Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 9 класс (Атанасян+Макарычев)

Рабочая программа по математике 9 класс (Атанасян+Макарычев)


  • Математика

Документы в архиве:

Название документа КТП по алгебре 9 класс.docx

Поделитесь материалом с коллегами:


Раздел 5. Календарно-тематическое планирование уроков алгебры

п/п

Раздел, название урока в

поурочном планировании

Дидактические единицы образовательного процесса

Примечание

Коли-

чество

часов

Дата

план

факт

ГЛАВА I. КВАДРАТИЧНАЯ ФУНКЦИЯ.


25



1-3

Функция. Область определения и область значений функции, п.1.

Знать:

  • прием нахождения приближенных корней;

  • понятие квадратного трехчлена;

  • формулу разложения квадратного трехчлена на множители;

  • понятие функции и другие функциональные терминологии;

  • понятия о возрастании и убывании функции, промежутках знакопостоянства;

  • основные функции курса алгебры 7 – 8 классов и их свойства;

  • понятия четной и нечетной функции.

Уметь:

  • выделять квадрат двучлена из квадратного трехчлена;

  • раскладывать трехчлен на множители;

  • правильно употреблять функциональную терминологию, понимать ее в тексте, в речи учителя, в формулировке задач;

  • находить значения функций, заданных формулой, таблицей, графиком и решать; решать обратную задачу;

находить по графику промежутки возрастания и убывания функции, промежутки знакопостоянства, наибольшее и наименьшее значения.


3



4-6

Свойства функций, п.2.


3



7

Квадратный трехчлен и его корни, п.3.


1



8-10

Разложение квадратного трехчлена на множители, п.4.


3



11-12

Функция y=ax2 , ее график и свойства, п.5.

Знать:

  • свойства и особенности графиков функций y=ax2, y=ax2+ n, y=a(x-m)2, y=ax2+bx+c;

  • график функции y=ax2+bx+c можно получить из графика функции y=ax2 с помощью двух параллельных переносов;

Уметь:

  • строить график квадратичной функции;

  • выполнять простейшие преобразования графиков;

  • указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы;



2



13-14

Графики функций y=ax2+ n, y=a(x-m)2, п.6.


2



15-17

Построение графика квадратичной функции , п.7.


3



18

Контрольная работа №1 по теме «Функции и их свойства. Квадратный трехчлен», п.п. 1 – 4.



1



19

Функция у=хп, п. 8.

Знать:

  • свойства степенной функции при четном и нечетном натуральном показателе;

  • представление о нахождении значений корня с помощью микрокалькулятора;

  • понятие корня п-ой степени; свойства корней n-ой степени.

Уметь:

  • находить по графикам квадратичной и степенной функций промежутки возрастания и убывания функции, промежутки, в которых функция сохраняет знак.



1



20-21

Корень п-ой степени, п. 9.


2



22

Дробно-линейная функция и ее график, п. 10.


1



23-24

Степень с рациональным показателем, п. 11.


2



25

Контрольная работа №2 по теме «Квадратичная функция»,

п.п. 5 – 11.



1



ГЛАВА II. УРАВНЕНИЯ И НЕРАВЕНСТВА С ОДНОЙ ПЕРЕМЕННОЙ.

Цель: систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида hello_html_3ba36351.gif или hello_html_5c5b978e.gif, где hello_html_m113dabf.gif.

17



26-27

Целое уравнение и его корни, п.12.

Знать:

  • понятие целого уравнения и его степени;

  • основные методы решения целых рациональных уравнений.

Уметь:

решать целые уравнения третьей и четвертой степени с помощью разложения на множители и введения вспомогательной переменной.


2



28-33

Дробные рациональные уравнения, п. 13.

Знать:

  • понятие дробного рационального уравнения, метода интервалов;

  • основные методы решения целых рациональных уравнений, некоторые специальные приемы решения дробно-рациональных уравнений;

  • понятие неравенств второй степени с одной переменной и методы их решений.

Уметь:

  • применять графическое представление для решения неравенств второй степени с одной переменной;

решать рациональные неравенства методом интервалов.


6



34-36

Решение неравенств второй степени с одной переменной,

п. 14.


3



37-39

Решение неравенств методом интервалов, п. 15.


3



40-41

Некоторые приемы решения целых уравнений, п. 16.


2



42

Контрольная работа №3 по теме «Уравнения и неравенства с одной переменной», п.п. 12 – 16.


1



ГЛАВА III. УРАВНЕНИЯ И НЕРАВЕНСТВА С ДВУМЯ ПЕРЕМЕННЫМИ.

Цель: выработать умение решать простейшие системы, содержащие уравнений второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

20



43-44

Уравнение с двумя переменными и его график, п.17.

Знать:

  • понятия системы уравнений, неравенств с двумя переменными;

  • уравнение окружности.

Уметь:

  • решать текстовые задачи методом составления систем;

  • решать системы уравнений методом подстановки, методов ведения вспомогательной переменной;

  • решать графически системы уравнений;

  • решать простейшие системы неравенств второй степени.



2



45-47

Графический способ решения систем уравнений, п.18.


3



48-51

Решение систем уравнений второй степени, п. 19.


4



52-54

Решение задач с помощью уравнений второй степени, п. 20.


3



55

Контрольная работа №4


1



56-57

Неравенства с двумя переменными, п. 21.


2



58-59

Системы неравенств с двумя переменными, п. 22.


2



60-61

Некоторые приемы решения систем уравнений второй степени с двумя переменными, п. 23.


2



62

Контрольная работа №5 по теме «Уравнения и неравенства с двумя переменными», п.п. 17 – 23.


1



ГЛАВА IV. АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИИ.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

17



63

Последовательности, п. 24.

Знать:

  • понятие последовательности, n-го члена последовательности; арифметическая прогрессия – последовательность особого вида; формулы n-го члена последовательности, арифметической прогрессии; формулы суммы n первых членов для арифметической прогрессии.

Уметь:

  • использовать индексные обозначения;

решать упражнения и задачи, в том числе практического содержания с непосредственным применением изучаемых формул.


1



64-66

Определение арифметической прогрессии. Формула п-го члена арифметической прогрессии, п.25.


3



67-69

Формула суммы п первых членов арифметической прогрессии, п.26.


3



70

Контрольная работа №6 по теме «Арифметическая прогрессия», п.п. 24 – 26.


1



71-73

Определение геометрической прогрессии. Формула п-го члена геометрической прогрессии, п. 27.

Знать:

  • геометрическая прогрессия – последовательность особого вида;

  • формулы n-го члена геометрической прогрессии;

  • формулы n членов для геометрической прогрессии, для бесконечно убывающей геометрической прогрессии.

Уметь:

решать упражнения и задачи, в том числе практического содержания с непосредственным применением изучаемых формул.


3



74-77

Формула суммы п первых членов геометрической прогрессии, п. 28.


4



78

Метод математической индукции, п. 29.


1



79

Контрольная работа №7 по теме «Геометрическая прогрессия», п.п. 27 – 29.


1



ГЛАВА V. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ.

Цель: ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

10



80

Примеры комбинаторных задач, п. 30.

Знать:

  • понятия: перестановки, размещения, сочетания; относительной частоты, случайного события;

  • различные подходы к определению вероятности случайного события;

  • формулы для подсчета числа перестановок, размещений, сочетаний.

Уметь:

  • решать простейшие комбинаторные задачи на применение изученных формул;

  • решать задачи на нахождение вероятностей случайных событий.



1



81-82

Перестановки, п. 31.


2



83-84

Размещения, п. 32.


2



85-86

Сочетания, п. 33.


2



87

Относительная частота случайного события, п. 34.


1



88

Вероятность равновозможных событий, п. 35.


1



89

КОНТРОЛЬНАЯ РАБОТА №8 по теме «Элементы комбинаторики и теории вероятностей», п.23, 24.


1



ИТОГОВОЕ ПОВТОРЕНИЕ.

РЕШЕНИЕ ЗАДАЧ ПО КУРСУ VIIIX КЛАССОВ.

ОСНОВНАЯ ЦЕЛЬ: повторить, закрепить и проверить знания, умения и навыки учащихся по изученному материалу курса алгебра.

13



90-92

Повторение

Вычисления.

Знать:

  • математические термины и формулы;

  • различные методы решения задач, пропорций, уравнений и неравенств, систем уравнений и неравенств;

  • графики основных элементарных функций и их свойства;

  • способы преобразования выражений.

Уметь:

  • правильно употреблять математические термины и формулы;

  • применять различные методы при решении задач, пропорций, уравнений и неравенств, систем уравнений и неравенств;

выполнять преобразование различных выражений.


3



93-94

Повторение

Тождественные преобразования.


2



95-96

Повторение

Уравнения и системы уравнений.


2



97-98

Повторение

Неравенства.


2



99-100

Повторение

Функции.


2



101-102


Итоговая контрольная работа №9.


2





Название документа РП по математике 9 класс.docx

Поделитесь материалом с коллегами:



Раздел 1. Пояснительная записка

Рабочая программа по математике разработана в соответствии с федеральным государственным образовательным стандартом, на основе:

  • Закона РФ от 10 июля 1992 года №3266-1 (ред. от 27.12.2009г.) «Об образовании»;

  • Федерального компонента государственного стандарта среднего (полного) общего образования, утвержденного приказом Министерства образования РФ от 05.03.2004 №1089;

  • Приказа Министерства образования РФ «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2015/2016 учебный год»;

  • Учебного плана 8-х классов МКОУ «СОШ №2 пос. им К. Либкнехта» на 2015-2016 учебный год, утвержденного приказом по МКОУ «СОШ №2 пос. им К. Либкнехта».

  • Сборник рабочих программ. 7-9 классы. Пособие для учителей общеобразовательных учреждений / сост. Т.А.Бурмистрова. – М.: Просвещение, 2012), федерального перечня учебников, рекомендованных или допущенных к использованию в образовательном процессе в образовательных учреждениях, базисного учебного плана, тематического планирования учебного материала, с учетом преемственности.

Для работы по программе предполагается использование учебно-методического комплекта: учебник, методическое пособие для учителя, методическая и вспомогательная литература (пособия для учителя, видеофильмы, учебно-наглядные пособия). Программа реализуется в адресованным учащимся учебниках

  • «Алгебра 9 класс» авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.В. Суворова. Москва, «Просвещение» 2014г.

  • «Геометрия, 7 - 9» авторы Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. М.: Просвещение, 2013г.

Обучение математике в 9 классе направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса обучающиеся овладевают приёмами вычислений на калькуляторе.

Основные задачи:

  • предусмотреть возможность компенсации пробелов в подготовке школьников и недостатков в их математическом развитии, развитии внимания и памяти;

  • обеспечить уровневую дифференциацию в ходе обучения;

  • обеспечить базу математических знаний, достаточную для будущей профессиональной деятельности или последующего обучения в старшей школе;

  • сформировать устойчивый интерес учащихся к предмету;

  • развивать математические и творческие способности учащихся;

  • подготовить обучающихся к осознанному и ответственному выбору жизненного и профессионального пути;

  • расширить понятие множества чисел (от натурального до действительного);

  • изучить степенную, показательную, логарифмическую функции их свойства и графики;

  • овладеть основными способами решения показательных, логарифмических, иррациональных уравнений и неравенств;

  • рассмотреть преобразование тригонометрических выражений (включая решение уравнений) по формулам как алгебраическим, так и тригонометрическим.



Раздел 2.Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

В курсе алгебры 9 класса расширяются сведения о свойствах функций, познакомить обучающихся со свойствами и графиком квадратичной функции; систематизируются и обобщаются сведения о решении целых и дробных рациональных уравнений с одной переменной, формируется умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где аhello_html_m9050310.gif0; вырабатывается умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; даются понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида; знакомятся обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; вводятся понятия относительной частоты и вероятности случайного события.

В курсе геометрии 9-го класса изучается метод координат на плоскости. Учащиеся дополняют знания о треугольниках сведениями, о методах вычисления элементов произвольных треугольниках, основанных на теоремах синусов и косинусов. Даются систематизированные сведения о правильных многоугольниках, об окружности, вписанной в правильный многоугольник и описанной. Особое место занимает решение задач на применение формул. Даются первые знания о движении, повороте и параллельном переносе. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий.



Раздел 3. Место учебного предмета в учебном плане

Программа обеспечивает обязательный минимум подготовки учащихся по геометрии, определяемый образовательным стандартом, соответствует общему уровню развития и подготовки учащихся данного возраста. Согласно учебному плану для образовательных учреждений Российской Федерации и учебному плану МКОУ «СОШ №2 пос. им. К. Либкнехта» на 2015-2016 учебный год на изучение математики в 9 классе отводится 6 часов (5 часов+ 1 час) в неделю. Один час добавлен из компонента образовательного учреждения и нацелен на повышенный уровень математической подготовки учащихся, рассмотрение дополнительных вопросов, способствующих развитию математического кругозора, освоению более продвинутого математического аппарата, математических способностей. Все это дает возможность существенного обогатить круг решаемых математических задач.

Рабочая программа по математике для 9-х классов рассчитана на 170 часа в год. На изучение алгебры и элементов логики и статистики отводится 3 часа в неделю, на изучение геометрии отводится 2 часа в неделю. Из них на изучение отводится:

раздел «Алгебра» - 102 часа;

раздела « Геометрия» - 68 часов.

При этом в рабочей программе предусмотрен резерв свободного времени (в объеме 9 часов по геометрии и 29 часов по алгебре) для повторения и систематизации учебного материала.

Уроков контроля:

  1. Алгебра -8 часов

  2. Геометрия - 5 часов.

Кроме того, предусмотрен текущий контроль в форме самостоятельных работ.


Формы контроля знаний, умений, навыков.

Контроль результатов обучения осуществляется через использование следующих видов оценки и контроля ЗУН: входящий, текущий, тематический, итоговый. При этом используются различные формы оценки и контроля ЗУН: контрольная работа (КР), домашняя контрольная работа (ДКР), самостоятельная работа (СР), домашняя практическая работа (ДПР), домашняя самостоятельная работа (ДСР), тест(Т), контрольный тест (КТ), математический диктант (МД), устный опрос (УО).

Срок реализации программы - 1 учебный год. Учащиеся проходят итоговую аттестацию – в форме ОГЭ.


Раздел 4. Содержание учебного курса

Алгебра

  1. Свойства функций. Квадратичная функция (25 час.)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где аhello_html_m6e02ffa5.gif0.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где аhello_html_m6e02ffa5.gif0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида hello_html_m72d88b4f.gif, hello_html_66632f5e.gif. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

  1. Уравнения и неравенства с одной переменной (17 час.)

Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.

Цель: систематизировать и обобщить сведения о решении целых с одной переменной, Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

  1. Уравнения и неравенства с двумя переменными (20 час.)

Цель: Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и неравества с двумя переменными. Текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.



В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Определять, является ли пара чисел решением неравенства.Изображать на координатной плоскости множество точек, задаваемое неравенством. Иллюстрировать на координатной плоскости множество решений системы неравенств.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.



  1. Прогрессии (17 час.)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

  1. Степенная функция. Корень n -й степени

Четная и нечетная функция. Функция у = хn. Определение корня n-й степени. Вычисление корней n -й степени.

Цель: ввести понятие корня n -й степени.

В данной теме продолжается изучение свойств функций: вводятся понятия четной и нечетной функции, рассматриваются свойства степенной функции с натуральным показателем. Изучение корней ограничивается введением понятия корня n-й степени и выполнением несложных заданий на вычисление корней n-й степени, в частности кубических корней.

Свойства корней n-й степени, понятие степени с рациональным показателем и ее свойства не изучаются. Этот материал будет рассмотрен в старшей школе.

  1. Элементы комбинаторики и теории вероятностей (10 час.)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

Геометрия

Глава 9. Векторы. Метод координат (18 час.)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число);

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.



Глава 10. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (11 час.)

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольники (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение для векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.



Глава 11. Длина окружности и площадь круга (12 час.)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2л-угольника, если дан правильный л-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.



Глава 12. Движения (9 час.)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движении основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

Глава 13. Начальные сведения из стереометрии. Об аксиомах геометрии (9 час.)

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их объемов.

Цель: дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.

Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования. В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

Повторение. Решение задач (13+9 час.)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7-9 классов.

Содержание материала

Количество часов

1

Глава I. Квадратичная функция

25

2

Глава II. Уравнения и неравенства с одной переменной

17

3

Глава III. Уравнения и неравенства с двумя переменными

20

4

Глава IV. Арифметическая и геометрическая прогрессии

17

5

Глава V. Элементы комбинаторики и теории вероятностей

10

6

Глава IX. Векторы

8

7

Глава X. Метод координат

10

8

Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

11

9

Глава XII. Длина окружности и площадь круга

12

10

Глава XIII. Движения

9

11

Глава XIV. Начальные сведения из стереометрии

9

12

Повторение

13+9


Всего

170













Раздел 6. Учебно-методическое и материально-техническое обеспечение образовательного процесса

Материально-техническое обеспечение

  • Наглядные пособия для курса математики. Презентации.

  • Таблицы, чертёжные принадлежности и инструменты.

  • Компьютер. Компьютеры с наушниками для учащихся.

  • Проектор.

  • МФУ.

  • Интерактивная доска Smart Bord.

  • Документ-камера.



Учебно-методическое обеспечение

  1. Алгебра: Учебник для 9 класса общеобразовательных учреждений / Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова; Под ред. С.А.Теляковского. – 10-е изд. – М.: Просвещение, 2014. – 270 с. : ил.

  2. Геометрия 7, 8, 9. Контрольные работы./ Н.Б. Мельникова. М.: Экзамен, 2014

  3. Геометрия, 7 – 9: Учебник для общеобразовательных учреждений / Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 12-е изд. – М.: Просвещение, 2013 г. – 384 с.: ил.

  4. Дидактические материалы по геометрии 7, 8, 9./Н.Б. Мельникова, Г.А. Захарова. М.: Экзамен, 2014

  5. Методические материалы: Макарычев Ю.Н. Алгебра, 7 -9. Методическое пособие для учителей. М.: Мнемозина,2010

  6. Рабочая тетрадь по геометрии: К учебнику Л.С.Атанасяна и др. «Геометрия 7 – 9» : 9-й класс/ Т.М.Тищенко. – М.: ООО «Издательство АСТ» : ООО «Издательство Астрель», 2005.

  7. Тесты по геометрии 7, 8, 9./ А.В. Фарков. Экзамен, 2014



Раздел 7. Планируемые результаты изучения курса математики в 8 классе

Требования к результатам обучения направлены на реализацию деятельностного и личностно ориентированного подходов; освоение учащимися интеллектуальной и практической деятельности; овладение знаниями и умениями, востребованными в повседневной жизни, позволяющими ориентироваться в окружающем мире, значимыми для сохранения окружающей среды и собственного здоровья.

В результате изучения курса арифметика учащиеся должны знать/понимать:

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;


В результате изучения курса алгебры 9 класса учащиеся должны знать/понимать:

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

  • решать линейные и квадратные неравенства с одной переменной и их системы;

  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций (у=кх, где кhello_html_m9050310.gif0, у=кх+b, у=х2, у=х3, у =hello_html_m78e30021.gif, у=hello_html_m68e71d1b.gif, у=ах2+bх+с, у= ах2+n у= а(х - m) 2 ), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

  • интерпретации графиков реальных зависимостей между величинами;


В результате изучения раздела «Элементы логики, комбинаторики, статистики и теории вероятности» учащиеся должны знать:

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;

  • вычислять средние значения результатов измерений;

  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);

  • распознавания логически некорректных рассуждений;

  • записи математических утверждений, доказательств;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • решения учебных и практических задач, требующих систематического перебора вариантов;

  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

  • понимания статистических утверждений.


В результате изучения курса геометрии учащиеся должны знать/понимать:

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

  • в простейших случаях строить сечения и развертки пространственных тел;

  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;

  • расчетов, включающих простейшие тригонометрические формулы;

  • решения геометрических задач с использованием тригонометрии

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).































13



Автор
Дата добавления 24.12.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров260
Номер материала ДВ-283486
Получить свидетельство о публикации


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх