Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 7 класс. Автор: Г. В. Дорофеев

Рабочая программа по математике 7 класс. Автор: Г. В. Дорофеев

Международный конкурс по математике «Поверь в себя»

для учеников 1-11 классов и дошкольников с ЛЮБЫМ уровнем знаний

Задания конкурса по математике «Поверь в себя» разработаны таким образом, чтобы каждый ученик вне зависимости от уровня подготовки смог проявить себя.

К ОПЛАТЕ ЗА ОДНОГО УЧЕНИКА: ВСЕГО 28 РУБ.

Конкурс проходит полностью дистанционно. Это значит, что ребенок сам решает задания, сидя за своим домашним компьютером (по желанию учителя дети могут решать задания и организованно в компьютерном классе).

Подробнее о конкурсе - https://urokimatematiki.ru/


Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

«Утверждаю»

Директор МОУСОШ № 23

Л.А.Паздникова__________

Приказ № ___ от «____»_____2015г.


«Согласовано»

Зам директора по УВР

О.Н.Васильцова_____________

«____»_________________2015г

« Рассмотрено»

Руководитель ШМО

Е.М.Прейма ____________

Протокол № ___ от«__»____2015г.





Муниципальное общеобразовательное учреждение

Средняя общеобразовательная школа с углубленным изучением предметов

художественно-эстетического цикла № 23 г. Комсомольска-на-Амуре


РАБОЧАЯ ПРОГРАММА по математике

7ф класса ( филологический профиль)




Составитель: учитель математики

Виктория Ивановна Сидоренко








2015-2016 уч. г.



Структура документа

  1. пояснительная записка;

  2. требования к результатам обучения и освоению содержания курса;

  3. планируемые результаты изучения курса;

  4. содержание тем учебного курса ;

  5. содержание учебного материала;

  6. перечень контрольных работ;

  7. критерии и нормы оценки знаний обучающихся;

  8. перечень УМК;

  9. приложение (календарно-тематическое планирование).














ПОЯСНИТЕЛЬНАЯ ЗАПИСКА


Программа по математике (алгебре) составлена в соответствии с требованиями федерального компонента государственного образовательного стандарта основного общего образования и положения о разработке и утверждении рабочих программ по обязательным учебным предметам, элективным и факультативным курсам, программам по организации внеурочной деятельности в муниципальном общеобразовательном учреждении МОУ СОШ с углубленным изучением предметов художественно-эстетического цикла № 23 г. Комсомольска-на-Амуре, программы по алгебре для 7-9 классов, составитель: Т.А.Бурмистрова, издательство Москва «Просвещение», 2014 год. Данная рабочая программа составлена для изучения алгебры в 7ф классе. Программа составлена на 207 часов, учебник: «Алгебра» для 7 класса основной школы. - М.: Просвещение, 2013.; Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович.

Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников,способствуют формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.

Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты

математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно






раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.




ОБЩАЯ ХАРАКТЕРИСТИКА КУРСА


В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей обще интеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая «Математика в историческом развитии» способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует раз- витию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе.

Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из

разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как

языка для построения математических моделей процессов и явлений реального мира.

Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.



МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Базисный учебный (образовательный) план на изучение алгебры в 7—9 классах основной школы отводит 3 часа в неделю в течение каждого года обучения, всего 335 уроков (в 7 классе 1 четверть 5 ч).


ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ И ОСВОЕНИЮ СОДЕРЖАНИЯ КУРСА

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

  • сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и по- знанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

  • сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

  • сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

  • умение ясно, точно, грамотно излагать свои мысли в уст- ной и письменной речи, понимать смысл поставленной за- дачи, выстраивать аргументацию, приводить примеры и контр примеры;

  • представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • креативность мышления, инициатива, находчивость, ак тивность при решении алгебраических задач;

  • умение контролировать процесс и результат учебной математической деятельности;

  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

метапредметные:

  • умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  • умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить не- обходимые коррективы;

  • умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  • осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

  • умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  • умение создавать, применять и преобразовывать знаково- символические средства, модели и схемы для решения учебных и познавательных задач;

  • умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

  • сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности).ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУ

  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.


предметные:

  • умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;

  • владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их из- учения, об особенностях выводов и прогнозов, носящих вероятностный характер;

  • умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

  • умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между вели- чинами на основе обобщения частных случаев и эксперимента;

  • умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;

  • овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;

  • овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;

  • умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному приме- нению известных алгоритмов.


СОДЕРЖАНИЕ КУРСА АРИФМЕТИКА


Рациональные числа. Расширение множества натуральных чисел до множества целых. Множества целых чисел до множе- ства рациональных. Рациональное число как отношение m , где

n

т — целое число, nнатуральное. Степень с целым показателем.

Действительные числа. Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем.

Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени десяти в записи числа. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.

АЛГЕБРА

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвёртой степеней. Решение дробно-

рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя перемнными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом. Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.


ФУНКЦИИ

Основные понятия. Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и

свойства. Линейная функция, её график и свойства. Квадратичная функция, её график и свойства. Степенные функции с

натуральными показателями 2 и 3, их графики и свойства. Графики

y

3 x

функций y = , y = , у = | x |.

Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.

Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n-х членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.


ВЕРОЯТНОСТЬ И СТАТИСТИКА

Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Ста- тистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события Статистический подход к понятию вероятности. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

ЛОГИКА И МНОЖЕСТВА

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, харак- теристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Понятие о равносильности, следовании, употребление логических связок если ..., то ..., в том и только в том случае, логические связки и, или.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырёх. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа. Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.


ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА АЛГЕБРЫ В 7—9 КЛАССАХ

РАЦИОНАЛЬНЫЕ ЧИСЛА

Выпускник научится:


понимать особенности десятичной системы счисления;

владеть понятиями, связанными с делимостью натуральных чисел;

выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

сравнивать и упорядочивать рациональные числа;

выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять не- сложные практические расчёты.

Выпускник получит возможность:


познакомиться с позиционными системами счисления с основаниями, отличными от 10;

углубить и развить представления о натуральных числах и свойствах делимости;

научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Выпускник научится:


использовать начальные представления о множестве действительных чисел;

владеть понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ

Выпускник научится:

использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.


АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ

Выпускник научится:

владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

выполнять разложение многочленов на множители.

Выпускник получит возможность:

научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

применять тождественные преобразования для решения задач из различных разделов курса (например, для на- хождения наибольшего/наименьшего значения выражения).

УРАВНЕНИЯ

Выпускник научится:

решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.



НЕРАВЕНСТВА

Выпускник научится:

понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

применять аппарат неравенств для решения задач из раз- личных разделов курса.

Выпускник получит возможность научиться:

разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения раз- нообразных математических задач и задач из смежных предметов, практики;

применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.


ОСНОВНЫЕ ПОНЯТИЯ. ЧИСЛОВЫЕ ФУНКЦИИ

Выпускник научится:

понимать и использовать функциональные понятия и язык (термины, символические обозначения);

строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

использовать функциональные представления и свой- ства функций для решения математических задач из раз- личных разделов курса.


ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

Выпускник научится:

понимать и использовать язык последовательностей (тер- мины, символические обозначения);

применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;

понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.



ОПИСАТЕЛЬНАЯ СТАТИСТИКА

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.


СЛУЧАЙНЫЕ СОБЫТИЯ И ВЕРОЯТНОСТЬ

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

КОМБИНАТОРИКА

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

























СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

VII класс

  1. Дроби и проценты (13 ч.)

Обыкновенные и десятичные дроби. Сравнение дробей. Вычисления с рациональными числами. Степень с натуральным показателем. Задачи на проценты. Статистические характеристики: среднее арифметическое, мода, размах.

Основная цель - систематизировать и обобщить сведения об обыкновенных и десятичных дробях, обеспечить на этой основе дальнейшее развитие вычислительных навыков, умение решать задачи на проценты; сформировать первоначальные умения статистического анализа числовых данных.

В соответствии с идеологией курса данная тема представляет собой блок арифметических вопросов. Основное внимание уделяется дальнейшему развитию вычислительной культуры: отрабатываются умения находить десятичные эквиваленты или десятичные приближения обыкновенных дробей, выполнять действия с числами, в том числе с использованием калькулятора.

Продолжается начатая в 6 классе работа по вычислению числовых значений буквенных выражений. Вычислительные навыки учащихся получают дальнейшее развитие при изучении степени с натуральным показателем; учащиеся должны научиться находить значения выражений, содержащих действие возведения в степень, а также записывать большие и малые числа с использованием степеней числа 10. Продолжается решение более сложных по сравнению с предыдущим годом задач на проценты. Основное содержание последнего блока темы — знакомство с некоторыми статистическими характеристиками. Учащиеся должны научиться в несложных случаях находить среднее арифметическое, моду и размах числового ряда.

  1. Прямая и обратная пропорциональности (8 ч.)

Представление зависимости между величинами с помощью формул. Прямая пропорциональность. Обратная пропорциональность. Пропорции, решение задач с помощью пропорций. Пропорциональное деление

Основная цель - сформировать представления о прямой и обратной пропорциональностях величин; ввести понятие пропорции и научить учащихся использовать пропорции при решении задач.

Изучение темы начинается с обобщения и систематизации знаний учащихся о формулах, описывающих зависимости между величинами. Вводится понятие переменной, которое с этого момента должно активно использоваться в речи учащихся. В результате изучения материала учащиеся должны уметь осуществлять перевод задач на язык формул, выполнять числовые подстановки в формулы, выражать переменные из формул. Особое внимание уделяется формированию представлений о прямой и обратной пропорциональной зависимостях и формулам, выражающим такие зависимости между величинами. Формируется представление о пропорции и решении задач с помощью пропорций.

  1. Введение в алгебру (11ч.)

Буквенные выражения. Числовые подстановки в буквенное выражение. Преобразование буквенных выражений: раскрытие скобок, приведение подобных слагаемых.

Основная цель - сформировать у учащихся первоначальные представления о языке алгебры, о буквенном исчислении; научить выполнять элементарные базовые преобразования буквенных выражений.

В 7 классе начинается систематическое изучение алгебраического материала. Введение буквенных равенств мотивируется опытом работы с числами, осознанием и обобщением приемов вычислений. На этом этапе раскрывается смысл свойств арифметических действий как законов преобразований буквенных выражений, формируются умения упрощать несложные произведения, раскрывать скобки, приводить подобные слагаемые.

  1. Уравнения (12 ч.)

Алгебраический способ решения задач. Корни уравнения. Решение уравнений. Решение задач с помощью уравнений

Основная цель - познакомить учащихся с понятиями «уравнение» и «корень уравнения», с некоторыми свойствами уравнений; сформировать умение решать несложные линейные уравнения с одной переменной; начать обучение решению текстовых задач алгебраическим способом.

Рассматриваются некоторые приемы составления уравнения по условию задачи, возможность составления разных уравнений по одному и тому же условию, формируется умение выбирать наиболее предпочтительный для конкретной задачи вариант уравнения. Переход к алгебраическому методу решения задач одновременно служит мотивом для обучения способу решения уравнений. Основное внимание в этой теме уделяется решению линейных уравнений с одной переменной, показываются некоторые технические приемы решения.

  1. Координаты и графики (12 ч.)

Числовые промежутки. Расстояние между точками на координатной прямой. Множества точек на координатной плоскости. Графики зависимостей у = х, у = х2, у = х3, у = | х |. Графики реальных зависимостей.

Основная цель - развить умения, связанные с работой на координатной прямой и на координатной плоскости; познакомить с графиками зависимостей у = х, у = -х, у = х2, у = х3, у = | х |; сформировать первоначальные навыки интерпретации графиков реальных зависимостей.

При изучении курса математики в 5 - 6 классах учащиеся познакомились с идеей координат. В этой теме рассматриваются различные множества точек на координатной прямой и на координатной плоскости, при этом формируется умение переходить от алгебраического описания множества точек к геометрическому изображению и наоборот. Рассматривается формула расстояния между точками координатной прямой. При изучении темы учащиеся знакомятся с графиками таких зависимостей, как у = х, у = - х,

у = х2, у = х3, у = | х |. В результате учащиеся должны уметь достаточно быстро строить каждый из перечисленных графиков, указывая его характерные точки. Сформированные умения могут стать основой для выполнения заданий на построение графиков кусочно-заданных зависимостей. Специальное внимание в данной теме уделяется работе с графиками реальных зависимостей - температуры, движения и пр., причем акцент должен быть сделан на считывание с графика нужной информации. Важно, чтобы учащиеся получили представление об использовании графиков в самых различных областях человеческой деятельности.

  1. Свойства степени с натуральным показателем (11 ч.)

Произведение и частное степеней с натуральными показателями. Степень степени, произведения и дроби. Решение комбинаторных задач. Формула перестановок.

Основная цель - выработать умение выполнять действия над степенями с натуральными показателями; научить применять правило умножения при решении комбинаторных задач.

Учащимся уже знакомо определение степени с натуральным показателем, и у них есть некоторый опыт преобразования выражений, содержащих степени, на основе определения. Основное содержание данной темы состоит в рассмотрении свойств степени и выполнении действий со степенями. Сформированные умения могут найти применение при выполнении заданий на сокращение дробей, числители и знаменатели которых - произведения, содержащие степени. В этой же теме продолжается обучение решению комбинаторных задач, в частности задач, решаемых на основе комбинаторного правила умножения. Дается специальное название одному из видов комбинаций - перестановки и рассматривается формула для вычисления числа перестановок. Это первая комбинаторная формула, сообщаемая учащимся.

  1. Многочлены (20 ч.)

Одночлены и многочлены. Сложение, вычитание и умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Решение задач с помощью уравнений

Основная цель - выработать умения выполнять действия с многочленами, применять формулы квадрата суммы и квадрата разности, куба суммы и куба разности для преобразования квадрата и куба двучлена в многочлен.

Изучение данной темы опирается на знания, полученные при изучении темы «Введение в алгебру». Используются свойства алгебраических сумм и произведений, правила раскрытия скобок и приведения подобных слагаемых. Терминами «одночлен» и «многочлен» называются такие алгебраические выражения, с которыми учащиеся, по сути, уже имели дело. Основное внимание в данной теме уделяется рассмотрению алгоритмов выполнения действий над многочленами - сложения, вычитания, умножения, при этом подчеркивается следующий теоретический факт: сумму, разность и произведение многочленов всегда можно представить в виде многочлена. В ходе практической деятельности учащиеся должны выполнить задания комплексного характера, предусматривающие выполнение нескольких действий. Однако следует иметь в виду, что на этом этапе основным результатом является овладение собственно алгоритмами действий над многочленами, а преобразованиям целых выражений будет уделено внимание еще и в 8 классе. Овладение действиями с многочленами сопровождается развитием умений решать линейные уравнения и применять алгебраический метод решения текстовых задач.

  1. Разложение многочленов на множители (16 ч.)

Вынесение общего множителя за скобки. Способ группировки. Формула разности квадратов, формулы суммы кубов и разности кубов. Разложение на множители с применением нескольких способов. Решение уравнений с помощью разложения на множители.

Основная цель - выработать умение выполнять разложение на множители с помощью вынесения общего множителя за скобки и способом группировки, а также с применением формул сокращенного умножения.

Вопрос о разложении многочленов на множители дается в виде отдельной темы, в которую отнесено также знакомство с формулами разности квадратов, разности и суммы кубов. Рассматриваются некоторые специальные приемы преобразования многочленов, после которых становится возможным применение способа группировки: разбиение какого-то члена многочлена на два слагаемых и более, а также прием «прибавить - вычесть». Следует продолжить формирование умений сокращать дроби и рассмотреть приемы решения уравнений на основе равенства произведения нулю.

  1. Частота и вероятность (7ч.)

Относительная частота случайного события. Вероятность случайного события

Основная цель - показать возможность оценивания вероятности случайного события по его частоте.

Особенностью предлагаемой методики является статистический подход к понятию вероятности: вероятность случайного события оценивается по его частоте при проведении большой серии экспериментов. Процесс стабилизации частоты полезно иллюстрировать с помощью графика.

10. Повторение (15ч.)

VIII класс

1. Алгебраические дроби (23ч.)

Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение и деление алгебраических дробей. Степень с целым показателем и ее свойства. Выделение множителя - степени десяти - в записи числа.

Основная цель - сформировать умения выполнять действия с алгебраическими дробями, действия со степенями с целым показателем; развить навыки решения текстовых задач алгебраическим методом.

Эта тема является естественным продолжением и развитием начатого в 7 классе систематического изучения преобразований рациональных выражений. Изложение целесообразно строить, как и при изучении преобразований буквенных выражений в 7 классе, с опорой на опыт работы с числами. Главным результатом обучения должно явиться владение алгоритмами сложения, вычитания, умножения и деления алгебраических дробей. Количество и уровень сложности заданий, требующих выполнения нескольких действий, определяются самим учителем в зависимости от возможностей класса. При этом необходимо иметь в виду, что в соответствии с общей идеей развития содержания курса по спирали в 9 классе предусмотрен еще один «проход» преобразования рациональных выражений.

Самостоятельный фрагмент темы посвящен изучению степени с целым показателем. Мотивом для введения этого понятия служит целесообразность представления больших и малых чисел в, так называемом стандартном виде. С этим способом записи чисел учащиеся уже встречались на уроках физики.

Завершается тема фрагментом, посвященным решению уравнений и текстовых задач. По сравнению с курсом 7 класса здесь предлагаются более сложные в техническом отношении уравнения (хотя, как и в 7 классе, это по-прежнему целые уравнения, но содержащие дробные коэффициенты).

2. Квадратные корни (17 ч.).

Квадратный корень из числа. Понятие об иррациональном числе. Десятичные приближения квадратного корня. Свойства арифметического квадратного корня и их применение к преобразованию выражений. Корень третьей степени, понятие о корне п-й степени из числа. Нахождение приближенного значения корня с помощью калькулятора. Графики зависимостей hello_html_27b91e19.gif и hello_html_4eff9f07.gif.

Основная цель - научить преобразованиям выражений, содержащих квадратные корни; на примере квадратного и кубического корней сформировать представления о корне n-й степени.

Понятие квадратного корня возникает в курсе при обсуждении двух задач геометрической (о нахождении стороны квадрата по его площади) и алгебраической (о числе корней уравнения вида х2 = а, где а - произвольное число). При рассмотрении первой из них даются начальные представления об иррациональных числах.

В содержание темы целесообразно включить нетрадиционный для алгебры вопрос - теорему Пифагора. Это позволит продемонстрировать естественное применение квадратных корней для нахождения длин отрезков, построения отрезков с иррациональными длинами, точек с иррациональными координатами.

Целесообразно также активно использовать калькулятор, причем не только в качестве инструмента для извлечения корней, но и как средство, позволяющее проиллюстрировать некоторые теоретические идеи.

В ходе изучения данной темы предусматривается знакомство с понятием кубического корня, одновременно формируются начальные представления о корне n-й степени. Рассматриваются графики зависимостей hello_html_27b91e19.gif и hello_html_4eff9f07.gif.

3. Квадратные уравнения (20 ч.).

Квадратное уравнение. Формулы корней квадратного уравнения. Решение текстовых задач составлением квадратных уравнений. Теорема Виета. Разложение на множители квадратного трехчлена.

Основная цель - научить решать квадратные уравнения и использовать их при решении текстовых задач.

В тему включен весь материал, традиционно относящийся к этому разделу курса. В то же время предлагаются и некоторые существенные изменения: рассмотрение теоремы Виета связывается с задачей разложения квадратного трехчлена на множители; в систему упражнений должны постоянно включаться задания на решение уравнений высших степеней; следует активно использовать метод подстановки.

Большое место должно быть отведено решению текстовых задач, при этом рассматриваются некоторые особенности математических моделей, описывающих реальные ситуации.

В связи с рассмотрением вопроса о разложении на множители квадратного трехчлена появляется возможность для дальнейшего развития линии преобразований алгебраических выражений.

4. Системы уравнений (18 ч.).

Уравнение с двумя переменными. Линейное уравнение с двумя переменными и его график. Примеры решения уравнений в целых числах. Система уравнений; решение систем двух линейных уравнений с двумя переменными, графическая интерпретация. Примеры решения нелинейных систем. Решение текстовых задач составлением систем уравнений. Уравнение с несколькими переменными.

Основная цель - ввести понятия уравнения с двумя переменными, графика уравнения, системы уравнений; обучить решению систем линейных уравнений с двумя переменными, а также использованию приема составления систем уравнений при решении текстовых задач.

Основное содержание данной темы курса связано с рассмотрением линейного уравнения и решением систем линейных уравнений. В то же время приводятся примеры и нелинейных уравнений, рассматриваются их графики, решаются системы, в которых одно уравнение не является линейным.

Особенностью изложения является акцентирование внимания на блоке вопросов, по сути относящихся к аналитической геометрии. Тема начинается с вопроса о прямых на координатной плоскости: рассматривается уравнение прямой в различных формах, специальное внимание уделяется уравнению вида hello_html_m7ab69807.gif, формулируется условие параллельности прямых, а в качестве необязательного материала может быть рассмотрено условие перпендикулярности прямых. Сформированный аналитический аппарат применяется к решению задач геометрического содержания (например, составление уравнения прямой, проходящей через две данные точки, прямой, параллельной данной и проходящей через данную точку, и пр.).

Продолжается решение текстовых задач алгебраическим методом. Теперь математической моделью рассматриваемой ситуации является система уравнений, при этом в явном виде формулируется следующая мысль: при переводе текстовой задачи на математический язык удобно вводить столько переменных, сколько неизвестных содержится в условии.

5. Функции (14 ч.).

Функция. Область определения и область значений функции. График функции. Возрастание и убывание функции, сохранение знака на промежутке, нули функции. Функции hello_html_cc50ab9.gif и их графики. Примеры графических зависимостей, отражающих реальные процессы.

Основная цель - познакомить учащихся с понятием функции, расширить математический язык введением функциональной терминологии и символики; рассмотреть свойства и графики конкретных числовых функций: линейной функции hello_html_72729cf9.gif и функции hello_html_46fdf4dd.gif; показать значимость функционального аппарата для моделирования реальных ситуаций, научить в несложных случаях применять полученные знания для решения прикладных и практических задач.

Материал данной темы опирается на умения, полученные в результате работы с графиками реальных зависимостей между величинами. Акцент делается не столько на определение понятия функции и связанных с ним понятий, сколько на введение нового языка, новой терминологии и символики. При этом новый язык постоянно сопоставляется с уже освоенным: внимание обращается на умение переформулировать задачу или вопрос, перевести их с языка графиков на язык функций либо уравнений и пр.

Особенностью данной темы является прикладная направленность учебного материала. Основное внимание уделяется графикам реальных зависимостей, моделированию разнообразных реальных ситуаций, формированию представления о скорости роста или убывания функции. При изучении линейной функции следует явно сформулировать мысль о том, что линейной функцией описываются процессы, протекающие с постоянной скоростью, познакомить учащихся с идеей линейной аппроксимации.

6. Вероятность и статистика (6 ч.).

Статистические характеристики ряда данных, медиана, среднее арифметическое, размах. Таблица частот. Вероятность равновозможных событий. Классическая формула вычисления вероятности события и условия ее применения. Представление о геометрической вероятности.

Основная цель - сформировать представление о возможностях описания и обработки данных с помощью различных средних; познакомить учащихся с вычислениями вероятности случайного события с помощью классической формулы и из геометрических соображений.

Материал данной темы знакомит с ситуациями, требующими вычисления средних для адекватного описания ряда данных. Основное внимание уделяется целесообразности использования моды, медианы или среднего арифметического в зависимости от ситуации.

В предыдущих классах был рассмотрен статистический подход к понятию вероятности, на основе которого вводится гипотеза о равновероятности событий, позволяющая в ситуации с равновозможными исходами применять классическую формулу вычисления вероятности события. Кроме того, рассматривается геометрический подход к понятию вероятности, позволяющий в некоторых ситуациях с бесконечным количеством исходов вычислять вероятность наступления события как отношения площадей фигур.

7. Повторение (4 ч.)

IX класс

1. Неравенства (19 ч.).

Действительные числа как бесконечные десятичные дроби. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств. Линейные неравенства с одной переменной и их системы. Точность приближения, относительная точность.

Основная цель - познакомить учащихся со свойствами числовых неравенств и их применением к решению задач (сравнение и оценка значений выражений, доказательство неравенств и др.); выработать умение решать линейные неравенства с одной переменной и их системы.

Изучение темы начинается с обобщения и систематизации знаний о действительных числах, повторения известных учащимся терминов: натуральные, целые, рациональные, действительные числа - и рассмотрения отношений между соответствующими числовыми множествами. При этом бесконечная десятичная дробь не является исходным понятием для определения действительного числа, а рассматривается как его «универсальное имя». Вопрос о периодических и непериодических дробях может быть отнесен к необязательному материалу.

Свойства числовых неравенств иллюстрируются геометрически и подтверждаются числовыми примерами. Рассмотрение вопроса о решении линейных неравенств с одной переменной сопровождается введением понятий равносильных уравнений и неравенств, формулируются свойства равносильности уравнений и неравенств. Приобретенные учащимися умения получают развитие при решении систем линейных неравенств с одной переменной. Рассматривается также вопрос о доказательстве неравенств. Учащиеся знакомятся с некоторыми приемами доказательства неравенств; система упражнений содержит значительное число заданий на применение аппарата неравенств.

2. Квадратичная функция (20 ч.).

Функция hello_html_m5d190f7d.gif и ее график. Свойства квадратичной функции: возрастание и убывание, сохранение знака на промежутке, наибольшее (наименьшее) значение. Решение неравенств второй степени с одной переменной.

Основная цель — познакомить учащихся с квадратичной функцией как с математической моделью, описывающей многие зависимости между реальными величинами; научить строить график квадратичной функции и читать по графику ее свойства; сформировать умение использовать графические представления для решения квадратных неравенств.

Особенность принятого подхода заключается в том, что изучение темы начинается с общего знакомства с функцией hello_html_m5d190f7d.gif; рассматриваются готовые графики квадратичных функций и анализируются их особенности (наличие оси симметрии, вершины, направление ветвей, расположение по отношению к оси х), при этом активизируются общие сведения о функциях, известные учащимся из курса 8 класса; учащиеся учатся строить параболу по точкам с опорой на ее симметрию. Далее следует более детальное изучение свойств квадратичной функции, особенностей ее графика и приемов его построения. В связи с этим может рассматриваться перенос вдоль осей координат произвольных графиков. Центральным моментом темы является доказательство того, что график любой квадратичной функции hello_html_m5d190f7d.gif может быть получен с помощью сдвигов вдоль координатных осей параболы hello_html_m359ff9ae.gif. Теперь учащиеся по коэффициентам квадратного трехчлена hello_html_m41726d8e.gif могут представить общий вид соответствующей параболы и вычислить координаты ее вершины.

В системе упражнений значительное место должно отводиться задачам прикладного характера, которые решаются с опорой на графические представления. Завершается эта тема рассмотрением квадратных неравенств, прием решения которых основан на умении определять промежутки, где график функции расположен выше (ниже) оси абсцисс.

3. Уравнения и системы уравнений (25 ч.).

Рациональные выражения. Допустимые значения переменных, входящих в алгебраические выражения. Тождество, доказательство тождеств. Решение целых и дробных уравнений с одной переменной. Примеры решения нелинейных систем уравнений с двумя переменными. Решение текстовых задач. Графическая интерпретация решения уравнений и систем уравнений.

Основная цель - систематизировать сведения о рациональных выражениях и уравнениях; познакомить учащихся с некоторыми приемами решения уравнений высших степеней, обучить решению дробных уравнений, развить умение решать системы нелинейных уравнений с двумя переменными, а также текстовые задачи; познакомить с применением графиков для исследования и решения систем уравнений с двумя переменными и уравнений с одной переменной.

В данной теме систематизируются, обобщаются и развиваются теоретические представления и практические умения учащихся, связанные с рациональными выражениями, уравнениями, системами уравнений. Уточняется известное из курса 7 класса понятие тождественного равенства двух рациональных выражений; его содержание раскрывается с двух позиций - алгебраической и функциональной. Вводится понятие тождества, обсуждаются приемы доказательства тождеств.

Значительное место в теме отводится решению рациональных уравнений с одной переменной. Систематизируются и углубляются знания учащихся о целых уравнениях, основное внимание уделяется решению уравнений третьей и четвертой степени уже знакомыми учащимся приемами - разложением на множители и введением новой переменной. Здесь же учащиеся впервые встречаются с решением уравнений, содержащих переменную в знаменателе дроби. Продолжается решение систем уравнений, в том числе рассматриваются системы, в которых одно уравнение первой, а другое - второй степени, и примеры более сложных систем.

В заключение проводится графическое исследование уравнений с одной переменной. Вообще графическая интерпретация алгебраических выражений, уравнений и систем должна широко использоваться при изложении материала всей темы.

4. Арифметическая и геометрическая прогрессии (17 ч.).
Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы п членов арифметической и геометрической прогрессий. Простые и сложные проценты.

Основная цель - расширить представления учащихся о числовых последовательностях; изучить свойства арифметической и геометрической прогрессий; развить умение решать задачи на проценты.

В данной теме вводятся необходимые термины и символика, в результате чего создается содержательная основа для осознанного изучения числовых последовательностей, которые неоднократно встречались в предыдущих темах курса. Характерной ее особенностью должны являться широта и разнообразие практических иллюстраций, акцент на связь изучаемого материала с окружающим миром. Введение понятий арифметической и геометрической прогрессий следует осуществлять на основе рассмотрения примеров из реальной жизни. На конкретных примерах вводятся понятия простых и сложных процентов, которые позволяют рассмотреть большое число практико-ориентированных задач.

5. Статистические исследования. Комбинаторика (6 ч.).

Генеральная совокупность и выборка. Ранжирование данных. Полигон частот. Интервальный ряд. Гистограмма. Выборочная дисперсия, среднее квадратичное отклонение. Комбинаторные задачи. Перестановки, размещения, сочетания.

Основная цель — сформировать представление о статистических исследованиях, обработке данных и интерпретации результатов.

В данной теме представлен завершающий фрагмент вероятностно-статистической линии курса. В ней рассматриваются доступные учащимся примеры комплексных статистических исследований, в которых используются полученные ранее знания о случайных экспериментах, способах представления данных и статистических характеристиках. В ходе описания исследований вводятся некоторые новые статистические понятия, отражающие специфику данного исследования. Они позволяют понять как центральные тенденции ряда данных, так и меру вариации. Включение данного материала направлено прежде всего на формирование умений понимать и интерпретировать статистические результаты, представляемые в средствах массовой информации.

Предполагается не столько формальное заучивание новых терминов, сколько первоначальное знакомство с понятийным аппаратом этой области знаний, необходимой каждому современному человеку.

6. Повторение (15 ч.).








ПЕРЕЧЕНЬ ТЕМ КОНТРОЛЬНЫХ РАБОТ

VII класс

  1. Дроби и проценты

  2. Прямая и обратная пропорциональность

  3. Введение в алгебру

  4. Уравнения

  5. Координаты и графики

  6. Свойства степени с натуральным показателем

  7. Действия с многочленами

  8. Формулы сокращённого умножения. Разложение многочленов на множители.

  9. Итоговый тест


VIII класс

  1. Алгебраические дроби

  2. Квадратные корни

  3. Квадратные уравнения

  4. Системы уравнений

  5. Функции

  6. Вероятность и статистика

  7. Итоговый тест


IX класс

  1. Неравенства

  2. Квадратичная функция

  3. Уравнения

  4. Системы уравнений

  5. Арифметическая и геометрическая прогрессии

  6. Итоговый тест







КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ ОБУЧАЮЩИХСЯ

Единые нормы являются основой при оценке как контрольных, так и всех других письменных работ по математике. Применяя эти нормы, учитель должен индивидуально подходить к оценке каждой письменной работы учащегося, обращать внимание на качество выполнения работы в целом, а затем уже на количество ошибок и на их характер.

Оценка письменной работы определяется с учётом прежде всего её общего математического уровня, оригинальности, последовательности, логичности её выполнения, а также числа ошибок и недочётов и качества оформления работы.

Ошибка, повторяющаяся в одной работе несколько раз, рассматривается как одна ошибка.

За орфографические ошибки, допущенные учениками, оценка не снижается; об орфографических ошибках доводится до сведения преподавателя русского языка. Однако ошибки в написании математических терминов, уже встречавшихся школьникам класса, должны учитываться как недочёты в работе.

При оценке письменных работ по математике различают грубые ошибки, ошибки и недочёты.

К грубым относятся ошибки в вычислениях, свидетельствующие о незнании таблицы сложения или таблицы умножения, связанные с незнанием алгоритма письменного сложения и вычитания умножения и деления на одно- или двузначное число и т.п., ошибки, свидетельствующие о незнании основных формул, правил и явном неумении их применять, о незнании приёмов решения задач, аналогичных ранее изученным.

Примечание. Если грубая ошибка встречается в работе только в одном случае из нескольких аналогичных, то при оценке работы эта ошибка может быть приравнена к негрубой.

Примерами негрубых ошибок являются: ошибки, связанные с недостаточно полным усвоением текущего учебного материала, не вполне точно сформулированный вопрос или пояснение при решении задачи, неточности при выполнении геометрических построений и т.п.

Недочётами считаются нерациональные записи при вычислениях, нерациональные приёмы вычислений, преобразований и решений задач, небрежное выполнение чертежей и схем, отдельные погрешности в формулировке пояснения или ответа к задаче. К недочётам можно отнести и другие недостатки работы, вызванные недостаточным вниманием учащихся, например: неполное сокращение дробей или членов отношения; обращение смешанных чисел в неправильную дробь при сложении и вычитании; пропуск наименований; пропуск чисел в промежуточных записях; перестановка цифр при записи чисел; ошибки, допущенные при переписывании, и т.п.

Оценка письменной работы по выполнению вычислительных заданий и алгебраических преобразований:

Оценка «5» ставится за безукоризненное выполнение письменной работы, т.е.: а) если решение всех примеров верное; б) если все действия и преобразования выполнены правильно, без ошибок; все записи хода решения расположены последовательно, а также сделана проверка решения в тех случаях, когда это требуется.

Оценка «4» ставится за работу, в которой допущена одна (негрубая) ошибка или два-три недочёта.

Оценка «З» ставится в следующих случаях:

а) если в работе имеется одна грубая ошибка и не более одной негрубой ошибки;

б) при наличии одной грубой ошибки и одного - двух недочётов;

в) при отсутствии грубых ошибок, но при наличии от двух до четырёх (негрубых) ошибок;

г) при наличии двух негрубых ошибок и не более трёх недочётов;

д) при отсутствии ошибок, но при наличии четырёх и более недочётов;

е) если наверно выполнено не более половины объёма всей работы.

Оценка «2» ставится, когда число ошибок превосходит норму, при которой может быть выставлена положительная оценка, или если правильно выполнено менее половины всей работы.

Примечание. Оценка «5» может быть поставлена, несмотря на наличие одного-двух недочётов, если ученик дал оригинальное решение заданий, свидетельствующее о его хорошем математическом развитии.

Оценка письменной работы на решение текстовых задач:

Оценка «5» ставится в том случае, когда задача решена правильно: ход решения задачи верен, все действия и преобразования выполнены верно и рационально; в задаче, решаемой с вопросами или пояснениями к действиям, даны точные и правильные формулировки; в задаче, решаемой с помощью уравнения, даны необходимые пояснения; записи правильны, расположены последовательно, дан верный и исчерпывающий ответ на вопросы задачи; сделана проверка решения (в тех случаях, когда это требуется).

Оценка «4» ставится в том случае, если при правильном ходе решения задачи допущена одна негрубая ошибка или два-три недочёта.


Оценка «З» ставится в том случае, если ход решения правилен, но допущены:

а) одна грубая ошибка и не более одной негрубой;

б) одна грубая ошибка и не более двух недочётов;

в) три-четыре негрубые ошибки при отсутствии недочётов;

г) допущено не более двух негрубых ошибок и трёх недочётов;

д) более трёх недочётов при отсутствии ошибок.

Оценка «2» ставится в том случае, когда число ошибок превосходит норму, при которой может быть выставлена положительная оценка.

Примечания:

1. Оценка «5» может быть поставлена несмотря на наличие описки или недочёта, если ученик дал оригинальное решение, свидетельствующее о его хорошем математическом развитии.

2. Положительная оценка «З» может быть выставлена ученику, выполнившему работу не полностью, если он безошибочно выполнил более половины объёма всей работы

Оценка комбинированных письменных работ по математике:

Письменная работа по математике, подлежащая оцениванию, может состоять из задач и примеров (комбинированная работа). В таком случае преподаватель сначала даёт предварительную оценку каждой части работы, а затем общую, руководствуясь следующим:

а) если обе части работы оценены одинаково, то эта оценка должна быть общей для всей работы в целом;

б) если оценки частей разнятся на один балл, например, даны оценки «5» и «4» или «4» и «З» и т.п., то за работу в целом, как правило, ставится балл, оценивающий основную часть работы;

в) если одна часть работы оценена баллом «5», а другая - баллом «З», то преподаватель может оценить такую работу в целом баллом «4» при условии, что оценка «5» поставлена за основную часть работы;

г) если одна из частей работы оценена баллом «5» или «4», а другая - баллом «2» или «I», то преподаватель может оценить всю работу баллом «З» при условии, что высшая из двух данных оценок поставлена за основную часть работы.

Примечание. Основной считается та часть работы, которая включает больший по объёму или наиболее важный по значению материал по изучаемым темам программы.



Оценка текущих письменных работ:

При оценке повседневных обучающих работ по математике учитель руководствуется указанными нормами оценок, но учитывает степень самостоятельности выполнения работ учащимися.

Обучающие письменные работы, выполненные учащимися вполне самостоятельно с применением ранее изученных и хорошо закреплённых знаний, оцениваются так же, как и контрольные работы.

Обучающие письменные работы, выполненные вполне самостоятельно, на только что изученные и недостаточно закреплённые правила, могут оцениваться менее строго.

Письменные работы, выполненные в классе с предварительным разбором их под руководством учителя, оцениваются более строго.

Домашние письменные работы оцениваются так же, как классная работа обучающего характера.

Промежуточная аттестация: итоговая оценка за четверть и за год:

В соответствии с особенностями математики как учебного предмета оценки за письменные работы имеют большее значение, чем оценки за устные ответы и другие виды работ.

Поэтому при выведении итоговой оценки за четверть «среднеарифметический подход» недопустим - такая оценка не отражает достаточно объективно уровень подготовки и математического развития ученика. Итоговую оценку определяют, в первую очередь, оценки за контрольные работы, затем - принимаются во внимание оценки за другие письменные и практические работы, и лишь в последнюю очередь - все прочие оценки (за устные ответы, устный счёт и т.д.). При этом учитель должен учитывать и фактический уровень знаний и умений ученика на конец четверти.

Итоговая оценка за год выставляется на основании четвертных оценок, но также с обязательным учётом фактического уровня знаний ученика на конец учебного года.

СПИСОК ЛИТЕРАТУРЫ ДЛЯ ОБУЧАЮЩИХСЯ

  1. Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 7 класса основной школы. - М.: Просвещение, 2013.;

  2. Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 8 класса основной школы. - М.: Просвещение, 2013;

  3. Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др. Алгебра: учебник для 9 класса основной школы. - М.: Просвещение, 2013 г.

  4. С.С.Минаева, Л.О.Рослова. Алгебра: Рабочая тетрадь. 7 класс. – М.: Просвещение, 2013.;

  5. Л.П.Евстафьева, А.П.Карп. Алгебра. Дидактические материалы. 7 класс. – М.: Просвещение, 2009.;

  6. Л.П.Евстафьева, А.П.Карп. Алгебра. Дидактические материалы. 8 класс. – М.: Просвещение, 2010.;

  7. Л.П.Евстафьева, А.П.Карп. Алгебра. Дидактические материалы. 9 класс. – М.: Просвещение, 2010.;

  8. Л.В.Кузнецова, С.С. Минаева, Л.О.Рослова. Алгебра. Тематические тесты. 7 класс. – М.: Просвещение, 2010.;

  9. Л.В.Кузнецова, С.С. Минаева, Л.О.Рослова. Алгебра. Тематические тесты. 8 класс. – М.: Просвещение, 2010.;

  10. Л.В.Кузнецова, С.С. Минаева, Л.О.Рослова. Алгебра. Тематические тесты. 9 класс. – М.: Просвещение, 2010.;






















ПРИМЕРНОЕ ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ Г. В. Дорофеев, С. Б. Суворова, Е. А. Бунимович, Л. В. Кузнецова, С. С. Минаева Л. О. Рослова «Алгебра, 7».


(3часа в неделю, 1 четверть -5 часов, всего 125 часов)


Номер урока

Номер пункта

Содержание материала

Количество часов

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

Дата

Глава 1. Дроби и проценты

13

Сравнивать и упорядочивать рациональные числа. Выполнять вычисления с рациональными числами, вычислять значения степеней с натуральными показателями. Выполнять прикидку и оценку в ходе вычислений.

Использовать эквивалентные представления дробных чисел при их сравнении и в вычислениях.

Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора, компьютера).

Осуществлять поиск информации СМИ), содержащей данные, выраженные в процентах, интерпретировать эти данные. Решать задачи на проценты и дроби том числе задачи из реальной практики, используя при необходимости калькулятор).

Приводить примеры числовых данных (цена, рост, время на дорогу), находить среднее арифметическое, моду и размах числовых наборов, в том числе извлекая необходимую информацию из таблиц и диаграмм. Приводить содержательные примеры использования среднего арифметического, моды и размаха для описания данных (демографические и социологические данные, спортивные показатели и др.)



1,2

1.1

Сравнение дробей

2


3,4

1.2

Вычисления с рациональными числами

2


5,6

1.3

Степень с натуральным показателем

2


7,8

1.4

Задачи на проценты

2


9-11

1.5

Статистические характеристики

3


12

13


Итоговое занятие по теме.

Контрольная работа №1 «Дроби и проценты»








1

1




Глава 2. Прямая и обратная пропорциональность





8

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам, выражать из формулы одни величины через другие. Распознавать прямую и обратную пропорциональные зависимости. Использовать свойства прямой и обратной пропорциональности для выполнения практических расчётов. Решать текстовые задачи на прямую и обратную пропорциональные зависимости, на пропорциональное деление (в том числе с контекстом из смежных дисциплин, из реальной жизни). Анализировать и осмысливать текст задачи, моделировать условие с помощью схем, строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию


14

2.1

Зависимости и формулы

1


15,16

2.2

Прямая пропорциональность. Обратная пропорциональность

2


17,18

2.3

Пропорции. Решение задач с помощью пропорций

2


19

20

21

2.4

Пропорциональное деление.

Итоговое занятие по теме.

Контрольная работа №2 «Прямая и обратная пропорциональность»

1

1

1



Глава 3. Введение в алгебру

11

Применять язык алгебры при выполнении элементарных знаково-символических действий: использовать буквы для обозначения чисел, для записи общих утверждений; моделировать буквенными выражениями условия, описанные словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагаемых, раскрытие скобок упрощение произведений). Выполнять числовые подстановки в буквенное выражение, вычислять числовое значение буквенного выражения


22

3.1

Буквенная запись свойств действий над числами

1


23,24

3.2

Преобразование буквенных выражений

2


25-27

3.3

Раскрытие скобок

3


28-30

31

32

3.4

Приведение подобных слагаемых

Итоговое занятие по теме.

Контрольная работа №3 «Введение в алгебру»

3

1

1



Глава 4. Уравнения


12

Переходить от словесной формулировки условия задачи к алгебраической модели путём составления уравнения. Проводить доказательные рассуждения о корнях уравнения с опорой на определение корня.

Объяснять и формулировать правила преобразования уравнений. Конструировать алгоритм решения линейных уравнений, распознавать линейные уравнения, решать линейные уравнения, а также уравнения, сводящиеся к ним, с помощью простейших преобразований.

Решать текстовые задачи алгебраическим способом: составлять уравнение по условию задачи, решать составленное уравнение. Проводить рассуждения, основанные на интерпретации условия поставленной задачи, для поиска целых корней некоторых несложных нелинейных уравнений


33,34

4.1

Алгебраический способ решения задач

2


35,36

4.2

Корни уравнения

2


37-39

4.3

Решение уравнений

3


40-42

43

44





















4.4

Решение задач с помощью уравнений

Итоговое занятие по теме.

Контрольная работа №4 «Уравнения»

3

1

1



Глава 5. Координаты и графики

15

Изображать числа точками координатной прямой,

пары чисел точками координатной плоскости.

Строить на координатной плоскости геометрические изображения множеств, заданных алгебраически, описывать множества точек координатной плоскости (области, ограниченные горизонтальными и вертикальными прямыми и пр.) алгебраическими соотношениями.

Строить графики простейших зависимостей, за данных алгебраическими соотношениями, проводить несложные исследования особенностей этих графиков.

Моделировать реальные зависимости графиками. Читать графики реальных зависимостей



45,46

5.1

Множества точек на координатной прямой

2


47,48

5.2

Расстояние между точками координатной прямой

2


49,50

5.3

Множества точек на координатной плоскости

2


51,52

5.4

Графики

2


53,54

5.5

Еще несколько важных графиков

2


55-57

58

59


5.6

Графики вокруг нас (проекты)

Итоговое занятие по теме.

Контрольная работа №5 «Координаты и графики»

3

1

1


Глава 6. Свойства степени с натуральным показателем

11

Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем, применять свойства степени для преобразования выражений и вычислений. Выполнять перебор всех возможных вариантов для пересчёта объектов или комбинаций.

Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.).

Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления



60,61

6.1

Произведение и частное степеней

2


62-64

6.2

Степень степени, произведения и дроби

3


65-66

6.3

Решение комбинаторных задач

2


67-68

69

70

6.4

Перестановки

Итоговое занятие по теме.

Контрольная работа №6 «Свойства степени с натуральным показателем»

2

1

1


Глава 7. Многочлены

20

Выполнять действия с многочленами.

Доказывать формулы сокращенного умножения

(для двучленов), применять их в преобразованиях выражений и вычислениях. Проводить исследование для конструирования и последующего доказательства новых формул сокращённого умножения. Решать уравнения, сводящиеся к линейным уравнениям. Решать текстовые задачи алгебраическим способом: моделировать условие задачи рисунком, чертежом; переходить от словесной формулировки условия задачи к алгебраической модели путём составления уравнения; решать составленное уравнение



71-73

7.1

Одночлены и многочлены

3


74-76

7.2

Сложение и вычитание многочленов

3


77-79

7.3

Умножение одночлена на многочлен

3


80-82

7.4

Умножение многочлена на многочлен

3


83-85

7.5

Формулы квадрата суммы и квадрата разности

3


86-88

89

90

7.6

Решение задач с помощью уравнений

Итоговое занятие по теме.

Контрольная работа №7 «Многочлены»

3

1

1


Глава 8. Разложение многочленов на множители

16

Выполнять разложение многочленов на множители, применяя различные способы; анализировать многочлен и распознавать возможность применения того или иного приёма разложения его на множители. Применять различные формы самоконтроля при выполнении преобразований.

Применять разложение на множители к решению уравнений



91-92

8.1

Вынесение общего множителя за скобки

2


93-94

8.2

Способ группировки

2


95-96

8.3

Формула разности квадратов

2


97-98

8.4

Формулы разности и суммы кубов

2


99-101

8.5

Разложение на множители с применением нескольких способов

3


102-104


105

106

8.6

Решение уравнений с помощью разложения на множители

Итоговое занятие по теме.

Контрольная работа №8 «Разложение многочленов на множители»

3


1

1


Глава 9. Частота и вероятность

7

Проводить эксперименты со случайными исхода

ми, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путём; прогнозировать частоту наступления события по его вероятности.

Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных событий. Приводить примеры равновероятных событий



107-108

9.1

Случайные события

2


109-110




111-112

113

9.2




9.3

Частота случайного события




Вероятность случайного события

Итоговое занятие по теме.

2




2

1



Повторение.

Итоговая контрольная работа

Работа над ошибками

10

1

1

























Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy



Автор
Дата добавления 19.01.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров370
Номер материала ДВ-355013
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх