Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 5-9 класс ФГООС
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по математике 5-9 класс ФГООС

библиотека
материалов



Лежневский муниципальный район Ивановской области

(территориальный, административный округ (район)

Муниципальное бюджетное образовательное учреждение

Лежневская средняя общеобразовательная школа №10

(полное наименование образовательного учреждения)




СОГЛАСОВАНО

Протокол заседания ШМО от «___»______________ № ,

Руководитель ШМО:

________ __________________

Подпись Инициалы, фамилия




СОГЛАСОВАНО

Заместитель директора по УВР ________ __________________

Подпись Инициалы, фамилия

«____»____________20____г.




УТВЕРЖДАЮ

Директор школы__________


Приказ № _______________


«__»_____________________







РАБОЧАЯ ПРОГРАММА




По математике


основного общего образования






Составил учитель математики ЧернышёваВера Александровна








2014г.







1. Пояснительная записка

Рабочая программа по математике основного общего образования построена на основе:

  • Фундаментального ядра содержания образования;

  • Требований к результатам освоения основной образовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте основного общего образования;

  • Примерной программы основного общего образования по математике как инвариантной (обязательной) части учебного курса;

  • Программы развития универсальных учебных действий;

  • Программы воспитания и социализации обучающихся на ступени основного общего образования;

  • Примерной программы по математике 5-9 класс: проект, 3-е издание, переработанное. Москва, Просвещение, 2011год (стандарты 2-го поколения)

  • Рабочей программы предметной линии учебников: Математика 5-6 классы, Алгебра 7-9 классы И.И. Зубарева, А. Г. Мордкович, Геометрия 7-9 классы Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев.

  • Зубарева И.И., Мордкович А.Г. Математика. 5 – 6 классы. Алгебра. 7 – 9 классы. Алгебра и начала математического анализа. 10 – 11 классы: Программы. Пособие для учителей общеобразовательных учреждений. – М.: Мнемозина, 2012.

  • Геометрия. 7-9 классы.Сборник рабочих программ. Бурмистрова Т.А. – М.: Просвещение, 2012


Структура рабочей программы

Рабочая программа включает следующие разделы: пояснительная записка, где представлены общая характеристика учебного предмета, виды контроля и формы его проведения, описание места предмета « математика» в учебном плане, личностные, метапредметные и предметные результаты, содержание тем основного общего образования по учебному предмету, тематический план с указанием характеристик основных видов деятельности, материально-техническое обеспечение учебного процесса, основные требования к результатам учащихся, атак же контрольно-измерительные и оценочные материалы


Общая характеристика предмета математика

Обучение математике является важнейшим звеном основного общего образования. Она служит не только формированию конкретных предметных результатов, необходимых для дальнейшего освоения систематического курса математики и для освоения смежных дисциплин. Математика призвана обеспечивать формирование научного мировоззрения, развитие логического мышления, эмоционально-волевой сферы, навыков умственного труда, важнейших качеств личности, таких как самостоятельность аккуратность, точность, настойчивость и т.д. Математика имеет широкие возможности для обучения регуляции, управления собственной деятельностью. Она развивает не только общую культуру, эстетические способности, но и речь обучающихся.

Содержание математического образования применительно к основной школе представлено в виде следующих содержа­тельных разделов. Это арифметика; алгебра; функции; ве­роятность и статистика; геометрия. Наряду с этим в со­держание основного общего образования включены два до­полнительных методологических раздела: логика и множест­ва; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурно­го развития учащихся. Содержание каждого из этих разделовразворачивается в содержательно-методическую линию, про­низывающую все основные разделы содержания математичес­кого образования на данной ступени обучения. При этом пер­вая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального матема­тического языка, вторая — «Математика в историческом раз­витии» — способствует созданию общекультурного, гуманитар­ного фона изучения курса.

Содержание раздела «Арифметика» служит базой для даль­нейшего изучения учащимися математики, способствует разви­тию их логического мышления, формированию умения поль­зоваться алгоритмами, а также приобретению практических на­выков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и ирра­циональными числами, формированием первичных представ­лений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комп­лексных числах), так же как и более сложные вопросы ариф­метики (алгоритм Евклида, основная теорема арифметики), от­несено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» способствует формирова­нию у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружа­ющей реальности. Язык алгебры подчеркивает значение мате­матики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразова­ние символьных форм вносит специфический вклад в разви­тие воображения учащихся, их способностей к математичес­кому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с ир­рациональными выражениями, с тригонометрическими функ­циями и преобразованиями, входят в содержание курса мате­матики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разно­образных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вно­сит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный ком­понент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной гра­мотности — умения воспринимать и критически анализиро­вать информацию, представленную в различных формах, по­нимать вероятностный характер многих реальных зависимос­тей, производить простейшие вероятностные расчеты. Изуче­ние основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его ис­следования, формируется понимание роли статистики как ис­точника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у учащих­ся пространственное воображение и логическое мышление пу­тем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного ха­рактера. Существенная роль при этом отводится развитию ге­ометрической интуиции. Сочетание наглядности со стро­гостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математичес­ких дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изуча­ется при рассмотрении различных вопросов курса. Соответ­ствующий материал нацелен на математическое развитие уча­щихся, формирование у них умения точно, сжато и ясно из­лагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназна­чен для формирования представлений о математике как час­ти человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На не­го не выделяется специальных уроков, усвоение его не конт­ролируется, но содержание этого раздела органично присут­ствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания мате­матического образования.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;


Цели

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.



Место предмета Математика в учебном плане

Учебный предмет «математика» входит в предметную область «Математика и информатика».

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика» изучается с 5-го по 9-й класс в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Математика»(включающий разделы «Алгебра» и «Геометрия»)

Общее количество уроков в неделю с 5 по 9 класс составляет 25 часов (5–6 класс – по 5 часов в неделю, 7–9 класс – алгебра по 3 часа в неделю, геометрия – по 2 часа в неделю.)Выполнение программы ориентировано на 34 недели.


Распределение учебного времени между этими предметами представлено в таблице.


Классы

Предметы математического цикла

Количество часов на ступени основного образования

5-6

Математика

340 (170*2 года)

7-9

Математика (Алгебра)

306 (102*3 года)

Математика (Геометрия)

204 (68*3 года)

Всего

850


Формы контроля за качеством освоения материала

С целью отследить освоение учащимися программы по математике проводится контроль знаний:

1.Текущий контроль. Сюда относится проверка домашнего задания ввиде письменныхработ, устных опросов, письменного контроля в виде самостоятельных обучающего и контролирующего вида,математических диктантов, тестов.

2.Тематический контроль предполагает проведенииконтрольных работ после освоения каждой крупной темы курса математики.

3.Итоговый контроль (промежуточная аттестация) предполагает проведение итоговой работы по математике после каждого года обучения.


Личностные, метапредметные и предметные результаты освоения курса математики.

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

7) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

8) ответственное отношение к учению, готовность и спо­собность обучающихся к саморазвитию и самообразова­нию на основе мотивации к обучению и познанию;

9) осознанный выбор и построение дальнейшей индивиду­альной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к тру­ду, развитие опыта участия в социально значимом труде;

10) умение контролировать процесс и результат учебной и математической деятельности;

11) критичность мышления, инициатива, находчивость, активность при решении геометрических задач;

в метапредметном направлении:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

10) умение самостоятельно определять цели своего обуче­ния, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познава­тельной деятельности;

11) умение соотносить свои действия с планируемыми ре­зультатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требова­ний, корректировать свои действия в соответствии с из­меняющейся ситуацией;

12) умение определять понятия, создавать обобщения, ус­танавливать аналогии, классифицировать, самостоя­тельно выбирать основания и критерии для классифи­кации;

13) устанавливать причинно-следственные связи, проводить доказательное рассуждение, умозаключение (индуктив­ное, дедуктивное и по аналогии) и делать выводы;

14) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;

15) компетентность в области использования информаци­онно-коммуникационных технологий;

16) первоначальные представления об идеях и о методах геометрии как об универсальном языке науки и техни­ки, о средстве моделирования явлений и процессов;

17) умение видеть геометрическую задачу в контексте про­блемной ситуации в других дисциплинах, в окружаю­щей жизни;

18) умение находить в различных источниках информа­цию, необходимую для решения математических про­блем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

19) умение понимать и использовать математические сред­ства наглядности (чертежи, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

20) умение выдвигать гипотезы при решении задачи и по­нимать необходимость их проверки;

в предметном направлении:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;

6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера;

11) осознание значения геометрии для повседневной жизни человека;

12) представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

13) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую ин­формацию), точно и грамотно выражать свои мысли с применением математической терминологии и симво­лики, проводить классификации, логические обоснова­ния;

14) владение базовым понятийным аппаратом по основным разделам содержания;

15) систематические знания о фигурах и их свойствах;

16) практически значимые геометрические умения и навы­ки, умение применять их к решению геометрических и негеометрических задач, а именно:

  • изображать фигуры на плоскости;

  • использовать геометрический язык для описания предметов окружающего мира;

  • измерять длины отрезков, величины углов, вычис­лять площади фигур;

  • распознавать и изображать равные, симметричные и подобные фигуры;

  • выполнять построения геометрических фигур с по­мощью циркуля и линейки;

  • читать и использовать информацию, представлен­ную на чертежах, схемах;

  • проводить практические расчёты.



Предметными результатами изучения предмета «Математика» являются следующие умения:

5-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

  • названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

  • как образуется каждая следующая счётная единица;

  • названия и последовательность разрядов в записи числа;

  • названия и последовательность первых трёх классов;

  • сколько разрядов содержится в каждом классе;

  • соотношение между разрядами;

  • сколько единиц каждого класса содержится в записи числа;

  • как устроена позиционная десятичная система счисления;

  • единицы измерения величин (длина, масса, время, площадь), соотношения между ними;

  • функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).

Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

  • выполнять умножение и деление с 1 000;

  • вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;

  • раскладывать натуральное число на простые множители;

  • находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;

  • решать простые и составные текстовые задачи;

  • выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

  • находить вероятности простейших случайных событий;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

  • решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

  • читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

  • строить простейшие линейные, столбчатые и круговые диаграммы;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



6-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • десятичных дробях и правилах действий с ними;

  • отношениях и пропорциях; основном свойстве пропорции;

  • прямой и обратной пропорциональных зависимостях и их свойствах;

  • процентах;

  • целых и дробных отрицательных числах; рациональных числах;

  • правиле сравнения рациональных чисел;

  • правилах выполнения операций над рациональными числами; свойствах операций.

Сравнивать десятичные дроби;

  • выполнять операции над десятичными дробями;

  • преобразовывать десятичную дробь в обыкновенную и наоборот;

  • округлять целые числа и десятичные дроби;

  • находить приближённые значения величин с недостатком и избытком;

  • выполнять приближённые вычисления и оценку числового выражения;

  • делить число в данном отношении;

  • находить неизвестный член пропорции;

  • находить данное количество процентов от числа и число по известному количеству процентов от него;

  • находить, сколько процентов одно число составляет от другого;

  • увеличивать и уменьшать число на данное количество процентов;

  • решать текстовые задачи на отношения, пропорции и проценты;

  • сравнивать два рациональных числа;

  • выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;

  • решать комбинаторные задачи с помощью правила умножения;

  • находить вероятности простейших случайных событий;

  • решать простейшие задачи на осевую и центральную симметрию;

  • решать простейшие задачи на разрезание и составление геометрических фигур;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



7-й класс.

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • натуральных, целых, рациональных, иррациональных, действительных числах;

  • степени с натуральными показателями и их свойствах;

  • одночленах и правилах действий с ними;

  • многочленах и правилах действий с ними;

  • формулах сокращённого умножения;

  • тождествах; методах доказательства тождеств;

  • линейных уравнениях с одной неизвестной и методах их решения;

  • системах двух линейных уравнений с двумя неизвестными и методах их решения.

  • Выполнять действия с одночленами и многочленами;

  • узнавать в выражениях формулы сокращённого умножения и применять их;

  • раскладывать многочлены на множители;

  • выполнять тождественные преобразования целых алгебраических выражений;

  • доказывать простейшие тождества;

  • находить число сочетаний и число размещений;

  • решать линейные уравнения с одной неизвестной;

  • решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;

  • решать текстовые задачи с помощью линейных уравнений и систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



7-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;

  • определении угла, биссектрисы угла, смежных и вертикальных углов;

  • свойствах смежных и вертикальных углов;

  • определении равенства геометрических фигур; признаках равенства треугольников;

  • геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;

  • определении параллельных прямых; признаках и свойствах параллельных прямых;

  • аксиоме параллельности и её краткой истории;

  • формуле суммы углов треугольника;

  • определении и свойствах средней линии треугольника;

  • теореме Фалеса.

  • Применять свойства смежных и вертикальных углов при решении задач;

  • находить в конкретных ситуациях равные треугольники и доказывать их равенство;

  • устанавливать параллельность прямых и применять свойства параллельных прямых;

  • применять теорему о сумме углов треугольника;

  • использовать теорему о средней линии треугольника и теорему Фалеса при решении задач;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



8-й класс.

Алгебра



Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • алгебраической дроби; основном свойстве дроби;

  • правилах действий с алгебраическими дробями;

  • степенях с целыми показателями и их свойствах;

  • стандартном виде числа;

  • функциях hello_html_m32d1edc9.gif,hello_html_m5058ae9b.gif, hello_html_23768637.gif, их свойствах и графиках;

  • понятии квадратного корня и арифметического квадратного корня;

  • свойствах арифметических квадратных корней;

  • функции hello_html_58f5fa8d.gif, её свойствах и графике;

  • формуле для корней квадратного уравнения;

  • теореме Виета для приведённого и общего квадратного уравнения;

  • основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;

  • методе решения дробных рациональных уравнений;

  • основных методах решения систем рациональных уравнений.

  • Сокращать алгебраические дроби;

  • выполнять арифметические действия с алгебраическими дробями;

  • использовать свойства степеней с целыми показателями при решении задач;

  • записывать числа в стандартном виде;

  • выполнять тождественные преобразования рациональных выражений;

  • строить графики функций hello_html_m32d1edc9.gif,hello_html_m5058ae9b.gif, hello_html_23768637.gif и использовать их свойства при решении задач;

  • вычислять арифметические квадратные корни;

  • применять свойства арифметических квадратных корней при решении задач;

  • строить график функции hello_html_58f5fa8d.gif и использовать его свойства при решении задач;

  • решать квадратные уравнения;

  • применять теорему Виета при решении задач;

  • решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;

  • решать дробные уравнения;

  • решать системы рациональных уравнений;

  • решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.







8-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;

  • определении трапеции; элементах трапеции; теореме о средней линии трапеции;

  • определении окружности, круга и их элементов;

  • теореме об измерении углов, связанных с окружностью;

  • определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;

  • определении вписанной и описанной окружностей, их свойствах;

  • определении тригонометрические функции острого угла, основных соотношений между ними;

  • приёмах решения прямоугольных треугольников;

  • тригонометрических функциях углов от 0 до 180°;

  • теореме косинусов и теореме синусов;

  • приёмах решения произвольных треугольников;

  • формулах для площади треугольника, параллелограмма, трапеции;

  • теореме Пифагора.

  • Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;

  • решать простейшие задачи на трапецию;

  • находить градусную меру углов, связанных с окружностью; устанавливать их равенство;

  • применять свойства касательных к окружности при решении задач;

  • решать задачи на вписанную и описанную окружность;

  • выполнять основные геометрические построения с помощью циркуля и линейки;

  • находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;

  • применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;

  • решать прямоугольные треугольники;

  • сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;

  • применять теорему косинусов и теорему синусов при решении задач;

  • решать произвольные треугольники;

  • находить площади треугольников, параллелограммов, трапеций;

  • применять теорему Пифагора при решении задач;

  • находить простейшие геометрические вероятности;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.





9-й класс.

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • свойствах числовых неравенств;

  • методах решения линейных неравенств;

  • свойствах квадратичной функции;

  • методах решения квадратных неравенств;

  • методе интервалов для решения рациональных неравенств;

  • методах решения систем неравенств;

  • свойствах и графике функцииhello_html_m1baf31d2.gif при натуральном n;

  • определении и свойствах корней степени n;

  • степенях с рациональными показателями и их свойствах;

  • определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

  • формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.

  • Использовать свойства числовых неравенств для преобразования неравенств;

  • доказывать простейшие неравенства;

  • решать линейные неравенства;

  • строить график квадратичной функции и использовать его при решении задач;

  • решать квадратные неравенства;

  • решать рациональные неравенства методом интервалов;

  • решать системы неравенств;

  • строить график функцииhello_html_m1baf31d2.gif при натуральном nи использовать его при решении задач;

  • находить корни степени n;

  • использовать свойства корней степени nпри тождественных преобразованиях;

  • находить значения степеней с рациональными показателями;

  • решать основные задачи на арифметическую и геометрическую прогрессии;

  • находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.



9-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

  • признаках подобия треугольников;

  • теореме о пропорциональных отрезках;

  • свойстве биссектрисы треугольника;

  • пропорциональных отрезках в прямоугольном треугольнике;

  • пропорциональных отрезках в круге;

  • теореме об отношении площадей подобных многоугольников;

  • свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;

  • определении длины окружности и формуле для её вычисления;

  • формуле площади правильного многоугольника;

  • определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;

  • правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;

  • определении координат вектора и методах их нахождения;

  • правиле выполнений операций над векторами в координатной форме;

  • определении скалярного произведения векторов и формуле для его нахождения;

  • связи между координатами векторов и координатами точек;

  • векторным и координатным методах решения геометрических задач.

  • формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.

  • Применять признаки подобия треугольников при решении задач;

  • решать простейшие задачи на пропорциональные отрезки;

  • решать простейшие задачи на правильные многоугольники;

  • находить длину окружности, площадь круга и его частей;

  • выполнять операции над векторами в геометрической и координатной форме;

  • находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;

  • решать геометрические задачи векторным и координатным методом;

  • применять геометрические преобразования плоскости при решении геометрических задач;

  • находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;

  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

  • создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.





Содержание основного общего образования по учебному предмету

Арифметика(250 ч)


Натуральные числа.

Натуральный ряд. Десятичная сис­тема счисления. Арифметические действия с натураль­ными числами. Свойства арифметиче­ских действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. По­рядок действий в числовых выраже­ниях, использование ско­бок. Решение текстовых задач ариф­метическими спосо­бами.

Делители и кратные. Свойства и признаки делимости. Простые и состав­ные числа. Разложе­ние натурального числа на простые множители. Деление с остатком.

Дроби.

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкно­венных дробей. Арифме­тические действия с обыкновенными дро­бями. Нахождение части от целого и це­лого по его части.

Десятичные дроби. Сравнение десятичных дробей. Ариф­метические дейст­вия с десятич­ными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновен­ной в виде десятичной.

Проценты; нахождение процентов от величины и величи­ны по ее процен­там. Отноше­ние; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа.

Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множе­ство рациональных чисел; рациональное число как отношение m/n, где т — целое число, п — натуральное число. Сравнение рацио­нальных чисел. Арифметические дейст­вия с рациональными числами. Свойства арифметиче­ских действий. Степень с це­лым показате­лем.

Действительные числа.

Квадратный корень из числа. Ко­рень третьей сте­пени.

Понятие об иррациональном числе. Иррациональность числа hello_html_4625b6e.gif и несоизме­римость сто­роны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действи­тельных чисел в виде бесконеч­ных десятичных дробей. Срав­нение действительных чисел.

Координатная прямая. Изображение чисел точками коор­динатной прямой. Числовые проме­жутки.

Измерения, приближения, оценки.

Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длитель­ность процессов в окру­жающем мире. Выделение мно­жителя степени 10 в записи числа.

Приближенное значение величины, точность приближе­ния. Округление нату­ральных чисел и десятичных дробей. Прикидка и оценка результатов вычис­лений.


Алгебра(200 ч)

Алгебраические выражения.

Буквенные выражения (выражения с перемен­ными). Числовое значение буквенного выраже­ния. Допустимые значе­ния переменных. Подстановка

выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и ее свойства. Одно­члены и много­члены. Степень многочлена. Сложение, вычи­тание, умножение многочленов. Формулы сокращенного умно­же­ния: квадрат суммы и квадрат разности. Фор­мула разности квадратов. Преобразова­ние целого выражения в много­член. Разложение многочленов на множители. Многочлены с одной перемен­ной. Корень многочлена. Квадратный трехчлен; разло­жение квадратного трех­члена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложе­ние, вычитание, умножение, деление алгебраи­ческих дробей. Степень с це­лым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказа­тельство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их приме­нение к преобра­зованию числовых выра­жений и вычислениям.

Уравнения.

Уравнение с одной переменной. Корень урав­нения. Свойства числовых равенств. Равносиль­ность уравнений.

Линейное уравнение. Квадратное уравнение: формула кор­ней квадратного уравнения. Теорема Виета. Решение урав­нений, сводящихся к линейным и квадратным. Примеры ре­шения уравнений третьей и четвертой степени. Реше­ние дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с дву­мя перемен­ными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Сис­темы двух линей­ных уравнений с двумя перемен­ными; решение подстанов­кой и сложением. Примеры реше­ния систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интер­претация уравне­ния с двумя переменными. График линейно­го уравнения с двумя перемен­ными; угловой коэффициент прямой; условие параллельности прямых. Гра­фики простей­ших нелинейных уравнений: парабола, гипербола, окруж­ность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства.

Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность нера­венств. Линейные нера­венства с одной переменной. Квадрат­ные неравенства. Сис­темы нера­венств с одной переменной.

Функции(65 ч)

Основные понятия.

Зависимости между величинами. По­нятие функции. Об­ласть определения и множество значений функции. Способы задания функ­ции. График функции. Свой­ства функций, их отображение на графике. Примеры графи­ков зависимостей, отражающих реальные про­цессы.

Числовые функции.

Функции, описывающие прямую и обратную пропорцио­нальные зависимости, их гра­фики и свойства. Линейная функция, ее график и свойства. Квадра­тичная функция, ее гра­фик и свойства. Степен­ные функции с натуральными показателями 2 и 3, их графики и свой­ства. Графики функций у =√х, у = 3x, у = |х|.

Числовые последовательности.

Понятие числовой по­следовательности. Зада­ние последовательности рекуррентной форму­лой и формулой п-го члена.

Арифметическая и геометрическая прогрессии. Формулы п-го члена арифмети­ческой и геометрической прогрессий, суммы первых п членов. Изобра­жение членов арифметиче­ской и геометрической прогрессий точками координатной плоскости. Линейный и экспоненци­альный рост. Сложные про­центы.

Вероятность и статистика(50 ч)

Описательная статистика.

Представление данных в виде таблиц, диа­грамм, графиков. Случайная изменчивость. Ста­тистические характеристики набора данных: среднее арифме­тическое, медиана, наиболь­шее и наимень­шее значения, раз­мах. Представление о выборочном исследовании.

Случайные события и вероятность.

Понятие о слу­чайном опыте и случай­ном событии. Частота случайного события. Статистиче­ский подход к понятию вероятности. Вероятности противоположных событий. Достоверные и не­возможные события. Равновозможность событий. Классиче­ское определе­ние вероятности.

Комбинаторика.

Решение комбинаторных задач перебо­ром вариантов. Ком­бинаторное правило умноже­ния. Переста­новки и факториал.




Геометрия(255 ч)

Наглядная геометрия

Наглядные представления о фигу­рах на плоско­сти: прямая, отрезок, луч, угол, ломаная, мно­гоугольник, окружность, круг. Четырехугольник, прямоуголь­ник, квадрат. Треуголь­ник, виды треугольни­ков. Правильные многоугольники. Изображение геометрических фи­гур. Взаим­ное расположение двух прямых, двух окружностей, прямой и окружно­сти.

Длина отрезка, ломаной. Периметр многоугольника. Еди­ницы измерения длины. Измере­ние длины отрезка, построе­ние отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помо­щью транспор­тира.

Понятие площади фигуры; единицы измерения площади. Площадь прямо­угольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновели­кие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепи­пед, призма, пирамида, шар, сфера, конус, цилиндр. Изображе­ние пространственных фигур. Примеры се­чений. Многогранники. Правиль­ные многогранники. Приме­ры разверток многогранни­ков, цилиндра и ко­нуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепи­педа, куба.

Понятие о равенстве фигур. Центральная, осевая и зе­ркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры.

Прямые и углы. Точка, прямая, плоскость. Отре­зок, луч. Угол. Виды углов. Вертикаль­ные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикуляр­ные прямые. Тео­ремы о параллель­ности и перпендикулярно­сти прямых. Перпендикуляр и наклонная к прямой. Середин­ный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного пер­пендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедрен­ные и равносторонние треугольни­ки; свойства и признаки равнобед­ренного треугольника. Приз­наки равенства треугольников. Неравен­ство треугольника. Соотношения между сторо­нами и углами треугольника. Сум­ма углов треугольника. Внешние углы треуголь­ника. Теорема Фалеса. Подобие треугольников. Признаки подобия треуголь­ников. Тео­рема Пифа­гора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треуголь­ника и углов от 0 до 180°; приведение к острому углу. Решение прямо­угольных тре­угольников. Основное тригонометрическое тождество. Форму­лы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косину­сов и те­орема синусов. Замечатель­ные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и призна­ки. Прямоуголь­ник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапе­ции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого много­угольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Централь­ный угол, вписан­ный угол; величина вписанного угла. Взаим­ное расположение прямой и окружности, двух окружно­стей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоуголь­ники. Окружность, вписанная в тре­угольник, и окружность, описанная около треугольника. Впи­санные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фи­гур. Понятие о дви­жении: осе­вая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Построения с помощью циркуля и линейки. Основные за­дачи на построе­ние: деление отрезка пополам; построение уг­ла, равного данному; построе­ние треугольника по трем сторо­нам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей.

Решение задач на вычисление, доказательство и построе­ние с использова­нием свойств изученных фигур.

Измерение геометрических величин.

Длина отрезка. Расстояние от точки до прямой. Расстояние между параллель­ными пря­мыми.

Периметр многоугольника.

Длина окружности, число π; длина дуги окружности.

Градусная мера угла, соответствие между величиной цен­трального угла и дли­ной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фи­гуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь много­угольника. Площадь круга и площадь сектора. Соотно­шение между площадями подобных фигур.

Решение задач на вычисление и доказательство с исполь­зованием изучен­ных формул.

Координаты.

Уравнение прямой. Координаты середины отрезка. Фор­мула расстояния между двумя точками плоско­сти. Уравнение окружности.

Векторы.

Длина (модуль) вектора. Равенство векторов. Коллинеарные век­торы. Координаты век­тора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеар­ным векторам. Скалярное произведе­ние векторов.

Логика и множества(10 ч)

Теоретико-множественные понятия.

Множество, эле­мент множества. Зада­ние множеств перечислением элементов, характеристи­ческим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначе­ние. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эй­лера — Венна.

Элементы логики.

Определение. Аксиомы и теоремы. До­казательство. Дока­зательство от противного. Тео­рема, обрат­ная данной. Пример и контрпри­мер.

Понятие о равносильности, следовании, употребление ло­гических связок,если ..., то в том и только в том слу­чае, логические связки и, или.


Математика в историческом развитии

История формирования понятия числа: натуральные чи­сла, дроби, недостаточ­ность рацио­нальных чисел для геомет­рических измерений, иррацио­нальные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. От­крытие десятичных дробей. Старинные системы мер. Десятич­ные дроби и метрическая система мер. Появление отрицатель­ных чи­сел и нуля. Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквен­ной симво­лики. П. Ферма, Ф. Виет, Р. Де­карт. История вопроса о нахождении формул корней алгебраи­че­ских уравнений, неразрешимость в радикалах уравне­ний степени, большей четы­рех. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометриче­ские объекты на язык алгебры. Р. Декарт и П. Фер­ма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. За­дача о шахмат­ной доске.

Истоки теории вероятностей: страховое дело, азартные иг­ры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построе­ние правиль­ных многоугольников. Трисек­ция угла. Квадратура круга. Удвоение куба. История числа л. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачев­ский. История пя­того постулата.

Софизмы, парадоксы.

Резерв времени 20ч

Резервное время по курсу может быть использовано на организацию обобщающего и систематизирующего повторения, а так жедля более основательного изучения соответствующих тем программы



Тематическое планирование

МАТЕМАТИКА

5—6 классы (340 ч)


Основное содержание по те­мам

Характеристика основных видов дея­тельно­сти уче­ника (на уровне учеб­ных дейст­вий)

Метапредметные уме­ния и навыки

1

2

3

1. Натуральные числа (50 ч)


Натуральный ряд. Десятичная сис­тема счисле­ния. Арифметические действия с нату­ральными числами. Свойства арифме­тиче­ских дейст­вий.

Понятие о степени с натуральным показате­лем.

Квадрат и куб числа.

Числовые выражения, значение чи­сло­вого выра­жения. Порядок дейст­вий в чи­словых выражениях, использование ско­бок.

Решение текстовых задач арифмети­че­скими спо­собами.

Делители и кратные. Наибольший общий дели­тель; наименьшее об­щее кратное. Свой­ства делимо­сти. Признаки делимо­сти на 2, 3, 5, 9, 10. Простые и составные числа. Раз­ложе­ние натурального числа на простые мно­жители. Деление с остат­ком

Описывать свойства натураль­ного ряда.

Читать и записывать натураль­ные числа, срав­нивать и упорядо­чивать их.

Выполнять вычисления с нату­ральными чис­лами; вы­числять значения степеней.

Формулировать свойства арифме­тических дейст­вий, записы­вать их с помощью букв, преоб­разовывать на их основе чи­словые выраже­ния.

Анализировать и осмысливать текст за­дачи, пере­фор­мулиро­вать условие, извле­кать необхо­димую ин­формацию, моделиро­вать усло­вие с помощью схем, ри­сунков, ре­альных предметов; строить логическую це­почку рас­суждений; критически оцени­вать получен­ный ответ, осуществ­лять самокон­троль, про­веряя от­вет на соответ­ствие усло­вию.

Формулировать определения делителя и крат­ного, про­стого числа и составного числа, свой­ства и при­знаки делимости.

Доказывать и опровергать с по­мощью контр­приме­ров утвержде­ния о делимости чи­сел. Клас­сифи­цировать нату­ральные числа (четные и нечетные, по ос­таткам от де­ления на 3 и т. п.).

Исследовать простейшие число­вые закономер­ности, про­водить числовые экспери­менты (в том числе с исполь­зова­нием калькулятора, компью­тера)

Уметь видеть математиче­скую задачу в кон­тексте про­блемной ситуации в ок­ружаю­щей жизни.

Понимать сущности алго­ритмических пред­писаний и умение действовать в соот­вет­ствии с предложен­ным алгоритмом.


2.Дроби (120 ч)


Обыкновенные дроби. Основное свой­ство дроби. Сравнение обыкно­венных дробей. Арифметиче­ские действия с обыкно­венными дробями. Нахожде­ние части от целого и це­лого по его части.

Десятичные дроби. Сравнение деся­тич­ных дро­бей. Арифметиче­ские действия с десятич­ными дро­бями. Представление десятичной дроби в виде обыкновенной дроби и обыкно­венной в виде деся­тич­ной.

Отношение. Пропорция; основное свой­ство про­порции.

Проценты; нахождение процентов от вели­чины и величины по ее про­центам; выраже­ние отношения в процентах.

Решение текстовых задач арифмети­че­скими спо­собами

Моделировать в графической, предметной форме по­нятия и свой­ства, связан­ные с поня­тием обыкновенной дроби.

Формулировать, записывать с помощью букв основ­ное свой­ство обыкновен­ной дроби, пра­вила действий с обыкновенными дробями.

Преобразовывать обыкновен­ные дроби, срав­нивать и упорядо­чивать их. Выполнять вычисле­ния с обыкновен­ными дробями.

Читать и записывать десятич­ные дроби. Представ­лять обыкно­венные дроби в виде деся­тичных и десятич­ные в виде обык­новен­ных; находить десятич­ные прибли­жения обык­но­венных дробей.

Сравнивать и упорядочивать десятичные дроби. Вы­полнять вычисления с десятич­ными дро­бями.

Использовать эквивалентные представления дробных чисел при их сравне­нии, при вычисле­ниях.

Выполнять прикидку и оценку в ходе вычис­лений.

Объяснять, что такое процент. Представ­лять процен­ты в виде дробей и дроби в виде процентов.

Осуществлять поиск информа­ции (в СМИ), содержа­щей дан­ные, выражен­ные в процен­тах, интерпретиро­вать их. Приводить при­меры использо­вания отноше­ний на практике.

Решать задачи на проценты и дроби (в том числе за­дачи из ре­альной прак­тики), исполь­зуя при необходимо­сти калькулятор; ис­пользо­вать понятия отно­шения и пропор­ции при решении задач.

Анализировать и осмысливать текст за­дачи, пере­форму­лиро­вать усло­вие, извле­кать необхо­димую ин­формацию, моделиро­вать условие с помо­щью схем, ри­сунков, ре­альных предметов; строить логическую це­почку рас­суждений; критически оцени­вать получен­ный ответ, осуществ­лять само­кон­троль, про­веряя ответ на соответ­ствие усло­вию.

Проводить несложные исследова­ния, связан­ные со свойст­вами дробных чисел, опира­ясь на числовые экспе­ри­менты том числе с использова­нием калькуля­тора, компью­тера)

Понимать сущности алгоритми­ческих предпи­саний и умение действовать в соответ­ствии с предложенным алгоритмом.
Умение самостоятельно ста­вить цели, выби­рать и созда­вать алгоритмы для решения учеб­ных математических проб­лем;


3.Рациональные числа (40ч)


Положительные и отрицатель­ные числа, мо­дуль числа. Изображе­ние чисел точками коорди­натной прямой; геометриче­ская интер­претация модуля числа.

Множество целых чисел. Множе­ство ра­цио­наль­ных чисел. Сравнение рацио­нальных чисел. Арифме­тические дейст­вия с рацио­наль­ными числами. Свой­ства ариф­метиче­ских действий

Приводить примеры использова­ния в окру­жающем мире положи­тельных и отрицатель­ных чисел (темпера­тура, выигрыш — проиг­рыш, выше — ниже уровня моря и т. п.).

Изображать точками координат­ной прямой положи­тель­ные и от­рицатель­ные рациональ­ные числа.

Характеризовать множество це­лых чисел, множество рациональ­ных чи­сел.

Формулировать и записывать с помощью букв свой­ства действий с рацио­нальными чис­лами, приме­нять для преобразования чи­словых выраже­ний.

Сравнивать и упорядочивать рациональ­ные числа, вы­полнять вычисле­ния с рацио­нальными чис­лами

Понимать сущности алго­ритмических предписаний и умение действовать в со­от­ветствии с предложен­ным алгоритмом.

Умение понимать и исполь­зовать математи­че­ские сред­ства наглядности (гра­фики, диаграммы, таб­лицы, схемы и др.) для ил­люстрации, интерпрета­ции, аргу­ментации;



4. Измерения, приближения, оценки. Зависимости между величи­нами (20 ч)


Единицы измерения длины, площади, объема массы, времени, скорости.

Примеры зависимостей между вели­чи­нами ско­рость, время, рас­стояние; производи­тель­ность, время, работа; цена, коли­чество, стоимость и др. Пред­став­ление зависимостей в виде фор­мул. Вычисления по форму­лам.

Решение текстовых задач арифмети­че­скими спосо­бами

Выражать одни единицы измере­ния вели­чины в дру­гих единицах (метры в километ­рах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выпол­нять при­кидку и оценку в ходе вычисле­ний.

Моделировать несложные зависи­мости с помощью фор­мул; выполнять вычисления по форму­лам.

Использовать знания о зависимо­стях между величи­нами (ско­рость, время, расстояние; работа, производи­тельность, время и т. п.) при решении текстовых задач

Уметь видеть математиче­скую задачу в контек­сте про­блемной ситуации в других дис­циплинах, в окружающей жизни

5. Элементы алгебры (25 ч)

Использование букв для обозначе­ния чи­сел, для записи свойств ариф­метических дейст­вий.

Буквенные выражения (выражения с пере­мен­ны­ми). Числовое значе­ние буквен­ного выражения.

Уравнение, корень уравнения. Нахо­жде­ние неиз­вестных компонен­тов арифметиче­ских дейст­вий.

Декартовы координаты на плоско­сти. По­строе­ние точки по ее коорди­натам, опреде­ление коорди­нат точ­ки на плоско­сти

Читать и записывать буквенные выраже­ния, состав­лять буквенные выражения по усло­виям задач.

Вычислять числовое значение буквенного выраже­ния при задан­ных значениях букв.

Составлять уравнения по усло­виям задач. Решать про­стейшие уравнения на основе зави­симо­стей между компо­нентами арифме­тических действий.

Строить на координатной плоско­сти точки и фигуры по за­данным координатам; опреде­лять координаты точек

Уметь видеть математиче­скую задачу в кон­тексте проблемной ситуации в ок­ружаю­щей жизни.

Понимать сущности алгорит­мических предпи­саний и уме­ние действовать в соответст­вии с предложенным алгорит­мом.

Первоначальные представле­ния об идеях и о методах математики как уни­версальном языке науки и тех­ники, сред­стве моделирова­ния явлений и про­цессов;



6. Описательная статистика. Вероятность. Комбинаторика. Множества.(20 ч)


Представление данных в виде таб­лиц, диа­грамм.

Понятие о случайном опыте и собы­тии. Досто­вер­ное и невозмож­ное события. Срав­нение шансов.

Решение комбинаторных задач пере­бо­ром вари­антов.

Множество, элемент множества. Пустое множество. Подмножество. Объединение и пересечение множеств.

Иллюстрация отношений между множествами с помощью диаграмм Эйлера-Венна.

Извлекать информацию из таб­лиц и диа­грамм, вы­пол­нять вычис­ления по таблич­ным дан­ным, сравнивать величины, нахо­дить наибольшие и наимень­шие значе­ния и др.

Выполнять сбор информации в несложных случаях, пред­став­лять информацию в виде таблиц и диаграмм, в том числе с помо­щью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозмож­ных событий. Сравни­вать шансы наступления собы­тий; строить речевые конструк­ции с использова­нием словосочета­ний более вероятно, мало­вероятно и др.

Выполнять перебор всех возмож­ных вариан­тов для пере­счета объек­тов или комбина­ций, выде­лять комби­нации, отвечаю­щие заданным условиям

Приводить примеры конечных и бесконеч­ных мно­жеств. Находить объединение и пересе­чение конкретных множеств. Приво­дить примеры несложных классифика­ций из различных областей жизни.

Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера

Уметь видеть математиче­скую задачу в кон­тексте проблемной си­туации в окружаю­щей жизни.

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки

7. Наглядная геометрия (45 ч)

Наглядные представления о фигу­рах на плоско­сти: прямая, отрезок, луч, угол, лома­ная, многоугольник, правильный многоуголь­ник, окруж­ность, круг. Четы­рех­уголь­ник, прямоугольник, квадрат. Тре­уголь­ник, виды треугольников.

Изображение геометрических фи­гур. Вза­им­ное расположение двух прямых, двух окружно­стей, пря­мой и окружности.

Длина отрезка, ломаной. Периметр много­уголь­ни­ка. Единицы измере­ния длины. Измере­ние длины от­резка, построе­ние от­резка заданной длины.

Угол. Виды углов. Градусная мера угла. Измере­ние и построение уг­лов с помо­щью транспортира.

Понятие площади фигуры; еди­ницы изме­ре­ния площади. Пло­щадь прямоуголь­ника и площадь квад­рата. Рав­новеликие фигуры.

Наглядные представления о про­странствен­ных фи­гурах: куб, парал­лелепи­пед, призма, пирамида, шар, сфера, конус, цилиндр. Изобра­жение про­странствен­ных фигур. При­меры сечений. Много­гранники, пра­вильные многогран­ники. Примеры разверток много­гранни­ков, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямо­угольного параллелепи­педа и объем куба.

Понятие о равенстве фигур. Цен­тральная, осе­вая и зеркальная сим­метрии. Изображе­ние симметрич­ных фигур







Распознавать на чертежах, рисун­ках и моде­лях гео­метриче­ские фигуры, конфигурации фи­гур (плоские и пространствен­ные). Приво­дить примеры анало­гов гео­метриче­ских фигур в окру­жающем мире.

Изображать геометрические фи­гуры и их конфигура­ции от руки и с использованием чертежных инст­рументов. Изображать геомет­рические фигуры на клетча­той бу­маге.

Измерять с помощью инструмен­тов и сравни­вать дли­ны отрезков и величины уг­лов. Строить от­резки заданной длины с помо­щью линейки и циркуля и углы задан­ной ве­личины с помощью транспор­тира. Вы­ражать одни еди­ни­цы измерения длин через другие.

Вычислять площади квадратов и прямоуголь­ников, исполь­зуя фор­мулы пло­щади квадрата и пло­щади прямо­угольника.

Выражать одни единицы измере­ния пло­щади через дру­гие.

Изготавливать пространствен­ные фигуры из развер­ток; распо­знавать развертки куба, параллеле­пипеда, пи­ра­миды, ци­линдра и ко­нуса.Рассматри­ватьпростейшие сечения про­странствен­ных фигур, получае­мые путем пред­метного или ком­пьютерного моделирова­ния, опре­делять их вид.

Вычислять объемы куба и прямо­угольного паралле­лепи­педа, используя формулы объ­ема куба и объема прямо­уголь­ного параллеле­пи­педа. Выра­жать одни еди­ницы измерения объема через другие.

Исследовать и описывать свой­ства геометри­ческих фи­гур (пло­ских и пространст­венных), исполь­зуя экспери­мент, наблюде­ние, измерение. Модели­ровать гео­метри­ческие объекты, исполь­зуя бумагу, пла­стилин, проволо­ку и др. Исполь­зовать компь­ютер­ное мо­делирование и экспе­римент для изучения свойств геометриче­ских объ­ектов.

Находить в окружающем мире плоские и про­стран­ствен­ные сим­метричные фигуры.

Решать задачи на нахождение длин отрез­ков, пери­мет­ров мно­гоугольников, градусной меры уг­лов, площа­дей квадратов и прямо­уголь­ников, объемов ку­бов и пря­моуголь­ных параллеле­пипедов, куба. Выде­лять в усло­вии задачи данные, необходимые для ее реше­ния, стро­ить логическую це­почку рас­суждений, сопостав­лять полу­ченный резуль­тат с усло­вием задачи.

Изображать равные фигуры, сим­метричные фигуры

Строить логическую це­почку рас­суждений, сопостав­лять полу­ченный результат с усло­вием задачи.

Умение применять индуктив­ные и дедуктив­ные спосо­бы рассуждений, ви­деть различ­ные стратегии решения задач

Умение планировать и осуще­ствлять деятель­ность, на­прав­ленную на реше­ние за­дач ис­следовательского характера;









































Итоговое повторение (20 часов)

Вводное повторение 5 класс-5 часов

Итоговое повторение 5 класс-8 часов

Итоговое повторение 6 класс-7 часов




Раздел «Алгебра»

7-9 классы ( 306 часов)


Основное содержание по темам

Характеристика основных видов дея­тельности уче­ника (на уровне учебных дей­ствий)

Метапредметные уме­ния и навыки

1

2

3

1. Действительные числа (15 ч)


Расширение множества натуральных чисел до множества целых, множества целых чисел до множе­ства рациональ­ных. Рациональное число как отношение т/п, где т — целое число, а п — нату­ральное чи­сло.

Степень с целым показателем. Квадрат­ный корень из числа. Корень третьей сте­пени.

Понятие об иррациональном числе. Ирра­цио­нальность числаhello_html_m1e7bfb7a.gif и несоизме­римость сто­роны и диагонали квадрата. Десятичные при­ближения ирра­циональных чисел.

Множество действительных чисел; пред­ставле­ние действительных чисел в виде беско­нечных десятич­ных дробей. Сравнение действи­тельных чисел.

Взаимно однозначное соответствие ме­жду дей­ствительными числами и точ­ками координат­ной прямой. Числовые проме­жутки: интервал, отрезок, луч

Описывать множество целых чисел, множе­ство ра­циональ­ных чисел, соотношение ме­жду этими множе­ст­вами.

Сравнивать и упорядочивать рациональ­ные числа, выпол­нять вычисления с рациональ­ными числами, вы­чис­лять значе­ния степеней с целым показателем.

Формулировать определение квадратного корня из числа. Ис­пользовать график функ­ции у = х2 для нахож­дения квад­ратных кор­ней. Вычислять точные и прибли­женные значения корней, используя при необходимо­сти калькуля­тор; проводить оценку квадрат­ных корней.

Формулировать определение корня третьей степени; нахо­дить значения кубических кор­ней, при необходимо­сти используя, калькуля­тор.

Приводить примеры иррацио­нальных чисел; распо­зна­вать рациональные и иррациональ­ные числа; изобра­жать числа точками коорди­натной прямой.

Находить десятичные приближе­ния рацио­нальных и иррацио­нальных чисел; сравни­вать и упорядочивать действи­тельные числа.

Описывать множество действи­тельных чи­сел.

Использовать в письменной ма­тематиче­ской речи обозначе­ния и графические изобра­жения чи­словых мно­жеств, теоретико-мно­жественную символику

Умение понимать и исполь­зовать математиче­ские сред­ства наглядности (гра­фики, диаграммы, таб­лицы, схемы и др.) для ил­люстрации, интерпрета­ции, аргументации.

Умение находить в различ­ных источниках информа­цию, необходимую для ре­шения мате­матических про­блем, представ­лять ее в понятной форме, прини­мать решение в усло­виях не­полной и избыточной, точной и вероят­ност­ной информации.



2. Измерения, приближения, оценки (10 ч)


Приближенное значение величины, точ­ность приближения. Размеры объек­тов окружаю­щего мира (от элементар­ных частиц до Вселенной), длительность процессов в окру­жающем мире. Выделе­ние множите­ля — сте­пени 10 в записи числа.

Прикидка и оценка результатов вычисле­ний

Находить, анализировать, со­поставлять числовые характе­ри­стики объектов окру­жаю­щего мира.

Использовать запись чисел в стандартном виде для выраже­ния размеров объектов, длитель­ности процессов в окру­жающем мире.

Сравнивать числа и величины, записанные с исполь­зова­нием степени 10.

Использовать разные формы записи прибли­женных значе­ний; делать выводы о точности приближения по за­писи прибли­женного значе­ния.

Выполнять вычисления с реаль­ными дан­ными.

Выполнять прикидку и оценку результатов вычислений

Умение видеть математиче­скую задачу в кон­тексте проб­лемной ситуа­ции в других дис­цип­линах, в окружающей жизни.

Выполнять вычисления с реальными дан­ными.


3.Введение в алгебру (8ч)


Буквенные выражения (выражения с пе­ремен­ны­ми). Числовое значение буквен­ного выражения. До­пустимые зна­чения перемен­ных. Подстановка выра­же­ний вместо перемен­ных.

Преобразование буквенных выраже­ний на ос­нове свойств арифметических действий. Равен­ство буквен­ных выраже­ний. Тождество

Выполнять элементарные зна­ково-символиче­ские дейст­вия: применять буквы для обозначе­ния чисел, для записи общих ут­верждений; состав­лять буквенные выра­же­ния по условиям, заданным словесно, рисун­ком или чертежом; преоб­разовывать алгебраи­че­ские суммы и произведения (вы­полнять приведение подоб­ных слагае­мых, раскрытие ско­бок, упрощение произведе­ний).

Вычислять числовое значение буквенного выраже­ния; нахо­дить область допустимых значе­ний перемен­ных в выраже­нии

Понимание сущности алгоритмических пред­писаний и умение действо­вать в соответст­вии с предложенным алго­ритмом.

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы и др.) для иллюстрации, интерпрета­ции, аргументации.


4. Многочлены (45ч)


Степень с натуральным показателем и ее свой­ства. Одночлены и много­члены. Степень многочлена. Сло­жение, вычитание, умноже­ние многочленов. Фор­мулы сокращенного умноже­ния: квад­рат суммы и квадрат разно­сти. Формула разности квадратов. Преобра­зова­ние целого выражения в мно­го­член. Разло­жение мно­гочлена на множители: вынесе­ние общего множи­теля за скобки, группи­ровка, примене­ние формул сокра­щен­ного умножения.

Многочлены с одной переменной. Ко­рень мно­гочлена. Квадратный трех­член, разложе­ние квадратно­го трех­члена на множители



Формулировать, записывать в символиче­ской фор­ме и обос­новывать свойства сте­пени с натуральным по­казате­лем; при­ме­нять свойства степени для преобразо­вания выраже­ний и вычислений.

Выполнять действия с много­членами.

Выводить формулы сокращен­ного умноже­ния, при­менять их в преобразованиях выраже­ний и вычислениях.

Выполнять разложение много­членов на мно­жители.

Распознавать квадратный трех­член, выяс­нять возмож­ность разложения на множи­тели, представлять квадрат­ный трехчлен в виде произведе­ния линейных множителей.

Применять различные формы самоконтроля при вы­полне­нии преобразований

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение самостоятельно ставить цели, выби­рать и созда­вать алгоритмы для решения учеб­ных математических проб­лем.

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.


5.Алгебраические дроби (22ч)


Алгебраическая дробь. Основное свой­ство ал­геб­раической дроби. Сокраще­ние дробей. Сложение, вы­чита­ние, умножение, деление алгеб­раиче­ских дробей.

Степень с целым показателем и ее свой­ства.

Рациональные выражения и их преобра­зова­ния. Доказательство тож­деств

Формулировать основное свой­ство алгебраи­ческой дроби и применять его для преобразо­вания дробей.

Выполнять действия с алгебраи­ческими дро­бями.

Пред­став­лять целое выраже­ние в виде много­члена, дробное — в виде отношения многочле­нов; доказывать тождества.

Формулировать определение степени с це­лым пока­зателем.

Формулировать, записывать в символиче­ской форме и иллю­стрировать примерами свойства степени с целым показа­телем; приме­нять свой­ства степени для преобразова­ния выражений и вычислений

Умение применять индуктивные и дедуктив­ные спосо­бы рассуждений, ви­деть различные стратегии решения задач.

Понимать сущности алгоритмических предпи­саний и умение действо­вать в соответст­вии с предложенным алго­ритмом;


6.Квадратные корни (12ч)


Понятия квадратного корня, арифме­тиче­ского квадратного корня. Уравнение вида х2=а. Свойства арифме­тических квадрат­ных корней: ко­рень из произ­ведения, частного, сте­пени; тождества,hello_html_m1fc735c1.gif = а, где аhello_html_m4a59822a.gif

hello_html_m7e7b76c0.gif = hello_html_m1652cddd.gif Применение свойств арифме­ти­че­ских квадратных корней для преобразова­ния числовых вы­ражений и вычисле­ний

Доказывать свойства арифмети­ческих квад­ратных корней; применять их для пре­образо­вания выражений.

Вычислять значения выраже­ний, содержа­щих квад­ратные корни; выражать перемен­ные из геометрических и физиче­ских фор­мул.

Исследовать уравнение вида х2 = а; нахо­дить точ­ные и при­ближенные корни при

а > 0

Умение планировать и осуществлять деятель­ность, на­правленную на реше­ние за­дач исследовательского характер.



7.Уравнения с одной переменной (38 ч)


Уравнение с одной переменной. Корень уравне­ния. Свойства числовых ра­венств. Равно­сильность урав­нений.

Линейное уравнение. Решение уравне­ний, сводя­щихся к линейным.

Квадратное уравнение. Неполные квад­рат­ные урав­нения. Формула корней квад­ратного уравне­ния. Теоре­ма Виета. Решение уравне­ний, сводящихся к квадрат­ным. Биквадрат­ное уравнение.

Примеры решения уравнений третьей и четвер­той степени разложением на мно­жи­тели.

Решение дробно-рациональных уравне­ний.

Решение текстовых задач алгебраиче­ским спосо­бом

Распознавать линейные и квад­ратные уравне­ния, це­лые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; ре­шать дробно-рацио­нальные уравне­ния.

Исследовать квадратные уравне­ния по дискри­ми­нанту и коэффициентам.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления уравнения; ре­шать составленное уравнение; интер­претировать ре­зультат

Умение применять индуктивные и дедуктив­ные спосо­бы рассуждений, ви­деть различные стратегии решения задач.

Первоначальные представления об идеях и о методах математики как уни­версальном языке науки и техники, сред­стве моделирова­ния явлений и процессов.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

8.Системы уравнений(30 ч)


Уравнение с двумя переменными. Линей­ное урав­нение с двумя перемен­ными. Примеры реше­ния урав­нений в целых числах.

Система уравнений с двумя перемен­ными. Равно­сильность систем уравне­ний. Система двух линейных уравнений с двумя перемен­ными; решение подстанов­кой и сложением. Решение сис­тем двух уравнений, одно из кото­рых линейное, а другое второй степени. При­меры решения систем нелинейных уравне­ний.

Решение текстовых задач алгебраиче­ским спо­собом.

Декартовы координаты на плоскости. Графиче­ская интерпретация уравнения с двумя перемен­ными.

График линейного уравнения с двумя перемен­ны­ми, угловой коэффициент пря­мой; условие парал­лельности пря­мых.

Графики простейших нелинейных уравне­ний (па­рабола, гипербола, окруж­ность).

Графическая интерпретация системы уравне­ний с двумя переменными

Определять, является ли пара чисел реше­нием дан­ного уравне­ния с двумя перемен­ными; приводить при­меры ре­шения уравне­ний с двумя пере­менными.

Решать задачи, алгебраической моделью кото­рых яв­ляется урав­нение с двумя перемен­ными; находить целые решения пу­тем перебора.

Решать системы двух уравне­ний с двумя пере­менны­ми, ука­занные в содержании.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления системы уравне­ний; решать составленную сис­тему уравне­ний; ин­терпретиро­вать результат.

Строить графики уравнений с двумя перемен­ными.

Конструи­ровать эквивалент­ные речевые вы­сказывания с использованием алгебраиче­ского и геометрического язы­ков.

Решать и исследовать уравне­ния и системы уравне­ний на ос­нове функционально-графиче­ских представле­ний уравнений

Использоватьфункционально-графические представления для решения и исследования уравнений и систем.

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.

Использовать математические средства на­глядности графики для интерпретации, аргу­ментации.

9.Неравенства (20 ч)


Числовые неравенства и их свойства.

Неравенство с одной переменной. Равно­силь­ность неравенств. Линейные неравенства с од­ной перемен­ной. Квадрат­ные неравенства.

Системы линейных неравенств с одной перемен­ной

Формулировать свойства число­вых нера­венств, ил­люстри­ровать их на координат­ной прямой, доказы­вать алгебраически; приме­нять свойства неравенств при ре­ше­нии задач.

Распознавать линейные и квад­ратные неравен­ства.

Ре­шать линейные неравенства, системы линей­ных нера­венств.

Решать квадратные неравен­ства на основе гра­фиче­ских пред­ставлений

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.

Использовать математические средства на­глядности графики для интерпретации, аргу­ментации.



10.Зависимости между величинами (15 ч)

Зависимость между величинами.

Представление зависимостей между вели­чи­нами в виде формул. Вычисления по форму­лам.

Прямая пропорциональная зависимость: зада­ние формулой, коэффициент пропор­цио­нально­сти; свой­ства. При­меры прямо пропор­циональных зависимо­стей.

Обратная пропорциональная зависи­мость: зада­ние формулой, коэффициент обратной про­порциональности; свой­ства. Примеры обрат­ных пропорцио­наль­ных зависимостей.

Решение задач на прямую пропорциональ­ность и обратную пропор­циональную зависимо­сти

Составлять формулы, выра­жающие зависимо­сти между ве­личинами, вычислять по форму­лам.

Распознавать прямую и обрат­ную пропорцио­наль­ные зависи­мости.

Решать тексто­вые за­дачи на прямую и обрат­ную про­порциональные зависимо­сти (в том числе с контек­стом из смежных дисцип­лин, из реаль­ной жизни)

Умение видеть математическую задачу в кон­тексте проб­лемной ситуа­ции в других дис­циплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктив­ные спосо­бы рассуждений, ви­деть различные стратегии решения задач;



11.Числовые функции (35ч)


Понятие функции. Область определения и множе­ство значений функции. Спо­собы зада­ния функции. График функ­ции. Свойства функ­ции, их отображение на графике: возраста­ние и убывание функ­ции, нули функ­ции, сохранение знака. Чтение и построе­ние гра­фиков функций.

Примеры графиков зависимостей, отра­жаю­щих реальные процессы.

Функции, описывающие прямую и обрат­ную про­порциональные зависимо­сти, их графики.

Линейная функция, ее график и свой­ства.

Квадратичная функция, ее график и свой­ства.

Степенные функции с натуральными пока­зате­лями 2и3, их графики и свой­ства. Гра­фики функций

hello_html_m1b724274.gif; hello_html_5e6fc6fb.gif; hello_html_336927c.gif

Вычислять значения функций, заданных фор­мулами (при необ­ходимости использо­вать калькулятор); со­ставлять таб­лицы значе­ний функций.

Строить по точкам графики функций. Описы­вать свойства функции на основе ее графиче­ского представ­ления.

Моделировать реальные зависи­мости форму­лами и графи­ками. Читать графики реаль­ных зависимостей.

Использовать функциональ­ную символику для запи­си раз­нообразных фактов, связан­ных с рассматриваемы­ми функ­циями, обогащая опыт выполне­ния знаково-символиче­ских действий. Стро­ить речевые конструкции с использо­ванием функциональ­ной терми­ноло­гии.

Использовать компьютерные программы для по­строения гра­фиков функций, для исследо­ва­ния положе­ния на координат­ной плоскости графиков функ­ций в за­висимо­сти от значений коэффициентов, входящих в фор­мулу.

Распознавать виды изучаемых функций. Пока­зывать схемати­чески положение на ко­ординатной плоскости графи­ков изучаемых функций в зави­симости от значений коэффи­ци­ентов, входящих в фор­мулы.

Строить графики изучаемых функций; описы­вать их

свойства

Умение самостоятельно ставить цели, выби­рать и созда­вать алгоритмы для решения учеб­ных математических проб­лем.

Умение видеть математическую задачу в кон­тексте проб­лемной ситуа­ции в других дис­циплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Планировать и осуществлять деятельность, направленную на решение задач исследователь­ского характера.

12.Числовые последовательности. Арифметическая и геометриче­ская

прогрессии (16 ч)


Понятие числовой последовательно­сти. Зада­ние последовательности рекур­рентной фор­мулой и фор­мулой n-го члена.

Арифметическая и геометрическая про­грес­сии. Формулы n-го члена арифме­тиче­ской и геометриче­ской про­грессий, суммы первых п членов. Изобра­же­ние членов арифме­тической и геометрической про­грес­сий точками коор­динатной плоскости. Линей­ный и экспоненциаль­ный рост. Слож­ные про­центы

Применять индексные обозначе­ния, стро­ить рече­вые высказывания с использова­нием терминологии, свя­занной с понятием последо­вательно­сти.

Вычислять члены последова­тельностей, задан­ных форму­лой п-го члена или рекуррент­ной формулой.

Устанавливать закономерность в построе­нии последова­тельно­сти, если из­вестны пер­вые несколько ее чле­нов.

Изображать члены по­следователь­ности точ­ками на ко­ординатной плоскости.

Распознавать арифметическую и геометриче­скую прогрессии при разных спосо­бах задания.

Выводить на основе доказатель­ных рассужде­ний фор­мулы общего чле­на арифме­тической и геометрической про­грессий, суммы первых л членов арифметиче­ской и гео­метрической про­грессий; ре­шать задачи с использованием этих формул.

Рассматривать примеры из ре­альной жизни, иллю­стрирую­щие изменение в арифметиче­ской прогрессии, в геометриче­ской прогрес­сии; изображать соответствую­щие зависимо­сти графически.

Решать задачи на сложные про­центы, в том числе задачи из реальной практики (сисполь­зованием кальку­лятора)

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.


13.Описательная статистика (10 ч)


Представление данных в виде таблиц, диа­грамм, графиков. Случайная изменчи­вость. Ста­тистические

характеристики набора данных: сред­нее ариф­метиче­ское, медиана, наиболь­шее и наи­меньшее значения, размах. Пред­ставление о выборочном исследова­нии

Извлекать информацию из таб­лиц и диа­грамм, вы­полнять вычисления по таблич­ным дан­ным. Определять по диаграм­мам наибольшие и наименьшие данные, сравни­вать величины.

Представлять информацию в виде таблиц, столбча­тых и круго­вых диаграмм, в том числе с помощью компьютер­ных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.),нахо­дитьсред­нее арифмети­ческое, размах чи­сло­вых наборов.

Приводить содержательные примеры исполь­зования сред­них для описания данных (уро­вень воды в водоеме, спортив­ные показа­тели, определение границ климати­ческих зон)

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргу­ментации.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.


14.Случайные события и вероятность (15ч)


Понятие о случайном опыте и случай­ном со­бытии. Частота случайного события. Статисти­че­ский подход к поня­тию вероятно­сти. Вероятности проти­воположных событий. Достовер­ные и невозможные события. Равновоз­можность событий. Классическое опреде­ле­ние вероятности


Проводить случайные экспери­менты, в том числе с помощью компьютерного моделирова­ния, интерпретиро­вать их резуль­таты. Вычислять частоту слу­чайного собы­тия; оценивать ве­роятность с помощью частоты, получен­ной опытным путем.

Решать задачи на нахождение вероятностей событий.

Приводить примеры случай­ных событий, в частности досто­верных и невозможных собы­тий, маловероятных со­бы­тий.

Приводить примеры рав­новероятных событий

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.



15.Элементы комбинаторики ( )


Решение комбинаторных задач перебо­ром ва­ри­антов. Комбинаторное правило умноже­ния. Переста­новки и фак­ториал

-

Выполнять перебор всех воз­можных вариан­тов для пере­счета объектов или комбина­ций.

Применять правило комбина­торного умноже­ния для реше­ния задач на нахожде­ние числа объектов или ком­бинаций (диа­го­нали многоугольника, рукопо­жатия, число ко­дов, шиф­ров, паролей и т. п.).

Распо­знавать задачи на опреде­ление числа переста­но­вок и выполнять соответствую­щие вычисления.

Решать задачи на вычисление вероятности с приме­нением ком­бинаторики

Понимать и использовать математические средства наглядности схемы для иллюстра­ции, интерпретации

16.Множества. Элементы логики (7 ч)


Множество, элемент множества. Зада­ние мно­жеств перечислением элемен­тов, характери­стическим свойст­вом. Стандартные обозначения число­вых мно­жеств. Пустое множе­ство и его обозначение. Подмно­же­ство. Объедине­ние и пересечение множеств, раз­ность множеств.

Иллюстрация отношений между мно­жест­вами с помощью диаграмм Эйлера — Венна.

Понятия о равносильности, следова­нии, упот­реб­ление логических связок если то, в том и толь­ко том слу­чае. Логические связкии, или

Приводить примеры конечных и бесконеч­ных мно­жеств. Нахо­дить объединение и пересе­че­ние множеств. Приводить при­меры несложных классифика­ций.

Использовать теоретико-множе­ственную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математиче­ские понятия и утверж­дения при­мерами. Использовать при­меры и контрпри­меры в аргумен­тации.

Конструировать математиче­ские предложе­ния с по­мощью связок если то, в том и только том слу­чае, логиче­ских связок и, или

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргу­ментации.






Раздел « Геометрия»

7-9 классы (204 часа)


1. Прямые и углы(20ч)


Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, раз­вернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свой­ства углов с параллельными и перпендикуляр­ными сторонами. Взаимное расположение прямых на плоскости: парал­лельные и пересекающиеся прямые. Перпенди­кулярные прямые. Теоремы о парал­лельности и перпендикулярности пря­мых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Свойства биссектрисы угла и серединного перпендикуляра к отрезку.


Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисле­ния. Выделять в условии задачи условие и заклю­чение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопостав­лять полученный результат с условием задачи.

Уметь находить в различных источ­никах информацию, необходи­мую для решения математи­ческих проблем, и пред­ставлять ее в понятной форме, пони­мать и использовать математи­ческие средства наглядно­сти (чертежи) для иллюстрации, интерпретации.











2.Треугольники (65ч.)

Треугольники. Прямоугольные, остро­уголь­ные и тупоугольные треуголь­ники. Вы­сота, медиана, биссек­т­риса, средняя линия треугольника. Равно­бедренные и равносторон­ние тре­угольники; свойства и при­знаки равнобед­ренного треугольника.

Признаки равенства треугольников. При­знаки ра­венства прямоугольных тре­угольни­ков. Неравенство треуголь­ника. Соотноше­ния между сторонами и угла­ми треугольника. Сумма углов тре­угольника. Внешние углы треугольника, теорема о внешнем угле треуголь­ника. Теорема Фалеса. Подобие тре­угольни­ков; коэф­фициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тан­генс, ко­тангенс острого угла прямо­угольного треугольника и углов от 0 до 180°; приведе­ние к острому углу. Реше­ние прямоугольных треугольников. Ос­новное тригоно­метриче­ское тождество. Формулы, связывающие си­нус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: тео­рема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересе­чения серединных перпенди­куляров, биссектрис, ме­диан, высот и их продолжений

Формулировать определения прямоугольного, ост­ро­уголь­ного, тупоугольного, равнобед­ренного, равносто­роннего треугольников; вы­соты, медианы, биссек­трисы, средней линии треугольника; распознавать и изобра­жать их на чертежах и рисунках.

Формулировать определение равных треугольников. Форму­лировать и доказы­вать теоремы о признаках ра­венства треугольников.

Объяснять и иллюстриро­вать неравенство тре­уголь­ника.

Формулировать и доказы­вать теоремы о свойствах и признаках равнобедренного треугольника, соотноше­ни­ях между сторонами и углами тре­угольника, сумме углов тре­угольника, внешнем угле треугольника, о сред­ней ли­нии треугольника.

Формулировать определение подобных треугольни­ков.

Формулировать и доказы­вать теоремы о призна­ках подо­бия треугольников, тео­рему Фалеса.

Формулировать определения и иллюстрировать поня­тия синуса, косинуса, тангенса и котангенса ост­рого угла прямо­угольного треугольника. Выводить формулы, выражаю­щие функции угла прямоугольного треугольни­ка через его стороны. Формулиро­вать и доказы­вать те­орему Пифагора.

Формулировать определения синуса, косинуса, тан­генса, ко­тангенса углов от 0 до 180°.

Выводить формулы, выражаю­щие функции углов от 0 до 180° через функции острых углов.

Формулиро­вать и разъяснять основное тригонометри­ческое тожде­ство. По значениям одной три­гонометрической функ­ции угла вычислять значе­ния дру­гих тригонометриче­ских функций этого угла.

Формули­ровать и доказы­вать теоремы синусов и коси­нусов.

Формулировать и доказы­вать теоремы о точках пересе­чения серединных пер­пендикуляров, биссек­трис, медиан, высот или их продолжений.

Исследовать свойства тре­угольника с помощью компь­ю­терных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления. Выделять в усло­вии задачи условие и заключе­ние.

Моделировать условие задачи с помощью чертежа или рисунка, прово­дить дополнительные по­строения в хо­де решения. Опираясь на данные усло­вия задачи, прово­дить необхо­димые рассуждения.

Интерпретировать полу­чен­ный результат и сопостав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.



3. Четырёхугольники (20ч)

Четырехугольник. Параллелограмм, тео­ремы о свойствах сторон, углов и диагона­лей парал­лелограм­ма и его при­знаки.

Прямоугольник, теорема о равенстве диа­гона­лей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равно­бедрен­ная трапеция

Формулировать определения параллелограмма, пря­моуголь­ника, квадрата, ромба, трапе­ции, равнобедрен­ной и прямо­угольной трапеции, средней линии трапе­ции; распозна­вать и изображать их на чер­тежах и рисун­ках.

Формулировать и доказы­вать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадра­та, ромба, трапеции.

Исследовать свойства четы­рехугольников с по­мо­щью компьютерных про­грамм.

Решать задачи на построение, доказательство и вы­числе­ния. Моделировать условие за­дачи с помощью чер­тежа или рисунка, проводить дополни­тельные по­строения в ходе ре­шения.

Выделять на чертеже конфигурации, не­обходимые для проведения обоснований логических шагов реше­ния.

Интерпретировать получен­ный резуль­тат и сопостав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


4. Многоугольники (10ч)

Многоугольник. Выпуклые много­угольники. Пра­вильные многоуголь­ники. Теорема о сумме углов вы­пуклого многоугольника. Тео­рема о сумме внеш­них углов выпуклого многоугольника

Распознавать многоуголь­ники, формулировать оп­реде­ление и приводить при­меры многоугольников.

Формулировать и доказы­вать теорему о сумме уг­лов выпуклого многоугольника.

Исследовать свойства много­угольников с помощью компью­терных программ.

Решать задачи на доказатель­ство и вычисления.

Моделиро­вать условие за­дачи с помощью чертежа или рисунка, проводить дополни­тельные построения в ходе ре­шения.

Интерпретировать полученный результат и сопос­тав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


5. Окружность и круг (20ч)

Окружность и круг. Центр, радиус, диа­метр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, вели­чина вписанного угла. Взаимное располо­жение прямой и окружно­сти, двух окружностей. Касательная и секу­щая к окружности, их свойства.

Вписанные и описанные многоуголь­ники. Ок­руж­ность, вписанная в треуголь­ник, и ок­ружность, опи­санная около треугольника. Тео­ремы о существо­вании окружности, вписан­ной в треугольник, и окружности, опи­санной около треугольника.

Вписанные и описанные окружности правиль­ного многоугольника.

Формулы для вычисления стороны пра­виль­ного многоугольника; радиуса окружности, вписанной в правильный многоугольник; ра­диуса окружности, опи­санной около правиль­ного много­угольника

Формулировать определения понятий, связанных с окружно­стью, центрального и вписанного углов, секу­щей и касательной к окружности, уг­лов, связанных с окруж­но­стью.

Формулировать и доказы­вать теоремы о вписан­ных уг­лах, углах, связанных с окруж­ностью.

Изображать, распознавать и описывать взаимное располо­жение прямой и окружности.

Изображать и формулиро­вать определения впи­сан­ных и описанных многоугольников и треугольников;

окружности, вписанной в тре­угольник, и окружности, описанной около треуголь­ника.

Формулировать и доказы­вать теоремы о вписанной и описанной окружностях тре­угольника и многоуголь­ника.

Исследовать свойства конфи­гураций, связанных с ок­ружностью, с помощью компьютерных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления.

Моделировать ус­ловие задачи с помощью чер­тежа или рисунка, прово­дить дополнительные по­строения в ходе решения.

Вы­делять на чертеже конфи­гурации, необходимые для проведения обоснований ло­гических шагов реше­ния.

Ин­терпретировать получен­ный результат и сопостав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


6. Геометрические преобразования (10ч)

Понятие о равенстве фигур. Понятие движе­ния: осевая и центральная симмет­рии, парал­лельный пере­нос, поворот. По­нятие о подо­бии фигур и гомотетии

Объяснять и иллюстриро­вать понятия равенства фи­гур, подобия. Строить равные и симметричные фигу­ры, вы­полнять параллельный пере­нос и поворот.

Исследовать свойства движе­ний с помощью компь­ютер­ных программ.

Выполнять проекты по темам геометрических преоб­разова­ний на плоскости

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


7.Построения с помощью циркуля и линейки (5ч)

Построения с помощью циркуля и ли­нейки. Основ­ные задачи на построение: деление от­резка пополам; построение угла, равного дан­ному; построение тре­угольника по трем сторо­нам; построение перпендику­ляра к пря­мой; построение биссектрисы угла; деление отрезка на п равных частей

Решать задачи на построение с помощью циркуля и ли­нейки.

Находить условия существова­ния решения, выпол­нять построение точек, необходимых для построения ис­ко­мой фигуры.

Доказы­вать, что построенная фигура удовлетворяет условиям за­дачи (определять число реше­ний задачи при каждом возмож­ном выборе данных)

Умение видеть математическую задачу в контексте проб­лемной ситуа­ции в других дисциплинах, в окружающей жизни.

Иметь первоначальные представле­ния об идеях и о мето­дах математики как уни­версальном языке науки и техники, сред­стве моделирования явлений и процес­сов.

8.Измерение геометрических величин (25ч)

Длина отрезка. Длина ломаной. Пери­метр много­угольника.

Расстояние от точки до прямой. Расстоя­ние между параллельными пря­мыми.

Длина окружности, число л; длина дуги окруж­ности.

Градусная мера угла, соответствие ме­жду величи­ной центрального угла и дли­ной дуги окружности.

Понятие площади плоских фигур. Равно­состав­ленные и равновеликие фигуры. Пло­щадь прямоугольни­ка. Пло­щади параллело­грамма, треугольника и трапе­ции (основные формулы). Фор­мулы, выражающие площадь треуголь­ника через две стороны и угол меж­ду ними, через периметр и радиус вписан­ной окруж­ности; формула Герона. Пло­щадь много­угольника. Площадь круга и площадь сектора. Соотношение меж­ду площадями по­добных фигур

Объяснять и иллюстриро­вать понятие периметра много­угольника.

Формулировать определения расстояния между точ­ка­ми, от точки до прямой, между парал­лельными пря­мыми.

Формулировать и объяснять свойства длины, гра­дус­ной меры угла, площади.

Формулировать соответствие между величиной централь­ного угла и длиной дуги окруж­ности.

Объяснять и иллюстриро­вать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, па­ралле­ло­грамма, треугольника и трапе­ции, а также фор­мулу, выра­жающую площадь треуголь­ника через две сто­роны и угол между ними, длину окружно­сти, пло­щадь круга.

Находить площадь многоуголь­ника разбиением на тре­угольники и четырех­угольники.

Объяснять и иллюстриро­вать отношение площадей по­добных фигур.

Решать задачи на вычисление линейных величин, градус­ной меры угла и площадей треуголь­ников, четы­рехуголь­ников и многоугольников, длины окружности и площади круга. Опираясь на данные ус­ловия задачи, на­ходить воз­можности применения необхо­димых фор­мул, преобразовы­вать формулы.

Использовать формулы для обоснования дока­затель­ных рассуждений в ходе решения.

Интерпретиро­вать получен­ный результат и сопо­став­лять его с условием задачи

Умение видеть математическую задачу в контексте проб­лемной ситуа­ции в других дисциплинах, в окружающей жизни.

Иметь первоначальные представле­ния об идеях и о мето­дах математики как уни­версальном языке науки и техники, сред­стве моделирования явлений и процес­сов


9.Координаты (10ч)

Декартовы координаты на плоскости. Уравне­ние прямой. Координаты сере­дины отрезка. Формула рас­стояния ме­жду двумя точками плоскости. Уравне­ние окружности

Объяснять и иллюстриро­вать понятие декартовой сис­темы координат.

Выводить и использовать формулы координат се­ре­дины отрезка, расстояния между двумя точками пло­скости, урав­нения прямой и окружно­сти.

Выполнять проекты по темам использования коор­динат­ного метода при решении задач на вычисления и доказательства

Умение видеть математическую задачу в контексте проб­лемной ситуа­ции в других дисциплинах, в окружающей жизни.

Иметь первоначальные представле­ния об идеях и о мето­дах математики как уни­версальном языке науки и техники, сред­стве моделирования явлений и процес­сов

10.Векторы (10ч)

Вектор. Длина (модуль) вектора. Равен­ство векто­ров. Коллинеарные век­торы. Коорди­наты вектора. Ум­ножение вектора на число, сумма векторов, разложе­ние вектора по двум неколлинеар­ным векторам. Угол между векто­рами. Скалярное произведение век­тор

Формулировать определения и иллюстрировать по­нятия век­тора, длины (модуля) век­тора, коллинеарных векторов, равных векторов.

Вычислять длину и коорди­наты вектора.

Находить угол между векто­рами.

Выполнять операции над век­торами.

Выполнять проекты по темам использования вектор­ного ме­тода при решении задач на вы­числения и доказа­тельства

Умение понимать и использовать математические сред­ства наглядно­сти.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера;









Материально-техническое обеспечение образовательного процесса

по предмету « Математика

Для реализации рабочей программы по математике в кабинете имеются следующие материалы и оборудование:

1. Таблицы по математике для 5-6 классов, по алгебре и геометрии для 7-9 классов,

2.Портреты выдающихся деятелей математики.

3.Экранно-звуковые средства обучения

4.Технические средства обучения:

5.Учебно-методическая литература:


Учебно-методическое обеспечение.


Учебно-методическое обеспечение учебного процесса предусматривает использование УМК для 5–9-го классов автора А.Г. Мордкович и др., УМК 7-9-го классов автор Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев:

  • Математика: 5 класс / И.И.Зубарева, А.Г.Мордкович.

  • Математика: 5 класс. Рабочие тетради 1,2/ И.И.Зубарева

  • Математика: 6 класс / И.И.Зубарева, А.Г.Мордкович.

  • 3.Математика: 6 класс. Рабочие тетради 1,2/ И.И.Зубарева.

  • Математика 5-6кл. : рабочие программы по учебникам И.И.Зубаревой, А.Г.Мордковича

  • Математика. 5-6 классы: методическое пособие для учителей/ И.И.Зубарева, А.Г. Мордкович.

  • Математика: 5 класс. Самостоятельные работы/ И.И.Зубарева.

  • Математика: 6 класс. Самостоятельные работы/ И.И.Зубарева.

  • Математика. 5-6классы. Тесты для учащихся общеобразоват. учреждений / Е.Е.Тульчинская/

  • А. Г. Мордкович Алгебра . 7 класс. Учебник

  • А. Г. Мордкович, Алгебра . 7 класс. Задачник

  • Александрова Л.А. Алгебра. 7 класс. Самостоятельные работы для учащихся образовательных учреждений; под ред. А.Г.Мордковича

  • Александрова Л.А. Алгебра. 7 класс. Контрольные работы для учащихся образовательных учреждений; под ред. А.Г.Мордковича

  • А.Г. Мордкович Алгебра 7 класс.: тесты для 7-9 классов общеобразовательных учреждений

  • А. Г. Мордкович Алгебра . 8 класс. Учебник

  • А. Г. Мордкович, Алгебра . 8 класс. Задачник

  • Александрова Л.А. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений; под ред. А.Г.Мордковича

  • Александрова Л.А. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений; под ред. А.Г.Мордковича

  • А.Г. Мордкович Алгебра 8 класс.: тесты для 7-9 классов общеобразовательных учреждений


  • А. Г. Мордкович Алгебра . 9 класс. Учебник

  • А. Г. Мордкович, Алгебра .9 класс. Задачник

  • Александрова Л.А. Алгебра. 9 класс. Самостоятельные работы для учащихся образовательных учреждений; под ред. А.Г.Мордковича

  • Александрова Л.А. Алгебра. 9 класс. Контрольные работы для учащихся образовательных учреждений; под ред. А.Г.Мордковича

  • А.Г. Мордкович Алгебра 7класс.: тесты для 7-9 классов общеобразовательных учреждений

  • Атанасян, Л. С. Геометрия: учебник для 7-9 класс

  • Атанасян, Л. С, Изучение геометрии в 7-9 классах: методические рекомендации для учителя

  • Рабочая тетрадь. Геометрия 7 кл.,Л.С.Атанасян, В.Ф.Бутузов и др.

  • Зив, Б. Г. Дидактические материалы по геометрии для 7 кл.

  • Рабочая тетрадь. Геометрия 8 кл.,Л.С.Атанасян, В.Ф.Бутузов и др.

  • Зив, Б. Г. Дидактические материалы по геометрии для 8 кл.

  • Рабочая тетрадь. Геометрия 9 кл.,Л.С.Атанасян, В.Ф.Бутузов и др.

  • Зив, Б. Г. Дидактические материалы по геометрии для 8 кл.

  • Геометрия. Программы общеобразовательных учреждений. 7-9 классы




Планируемые результаты изучения курса математика

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

  • понимать особенности десятичной системы счисления;

  • оперировать понятиями, связанными с делимостью натуральных чисел;

  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

  • сравнивать и упорядочивать рациональные числа;

  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

  • использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;

  • углубить и развить представления о натуральных числах и свойствах делимости;

  • научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

  • использовать начальные представления о множестве действительных чисел;

  • оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

  • развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

  • развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

  • использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

  • понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

  • понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

  • оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

  • выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

  • выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

  • выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

  • выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

  • применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наимень­шего значения выражения).

Уравнения

Выпускник научится:

  • решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

  • понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

  • применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

  • овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

  • применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

  • понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

  • решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

  • применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

  • разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

  • применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

  • понимать и использовать функциональные понятия и язык (термины, символические обозначения);

  • строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

  • понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

  • проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

  • использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

  • понимать и использовать язык последовательностей (термины, символические обозначения);

  • применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

  • решать комбинированные задачи с применением формул n-го члена и суммы первых nчленов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

  • понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

  • распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

  • строить развёртки куба и прямоугольного параллелепипеда;

  • определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

  • вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

  • научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

  • углубить и развить представления о пространственных геометрических фигурах;

  • научиться применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры

Выпускник научится:

  • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  • находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

  • оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

  • решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

  • решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

  • решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

  • овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

  • приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

  • овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

  • научиться решать задачи на построение методом геометрического места точек и методом подобия;

  • приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

  • приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

  • использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

  • вычислять площади треугольников, прямоугольников, параллелограмм- мов, трапеций, кругов и секторов;

  • вычислять длину окружности, длину дуги окружности;

  • вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

  • решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

  • решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

  • вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

  • вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

  • применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

  • вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

  • использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

  • овладеть координатным методом решения задач на вычисления и доказательства;

  • приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

  • приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

  • оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

  • находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

  • вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

  • овладеть векторным методом для решения задач на вычисления и доказательства;

  • приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».



Формирование универсальных учебных действий



1. Формирование ИКТ-компетентности обучающихся.


При изучении учебного предмета обучающиеся усовершенствуют приобретённые на первой ступени навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

• систематизировать, сопоставлять, анализировать, обобщать и интерпре-тировать информацию, содержащуюся в готовых информационных объектах;

• выделять главную и избыточную информацию, выполнять смысловое свёртывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий — концептуальных диаграмм, опорных конспектов);

• заполнять и дополнять таблицы, схемы, диаграммы, тексты.

Обучающиеся усовершенствуют навык поиска информациив компьютерных и некомпьютерных источниках информации, приобретут навык формулирования запросов и опыт использования поисковых машин. Они научатся осуществлять поиск информации в Интернете, школьном информационном пространстве, базах данных и на персональном компьютере с использованием поисковых сервисов, строить поисковые запросы в зависимости от цели запроса и анализировать результаты поиска.

Обучающиеся приобретут потребность поиска дополнительной информации для решения учебных задач и самостоятельной познавательной деятельности; освоят эффективные приёмы поиска, организации и хранения информации на персональном компьютере, в информационной среде учреждения и в Интернете; приобретут первичные навыки формирования и организации собственного информационного пространства.

Они усовершенствуют умение передавать информацию в устной форме, сопровождаемой аудиовизуальной поддержкой, и в письменной форме гипермедиа (т. е. сочетания текста, изображения, звука, ссылок между разными информационными компонентами).

Обучающиеся смогут использовать информацию для установления причинно-следственных связей и зависимостей, объяснений и доказательств фактов в различных учебных и практических ситуациях, ситуациях моделирования и проектирования.

Выпускники получат возможность научиться строить умозаключения и принимать решения на основе самостоятельно полученной информации, а также освоить опыт критического отношения к получаемой информации на основе её сопоставления с информацией из других источников и с имеющимся жизненным опытом.


2. Основы учебно-исследовательской и проектной деятельности.


В ходе изучения всех учебных предметов обучающиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределённости. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

В ходе планирования и выполнения учебных исследований обучающиеся освоят умение оперировать гипотезами как отличительным инструментом научного рассуждения, приобретут опыт решения интеллектуальных задач на основе мысленного построения различных предположений и их последующей проверки.

В результате целенаправленной учебной деятельности, осуществляемой в формах учебного исследования,учебного проекта, в ходе освоения системы научных понятий у выпускников будут заложены:

• потребность вникать в суть изучаемых проблем, ставить вопросы, затрагивающие основы знаний, личный, социальный, исторический жизненный опыт;

• основы критического отношения к знанию, жизненному опыту;

• основы ценностных суждений и оценок;

• уважение к величию человеческого разума, позволяющего преодолевать невежество и предрассудки, развивать теоретическое знание, продвигаться в установлении взаимопонимания между отдельными людьми и культурами;

• основы понимания принципиальной ограниченности знания, существования различных точек зрения, взглядов, характерных для разных социокультурных сред и эпох.


Познавательные универсальные учебные действия


В сфере познавательных универсальных учебных действий учащиеся должны приобрести опыт работы с информацией, а именно:

осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;

решать задачи с избытком информации (требуется отделить значимую информацию от «шума»);

решать задачи с недостатком информации (требуется определить, каких именно данных недостает и откуда их можно получить);

использовать знаково-символьные средства для обработки информации,

осуществлять переработку математической информации для ее дальнейшего использования;

осуществлять запись и фиксацию информации с помощью инструментов ИКТ.



Создание графических объектов

Выпускник научится:

• создавать различные геометрические объекты с использованием возможностей специальных компьютерных инструментов;

• создавать диаграммы различных видов (алгоритмические, концептуальные, классификационные, организационные, родства и др.) в соответствии с решаемыми задачами;

• создавать специализированные карты и диаграммы: географические, хронологические;

• создавать графические объекты проведением рукой произвольных линий с использованием специализированных компьютерных инструментов и устройств.

Выпускник получит возможность научиться:

• создавать мультипликационные фильмы;

• создавать виртуальные модели трёхмерных объектов.

Анализ информации, математическая обработка данных в исследовании

Выпускник научится:

• вводить результаты измерений и другие цифровые данные для их обработки, в том числе статистической и визуализации;

• строить математические модели;

• проводить эксперименты и исследования в виртуальных лабораториях по естественным наукам, математике и информатике.

Выпускник получит возможность научиться:

• проводить естественно-научные и социальные измерения, вводить результаты измерений и других цифровых данных и обрабатывать их, в том числе статистически и с помощью визуализации;

• анализировать результаты своей деятельности и затрачиваемых ресурсов.


Моделирование, проектирование и управление

Выпускник научится:

• моделировать с использованием виртуальных конструкторов;

• конструировать и моделировать с использованием материальных конструкторов с компьютерным управлением и обратной связью;

• моделировать с использованием средств программирования;

• проектировать и организовывать свою индивидуальную и групповую деятельность, организовывать своё время с использованием ИКТ.

Выпускник получит возможность научиться:

• проектировать виртуальные и реальные объекты и процессы, использовать системы автоматизированного проектирования.














Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 29.11.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров209
Номер материала ДВ-211165
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх