятие вписанной, описанной окружности, теоремы о свойствах вписанного и описанного четырехугольника.

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Уметь:

  • Составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления. Осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через другую.

  • Выполнять основные действия со степенями с  целыми показателями. С многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений.

  • Применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни.

  • Решать линейные, квадратные уравнения, системы двух линейных уравнений.

  • Решать линейные и квадратные неравенства с одной переменной.

  • Решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи.

  • Изображать числа точками на координатной прямой.

  • Определять координаты точки плоскости, строить точки с заданными координатами;  изображать множество решений линейного неравенства

  • Находить значения  функции, заданной формулой, таблицей, графиком по её аргументу;  находить значение аргумента по значению функции, заданной графиком или таблицей.

  • Определять свойства функции по её графику; применять графические представления при решении уравнений, систем, неравенств.

  • Описывать свойства изученных функций, строить их графики.

  • распознавать на чертежах многоугольники и выпуклые многоугольники, на чертежах среди четырехугольников распознавать прямоугольник, параллелограмм, ромб, квадрат, трапецию и ее виды;

  • выполнять чертежи по условию задачи; решать задачи на нахождение углов и сторон параллелограмма, ромба, равнобедренной трапеции; сторон квадрата, прямоугольника; угла между диагоналями прямоугольника;

  • применять теорему Фалеса в процессе решения задач;

  • вычислять площади квадрата, прямоугольника, параллелограмма, ромба, трапеции, треугольника; применять формулы площадей при решении задач; решать задачи на вычисление площадей;

  • находить элементы треугольника, используя теорему Пифагора, определять вид треугольника, используя теорему, обратную теореме Пифагора;

  • находить стороны, углы, отношения сторон, отношения периметров и площадей подобных треугольников, используя признаки подобия; доказывать подобия треугольников, используя наиболее эффективные признаки подобия;

  • находить стороны треугольника по отношению средних линий и периметру; решать прямоугольный треугольник, используя соотношения между сторонами и углами; находить стороны треугольника, используя свойство точки пересечения медиан;

  • находить один из отрезков касательных, проведенных из одной точки по заданному радиусу окружности; находить центральные и вписанные углы по отношению дуг окружности; находить отрезки пересекающихся хорд окружности, используя теорему о произведении отрезков пересекающихся хорд;

  • решать задачи и приводить доказательные рассуждения, используя известные теоремы, обнаруживая возможности их применения.

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

  • Выполнения расчётов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • описания зависимостей  между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций

  • интерпретация графиков реальных зависимостей между величинами.

  • для решения несложных практических задач (например: нахождение сторон квадрата, прямоугольника, прямоугольного треугольника);

  • для решения практических задач, связанных с нахождением площади треугольника, квадрата, прямоугольника, ромба (например: нахождение площади пола);

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

  • для описания реальных ситуаций на языке геометрии;

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур.

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).



Требования к математической подготовке учащихся 8 класса


В результате изучения учебного курса "математика" в 8 классе ученик должен:

Знать/ понимать:

  • Существо понятия алгоритма; примеры алгоритмов;

  • Как используются математические формулы, уравнения; примеры их применения при решении  математических и практических задач.

  • Как математически определённые функции  могут описывать реальные зависимости; приводить примеры такого описания.

  • Как  потребности практики  привели математическую науку к необходимости расширения понятия числа.

  • Вероятностный характер многих закономерностей окружающего мира.

  • Смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

  • существо понятия алгоритма;

  • определение многоугольника, параллелограмма, трапеции, прямоугольника, ромба, квадрата;

  • формулировку теоремы Фалеса, основные типы задач на построение;

  • представление о способе измерения площади многоугольника; формулы вычисления площадей прямоугольника, параллелограмма, ромба, трапеции, квадрата, треугольника;

  • формулировку теоремы Пифагора и обратной ей теоремы;

  • формулировки признаков подобия треугольников, теорем об отношении площадей и периметров подобных треугольников; свойство биссектрисы треугольника;

  • формулировки теорем о средней линии треугольника и трапеции, свойство медиан треугольника, теоремы о пропорциональности отрезков в прямоугольном треугольнике;

  • понятие синуса, косинуса, тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30,45,60,90 градусов; соотношения между сторонами и углами прямоугольного треугольника;

  • случаи взаимного расположения прямой и окружности; формулировку свойства касательной, отрезков касательных; формулировки определений вписанного и центрального углов, теоремы об отрезках пересекающихся хорд; четыре замечательные точки треугольника;

  • понятие вписанной, описанной окружности, теоремы о свойствах вписанного и описанного четырехугольника.

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Уметь:

  • Составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления. Осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через другую.

  • Выполнять основные действия со степенями с  целыми показателями. С многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений.

  • Применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни.

  • Решать линейные, квадратные уравнения, системы двух линейных уравнений.

  • Решать линейные и квадратные неравенства с одной переменной.

  • Решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи.

  • Изображать числа точками на координатной прямой.

  • Определять координаты точки плоскости, строить точки с заданными координатами;  изображать множество решений линейного неравенства

  • Находить значения  функции, заданной формулой, таблицей, графиком по её аргументу;  находить значение аргумента по значению функции, заданной графиком или таблицей.

  • Определять свойства функции по её графику; применять графические представления при решении уравнений, систем, неравенств.

  • Описывать свойства изученных функций, строить их графики.

  • распознавать на чертежах многоугольники и выпуклые многоугольники, на чертежах среди четырехугольников распознавать прямоугольник, параллелограмм, ромб, квадрат, трапецию и ее виды;

  • выполнять чертежи по условию задачи; решать задачи на нахождение углов и сторон параллелограмма, ромба, равнобедренной трапеции; сторон квадрата, прямоугольника; угла между диагоналями прямоугольника;

  • применять теорему Фалеса в процессе решения задач;

  • вычислять площади квадрата, прямоугольника, параллелограмма, ромба, трапеции, треугольника; применять формулы площадей при решении задач; решать задачи на вычисление площадей;

  • находить элементы треугольника, используя теорему Пифагора, определять вид треугольника, используя теорему, обратную теореме Пифагора;

  • находить стороны, углы, отношения сторон, отношения периметров и площадей подобных треугольников, используя признаки подобия; доказывать подобия треугольников, используя наиболее эффективные признаки подобия;

  • находить стороны треугольника по отношению средних линий и периметру; решать прямоугольный треугольник, используя соотношения между сторонами и углами; находить стороны треугольника, используя свойство точки пересечения медиан;

  • находить один из отрезков касательных, проведенных из одной точки по заданному радиусу окружности; находить центральные и вписанные углы по отношению дуг окружности; находить отрезки пересекающихся хорд окружности, используя теорему о произведении отрезков пересекающихся хорд;

  • решать задачи и приводить доказательные рассуждения, используя известные теоремы, обнаруживая возможности их применения.

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

Использовать приобретённые знания и умения в практической деятельности и повседневной жизни для:

  • Выполнения расчётов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • описания зависимостей  между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций

  • интерпретация графиков реальных зависимостей между величинами.

  • для решения несложных практических задач (например: нахождение сторон квадрата, прямоугольника, прямоугольного треугольника);

  • для решения практических задач, связанных с нахождением площади треугольника, квадрата, прямоугольника, ромба (например: нахождение площади пола);

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

  • для описания реальных ситуаций на языке геометрии;

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур.

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).




Учебно-тематическое планирование


Наименование разделов и тем алгебры

Всего часов

1

Алгебраические дроби


21

2

Четырехугольники

14

3

Площадь

14

4

Функция y=√x. Свойства квадратного корня


18

5

Подобные треугольники

19

6

Квадратичная функция. Функция у=k


18

7

Квадратные уравнения


21

8

Окружность

17

9

Неравенства


15


Повторение. Решение задач.





ИТОГО


170



























Автор
Дата добавления 28.09.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров152
Номер материала ДВ-016557
Получить свидетельство о публикации


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх