Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 5-9 класс ФГОС
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по математике 5-9 класс ФГОС

библиотека
материалов

Приложение

к основной образовательной программе

основного общего образования МОУ ООШ № 21,

утв. приказом директора МОУ ООШ № 21

519 от 31.08.2015







РАБОЧАЯ ПРОГРАММА

учебного предмета «математике»

5-9 классы







Составитель: Прокопенко Надежда Ивановна,

учитель математики




Оленегорск,

Мурманской области

2016 г

Рабочая программа по учебному предмету «_математика» для 5-9 классов разработана на основе следующих документов:

  • Федеральный государственный образовательный стандарт основного общего образования, утвержден приказом Министерства образования и науки РФ от «17» декабря 2010 г. № 1897 с изменениями;

  • Образовательная программа основного общего образования. Одобрено федеральным учебно-методическим объединением по общему образованию. Протокол заседания от 8 апреля 2015 г. № 1/15;

    • «Основная образовательная программа основного общего образования МОУ ООШ № 21», утверждена приказом директора №519 от 31.08.2015г.

При составлении рабочей программы использована авторская программа: А.Г. Мерзляка, В.Б. Полонского, М.С. Якир, Е. В. Буцко.


Рабочая программа реализуется с помощью УМК : программы по курсу математики 5–9 классов, созданной на основе единой концепции преподавания математики в средней школе, разработанной А.Г. Мерзляком, В.Б. Полонским, М.С. Якиром — авторами учебников, включённых в систему «Алгоритм успеха»;

- стандарта основного общего образования по математике;

- ООП ООО.



Планируемые результаты освоения учебного предмета «математика»

Личностные планируемые результаты освоения основной образовательной программы

У выпускника будут сформированы:

  • Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа).

  • Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества.

  • Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.

  • Готовность и способность к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность к осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.

  • Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; веротерпимость, уважительное отношение к религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества).

  • Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде.

  • Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.

  • Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.

  • Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции.

  • Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).

  • Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах.

  • Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами; идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).

  • Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.

  • Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимой ценности).

  • Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

Метапредметные результаты освоения Программы

Метапредметные результаты включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные)

Межпредметные понятия


Метапредметные планируемые результаты освоения основной образовательной программы

Метапредметные результаты, включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Межпредметные понятия

Выпускник научится:

  • владеть чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования, осознанного планирования своего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и социальной деятельности;

  • владеть чтением как средством познания мира и себя в этом мире, гармонизации отношений человека и общества, создании образа «потребного будущего»;

  • систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;

  • выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий — концептуальных диаграмм, опорных конспектов);

  • заполнять и дополнять таблицы, схемы, диаграммы, тексты;

  • выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределенности.


Регулятивные универсальные учебные действия

Выпускник научится:

  • анализировать существующие и планировать будущие образовательные результаты;

  • идентифицировать собственные проблемы и выделять главную проблему;

  • выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;

  • ставить цель деятельности на основе определенной проблемы и существующих возможностей;

  • формулировать учебные задачи как шаги достижения поставленной цели деятельности;

  • обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов;

  • определять необходимые действия в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;

  • обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;

  • определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;

  • выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);

  • выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;

  • составлять план решения проблемы (выполнения проекта, проведения исследования);

  • определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;

  • описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;

  • планировать и корректировать свою индивидуальную образовательную траекторию.

  • определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;

  • систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;

  • отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;

  • оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;

  • находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;

  • работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;

  • устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;

  • сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.

  • определять критерии правильности (корректности) выполнения учебной задачи;

  • анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;

  • свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;

  • оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;

  • обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;

  • фиксировать и анализировать динамику собственных образовательных результатов.

  • наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;

  • соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;

  • принимать решение в учебной ситуации и нести за него ответственность;

  • самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

  • ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;

  • демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для достижения эффекта успокоения, эффекта восстановления, эффекта активизации


Познавательные универсальные учебные действия

Выпускник научится:

  • подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;

  • выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;

  • выделять общий признак двух или нескольких предметов, или явлений и объяснять их сходство;

  • объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;

  • выделять явление из общего ряда других явлений;

  • определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;

  • строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;

  • строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;

  • излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;

  • самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;

  • вербализовать эмоциональное впечатление, оказанное на него источником;

  • объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);

  • выявлять и называть причины события, явления, в том числе возможные / наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;

  • делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.

  • обозначать символом и знаком предмет и/или явление;

  • определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;

  • создавать абстрактный или реальный образ предмета и/или явления;

  • строить модель/схему на основе условий задачи и/или способа ее решения;

  • создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;

  • преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;

  • переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;

  • строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;

  • строить доказательство: прямое, косвенное, от противного;

  • анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.

  • находить в тексте требуемую информацию (в соответствии с целями своей деятельности);

  • ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;

  • устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;

  • прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;

  • распространять экологические знания и участвовать в практических делах по защите окружающей среды;

  • выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.

  • определять необходимые ключевые поисковые слова и запросы;

  • осуществлять взаимодействие с электронными поисковыми системами, словарями;

  • формировать множественную выборку из поисковых источников для объективизации результатов поиска;

  • соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные универсальные учебные действия

Выпускник научится:

  • определять возможные роли в совместной деятельности;

  • играть определенную роль в совместной деятельности;

  • принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

  • определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;

  • строить позитивные отношения в процессе учебной и познавательной деятельности;

  • корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);

  • критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

  • предлагать альтернативное решение в конфликтной ситуации;

  • выделять общую точку зрения в дискуссии;

  • договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;

  • организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);

  • устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.

  • определять задачу коммуникации и в соответствии с ней отбирать речевые средства;

  • отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);

  • представлять в устной или письменной форме развернутый план собственной деятельности;

  • соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;

  • высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;

  • принимать решение в ходе диалога и согласовывать его с собеседником;

  • создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;

  • использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;

  • использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;

  • делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.

  • целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;

  • выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;

  • выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;

  • использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;

  • использовать информацию с учетом этических и правовых норм;

создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.



Предметные планируемые результаты освоения учебного предмета «математика»


Выпускник научится:

Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

  • Оперировать на базовом уровне1 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

  • использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей

  • Представлять данные в виде таблиц, диаграмм,

  • читать информацию, представленную в виде таблицы, диаграммы.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

  • Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;

  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.

История математики

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.


Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях;

  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;

  • приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов:

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;

  • использовать свойства чисел и правила действий при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • оценивать значение квадратного корня из положительного целого числа;

  • распознавать рациональные и иррациональные числа;

  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

  • понимать смысл записи числа в стандартном виде;

  • оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

  • проверять справедливость числовых равенств и неравенств;

  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

  • решать системы несложных линейных уравнений, неравенств;

  • проверять, является ли данное число решением уравнения (неравенства);

  • решать квадратные уравнения по формуле корней квадратного уравнения;

  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

  • Находить значение функции по заданному значению аргумента;

  • находить значение аргумента по заданному значению функции в несложных ситуациях;

  • определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;

  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;

  • строить график линейной функции;

  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

  • определять приближенные значения координат точки пересечения графиков функций;

  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.

В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Статистика и теория вероятностей

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;

  • представлять данные в виде таблиц, диаграмм, графиков;

  • читать информацию, представленную в виде таблицы, диаграммы, графика;

  • определять основные статистические характеристики числовых наборов;

  • оценивать вероятность события в простейших случаях;

  • иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;

  • иметь представление о роли практически достоверных и маловероятных событий;

  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

  • оценивать вероятность реальных событий и явлений в несложных ситуациях.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

Геометрические фигуры

  • Оперировать на базовом уровне понятиями геометрических фигур;

  • извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;

  • применять для решения задач геометрические факты, если условия их применения заданы в явной форме;

  • решать задачи на нахождение геометрических величин по образцам или алгоритмам.

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.

Отношения

  • Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения простейших задач, возникающих в реальной жизни.

Измерения и вычисления

  • Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;

  • применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.

Геометрические построения

  • Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни.

Геометрические преобразования

  • Строить фигуру, симметричную данной фигуре относительно оси и точки.

В повседневной жизни и при изучении других предметов:

  • распознавать движение объектов в окружающем мире;

  • распознавать симметричные фигуры в окружающем мире.

Векторы и координаты на плоскости

  • Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

  • определять приближенно координаты точки по ее изображению на координатной плоскости.

В повседневной жизни и при изучении других предметов:

  • использовать векторы для решения простейших задач на определение скорости относительного движения.

История математики

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

  • понимать роль математики в развитии России.

Методы математики

  • Выбирать подходящий изученный метод для решения изученных типов математических задач;

  • Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.

Выпускник получит возможность научиться :

Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях)

Элементы теории множеств и математической логики

  • Оперировать2 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

  • определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания;

  • строить цепочки умозаключений на основе использования правил логики.

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений, обосновывать алгоритмы выполнения действий;

  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;

  • выполнять округление рациональных чисел с заданной точностью;

  • упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;

  • находить НОД и НОК чисел и использовать их при решении задач;

  • оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

  • извлекать, информацию, представленную в таблицах, на диаграммах;

  • составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Наглядная геометрия

Геометрические фигуры

  • Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников, квадратов, объемы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объемы комнат;

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира.

История математики

Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей

Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях

Элементы теории множеств и математической логики

  • Оперировать понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

  • изображать множества и отношение множеств с помощью кругов Эйлера;

  • определять принадлежность элемента множеству, объединению и пересечению множеств;

  • задавать множество с помощью перечисления элементов, словесного описания;

  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

  • строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

Числа

  • Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений;

  • выполнять округление рациональных чисел с заданной точностью;

  • сравнивать рациональные и иррациональные числа;

  • представлять рациональное число в виде десятичной дроби

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

  • находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

  • записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

  • выделять квадрат суммы и разности одночленов;

  • раскладывать на множители квадратный трехчлен;

  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

  • выполнять преобразования выражений, содержащих квадратные корни;

  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;

  • выполнять преобразования алгебраических выражений при решении задач других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

  • решать дробно-линейные уравнения;

  • решать простейшие иррациональные уравнения вида , ;

  • решать уравнения вида ;

  • решать уравнения способом разложения на множители и замены переменной;

  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;

  • решать линейные уравнения и неравенства с параметрами;

  • решать несложные квадратные уравнения с параметром;

  • решать несложные системы линейных уравнений с параметрами;

  • решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

  • выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;

  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;

  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,, ;

  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;

  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

  • исследовать функцию по ее графику;

  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;

  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках;

  • составлять таблицы, строить диаграммы и графики на основе данных;

  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

  • применять правило произведения при решении комбинаторных задач;

  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;

  • представлять информацию с помощью кругов Эйлера;

  • решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

  • оценивать вероятность реальных событий и явлений.

Геометрические фигуры

  • Оперировать понятиями геометрических фигур;

  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;

  • формулировать в простейших случаях свойства и признаки фигур;

  • доказывать геометрические утверждения;

  • владеть стандартной классификацией плоских фигур (треугольников и четырехугольников).

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин.

Отношения

  • Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;

  • характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения задач, возникающих в реальной жизни.

Измерения и вычисления

  • Оперировать представлениями о длине, площади, объеме как величинами. Применять теорему Пифагора, формулы площади, объема при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объема, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;

  • проводить простые вычисления на объемных телах;

  • формулировать задачи на вычисление длин, площадей и объемов и решать их.

В повседневной жизни и при изучении других предметов:

  • проводить вычисления на местности;

  • применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.

Геометрические построения

  • Изображать геометрические фигуры по текстовому и символьному описанию;

  • свободно оперировать чертежными инструментами в несложных случаях,

  • выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;

  • изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира.

Преобразования

  • Оперировать понятием движения и преобразования подобия, владеть приемами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;

  • строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;

  • применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений.

Векторы и координаты на плоскости

  • Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;

  • применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

  • понимать роль математики в развитии России.

Методы математики

  • Используя изученные методы, проводить доказательство, выполнять опровержение;

  • выбирать изученные методы и их комбинации для решения математических задач;

  • использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;

  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.



Содержание учебного предмета «математика»

Математика

Содержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.

Элементы теории множеств и математической логики

Согласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.

Множества и отношения между ними

Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.

Операции над множествами

Пересечение и объединение множеств. Разность множеств, дополнение множества. Интерпретация операций над множествами с помощью кругов Эйлера.

Элементы логики

Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Высказывания

Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).

Содержание курса математики в 5–6 классах

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Делители и кратные

Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.

Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби

Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

Отношение двух чисел

Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты

Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Диаграммы

Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур.

История математики

Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?

Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.

Содержание курса математики в 7–9 классах

Алгебра

Числа

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.

Тождественные преобразования

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения

Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Квадратный трехчлен, разложение квадратного трехчлена на множители.

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.

Квадратные корни

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

Уравнения и неравенства

Равенства

Числовое равенство. Свойства числовых равенств. Равенство с переменной.

Уравнения

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Квадратное уравнение и его корни

Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений: использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида , .

Уравнения вида .Уравнения в целых числах.

Системы уравнений

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Системы неравенств

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

Функции

Понятие функции

Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция

Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции hello_html_m7c4f1826.gifhello_html_m7c4f1826.gif. Гипербола.

Графики функций. Преобразование графика функции для построения графиков функций вида .

Графики функций , ,hello_html_68179cac.gif, .

Последовательности и прогрессии

Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

Решение текстовых задач

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Статистика

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

Геометрия

Геометрические фигуры

Фигуры в геометрии и в окружающем мире

Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».

Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, круг.

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.

Многоугольники

Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.

Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.

Окружность, круг

Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.

Геометрические фигуры в пространстве (объемные тела)

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

Отношения

Равенство фигур

Свойства равных треугольников. Признаки равенства треугольников.

Параллельность прямых

Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.

Перпендикулярные прямые

Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.

Подобие

Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Взаимное расположение прямой и окружности, двух окружностей.

Измерения и вычисления

Величины

Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.

Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.

Представление об объеме и его свойствах. Измерение объема. Единицы измерения объемов.

Измерения и вычисления

Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.

Расстояния

Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.

Геометрические построения

Геометрические построения для иллюстрации свойств геометрических фигур.

Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,

Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.

Деление отрезка в данном отношении.

Геометрические преобразования

Преобразования

Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.

Движения

Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.

Векторы и координаты на плоскости

Векторы

Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.

Координаты

Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

Применение векторов и координат для решения простейших геометрических задач.

История математики

Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.

Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.

Геометрия и искусство. Геометрические закономерности окружающего мира.

Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.















Примерное тематическое планирование.


Математика. 5 класс.

(6 часов в неделю, всего 204 часа)

Тематическое планирование

Количество часов

Содержание курса

Всего часов, из них

Характеристика деятельности обучающегося

Теоретическая часть

Практическая часть

Контроль

Натуральные числа

20


Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.


1

2


Описывать свойства натурального ряда.


Читать и записывать натуральные числа, сравнивать и упорядочивать их.


Распознавать на чертежах, рисунках, в окружающем мире отрезок, прямую, луч, плоскость. Приводить примеры моделей этих фигур.

Измерять длины отрезков. Строить отрезки заданной длины. Решать задачи на нахождение длин отрезков. Выражать одни единицы длин через другие. Приводить примеры приборов со шкалами.

Строить на координатном луче точку с заданной координатой, определять координату точки.

Сравнивать натуральные числа

Цифры. Десятичная запись натуральных чисел.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

История математики.

Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел


1

2




Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Плоскость. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч.


1

5


Шкала. Координатный луч

1

2


Сравнение натуральных чисел. Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.


История математики.

Рождение и развитие арифметики натуральных чисел

1

2


Повторение и систематизация учебного материала.

Контрольная работа


1

1

Сложение и вычитание

натуральных чисел

35


Сложение и вычитание натуральных чисел, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Сложение в столбик.

Переместительный и сочетательный законы сложения.

Решение текстовых задач арифметическим способом

1

6


Формулировать свойства сложения и вычитания натуральных чисел, записывать эти свойства в виде формул

Приводить примеры числовых и буквенных выражений, формул.

Составлять числовые и буквенные выражения по условию задачи.

Решать уравнения на основании зависимостей между компонентами действий сложения и вычитания.

Решать текстовые задачи с помощью составления уравнений.

Распознавать на чертежах и рисунках углы, многоугольники, в частности треугольники, прямоугольники.

Распознавать в окружающем мире модели этих фигур.

С помощью транспортира измерять градусные меры углов, строить углы заданной градусной меры, строить биссектрису данного угла. Классифицировать углы.

Классифицировать треугольники по количеству равных сторон и по видам их углов.

Описывать свойства прямоугольника.

Находить с помощью формул периметры прямоугольника и квадрата.

Решать задачи на нахождение периметров прямоугольника и квадрата, градусной меры углов.

Строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Распознавать фигуры, имеющие ось симметрии.

Учащийся получит возможность определять виды треугольников.

Учащийся получит возможность строить различные виды треугольников.


Учащийся получит возможность обосновывать алгоритмы выполнения арифметических действий.


Числовые и буквенные выражения. Формулы.

Числовое выражение и его значение, порядок выполнения действий.

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений

Контрольная работа.

1

3

1

Уравнение

1

3


Угол. Обозначение углов.

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол

Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.


1

5


Многоугольники. Равные фигуры.

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: многоугольник. Изображение основных геометрических фигур.

Периметр многоугольника.

1

2



Треугольник, виды треугольников. Построение треугольников. Периметр треугольника.

Правильные многоугольники.

1

4


Прямоугольник. Ось симметрии фигуры. Четырехугольник, прямоугольник, квадрат

1

2


Повторение и систематизация учебного материала

Контрольная работа.


1

1

Умножение и деление

натуральных чисел

44

Умножение, компоненты умножение в столбик. Переместительный закон умножения.

Единицы измерений: длины, площади, массы, времени, скорости. Зависимости между единицами измерения каждой величины.

Зависимости между величинами: скорость, время, расстояние;

1

4


Формулировать свойства умножения и деления натуральных чисел,

записывать эти свойства в виде формул. Решать уравнения на основании зависимостей между компонентами арифметических действий.

Находить остаток при делении натуральных чисел.

По заданному основанию и показателю степени находить значение степени числа.

Находить площади прямоугольника и квадрата с помощью формул.

Выражать одни единицы площади через другие.

Распознавать на чертежах и рисунках прямоугольный параллелепипед, пирамиду. Распознавать в окружающем мире модели этих фигур.

Изображать развёртки прямоугольного параллелепипеда и пирамиды.

Находить объёмы прямоугольного параллелепипеда и куба с помощью формул. Выражать одни единицы объёма через другие.

Решать комбинаторные задачи с помощью перебора вариантов.

Учащийся получит возможность применять свойства деления с остатком.


Учащийся получит возможность рассматривать сечение многогранника,

знакомство с правильными многогранниками.

Сочетательный закон умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.


1

4


Деление, компоненты умножения и деления, связь между ними. Деление уголком, проверка результата с помощью прикидки и обратного действия.

Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения.

1

7



Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

1

2


Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Контрольная работа.

1

2

1


Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.


1

4


Прямоугольный параллелепипед. Пирамида.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур.

Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.


1

6


Комбинаторные задачи

1

3


Повторение и систематизация учебного материала

Контрольная работа.


2

1

Обыкновенные дроби

21

Понятие обыкновенной дроби.

Доля, часть, дробное число, дробь.

Решение задач на нахождение части числа и числа по его части.

История математики.

Дроби в Вавилоне, Египте, Риме


1

5


Распознавать обыкновенную дробь, правильные и неправильные дроби, смешанные числа.

Читать и записывать обыкновенные дроби, смешанные числа.

Сравнивать обыкновенные дроби с равными знаменателями.

Складывать и вычитать обыкновенные дроби с равными знаменателями. Преобразовывать неправильную дробь в смешанное число, смешанное число в неправильную дробь.

Записывать результат деления двух натуральных чисел в виде обыкновенной дроби

Правильные и неправильные дроби, смешанная дробь (смешанное число).

Сравнение дробей

1

2


Сложение и вычитание обыкновенных дробей с одинаковыми знаменателями

Дроби и деление натуральных чисел. Дробное число как результат деления.

Запись натурального числа в виде дроби с заданным знаменателем,

1

3


Преобразование смешанной дроби в неправильную дробь и наоборот.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.


1

4


Повторение и систематизация учебного материала

Контрольная работа.


2

1

Десятичные дроби

55

Представление о десятичных дробях. Целая и дробная части десятичной дроби.

Преобразование десятичных дробей в обыкновенные.

История математики.

Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.


1

4


Распознавать, читать и записывать десятичные дроби.

Называть разряды десятичных знаков в записи десятичных дробей.

Сравнивать десятичные дроби.

Округлять десятичные дроби и натуральные числа.

Выполнять прикидку результатов вычислений.

Выполнять арифметические действия над десятичными дробями.

Находить среднее арифметическое нескольких чисел.

Приводить примеры средних значений величины.

Разъяснять, что такое один процент. Представлять проценты в виде десятичных дробей и десятичные дроби в виде процентов.

Находить процент от числа и число по его процентам.

Учащийся получит возможность находить

среднее арифметическое нескольких чисел.


Сравнение десятичных дробей

Округление чисел. Прикидки.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел. Округление десятичных дробей.


2

5


Сложение и вычитание десятичных дробей.

Контрольная работа.

1

6

1

Умножение десятичных дробей

1

7


Деление десятичных дробей.

Контрольная работа.

1

9

1

Среднее арифметическое. Среднее значение величины.

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

1

2


Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Нахождение числа по его процентам. Решение задач на проценты и доли.

1

9


Повторение и систематизация учебного материала

Контрольная работа.


2

1

Повторение и систематизация

учебного материала

29

Упражнения для повторения курса 5 класса

Контрольная работа.


27

1


Итого 204

32

162

10





Математика. 6 класс.

(6 часов в неделю, всего 204 часа)

Тематическое планирование

Количество часов

Содержание курса

Всего часов, из них

Характеристика деятельности обучающегося

Теоретическая часть

Практическая часть

Контроль

Де

ли

мость на

ту

раль

ных чисел

22

Делители и кратные. Свойство делимости суммы (разности) на число.

1

2


Формулировать определения понятий: делитель, кратное, простое число, составное число, общий делитель, наибольший общий делитель, взаимно простые числа, общее кратное, наименьшее общее кратное и признаки делимости на 2, на 3, на 5, на 9, на 10.

Описывать правила нахождения наибольшего общего делителя (НОД), наименьшего общего кратного (НОК) нескольких чисел, разложения натурального числа на простые множители.

Учащийся получит возможность узнать и применять признаки делимости на 4, 6, 8, 11, выполнять доказательство признаков делимости.

Учащийся получит возможность определять количество делителей числа, применять алгоритм разложения числа на простые множители, основную теорему арифметики.


Признаки делимости на 10, на 5, на 2

1

2


Признаки делимости на 9 и на 3.

Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

1

3


Простые числа и составные числа.

Решето Эратосфена.

1

1


Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель.

Разложение натурального числа на множители, разложение на простые множители, взаимно простые числа, нахождение наибольшего общего делителя. НОД

1

3


Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного. НОК,

Повторение и систематизация учебного материала.

Контрольная работа + к/р по повторению

1

3

2

Обык

новен

ные дроби

46

Основное свойство дроби

1

2


Формулировать определения понятий: несократимая дробь, общий знаменатель двух дробей, взаимно обратные числа. Применять основное свойство дроби для сокращения дробей.

Приводить дроби к новому знаменателю. Сравнивать обыкновенные дроби. Выполнять арифметические действия над обыкновенными дробями.

Находить дробь от числа и число по заданному значению его дроби. Преобразовывать обыкновенные дроби в десятичные.

Находить десятичное приближение обыкновенной дроби.


Учащийся получит возможность преобразовывать обыкновенные дроби в десятичные дроби.

Учащийся получит возможность рассматривать конечные и бесконечные десятичные дроби.


Учащийся получит возможность узнать способы рационализации вычислений и применение их при выполнении действий.



Сокращение дробей

1

3


Приведение дробей к общему знаменателю. Сравнение дробей

1

3


Сложение и вычитание дробей

Контрольная работа

1

4

1

Умножение дробей

1

4


Нахождение дроби от числа.

Применение дробей при решении задач.


Контрольная работа

1

3

1

Взаимно обратные числа

Деление дробей. Арифметические действия со смешанными дробями и с дробными числами.

Арифметические действия с дробными числами.

1

5


Нахождение числа по значению его дроби.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

1

3



Преобразование обыкновенных дробей в десятичные дроби.

1

1


Бесконечные периодические десятичные дроби. Конечные и бесконечные десятичные дроби.


1

1


Десятичное приближение обыкновенной дроби.

1

1


Повторение и систематизация учебного материала. Способы рационализации вычислений и их применение при выполнении действий.

Контрольная работа

1

1

1


Отношения и пропорции

35ч.

Отношения. Масштаб на плане и карте.

1

2


Формулировать определения: отношения, пропорции, процентного отношения двух чисел, прямо пропорциональных и обратно пропорциональных величин.

Применять основное свойство отношения и основное свойство пропорции.

Приводить примеры и описывать свойства величин, находящихся в прямой и обратной пропорциональных зависимостях.

Находить процентное отношение двух чисел.

Делить число на пропорциональные части.

Записывать с помощью букв основные свойства дроби, отношения, пропорции.

Анализировать информацию, представленную в виде столбчатых и круговых диаграмм.

Представлять информацию в виде столбчатых и круговых диаграмм.

Приводить примеры случайных событий. Находить вероятность случайного события в опытах с равновозможными исходами.

Распознавать на чертежах и рисунках окружность, круг, цилиндр, конус, сферу, шар и их элементы.

Распознавать в окружающем мире модели этих фигур.

Строить с помощью циркуля окружность заданного радиуса.

Изображать развёртки цилиндра и конуса. Называть приближённое значение числа π. Находить с помощью формул длину окружности, площадь круга.

Учащийся получит возможность рассматривать взаимное расположение двух прямых, двух окружностей, прямой и окружности.


Учащийся получит возможность изображать диаграммы по числовым данным


Пропорции. Свойства пропорций.

1

3


Процентное отношение двух чисел. Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли.

Контрольная работа

1

3

1



Прямая и обратная пропорциональные зависимости. Применение пропорций и отношений при решении задач.

1

2


Деление числа в данном отношении

1

1


Наглядные представления о фигурах на плоскости: окружность, круг.

Взаимное расположение двух прямых, двух окружностей, прямой и окружности.

1

2


Длина окружности. Площадь круга.

Понятие о равенстве фигур

1

3


Наглядные представления о пространственных фигурах: шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Примеры разверток цилиндра и конуса.

1



Диаграммы. Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

1

2




Случайные события. Вероятность случайного события

Повторение и систематизация учебного материала

Контрольная работа.

1

3

1


Рациональные числа

и действия над ними

76ч.

Множество целых чисел

Положительные и отрицательные числа.


История математики.

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?

1

1


Приводить примеры использования положительных и отрицательных чисел. Формулировать определение координатной прямой.

Строить на координатной прямой точку с заданной координатой, определять координату точки.

Характеризовать множество целых чисел. Объяснять понятие множества рациональных чисел.

Формулировать определение модуля числа. Находить модуль числа.

Сравнивать рациональные числа. Выполнять арифметические действия над рациональными числами.

Записывать свойства арифметических действий над рациональными числами в виде формул.

Называть коэффициент буквенного выражения.

Применять свойства при решении уравнений.

Решать текстовые задачи с помощью уравнений.

Распознавать на чертежах и рисунках перпендикулярные и параллельные прямые, фигуры, имеющие ось симметрии, центр симметрии. Указывать в окружающем мире модели этих фигур.

Формулировать определение перпендикулярных прямых и параллельных прямых.

Строить с помощью угольника перпендикулярные прямые и параллельные прямые.

Объяснять и иллюстрировать понятие координатной плоскости.

Строить на координатной плоскости точки с заданными координатами, определять координаты точек на плоскости.

Строить отдельные графики зависимостей между величинами по точкам. Анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.)





Координатная прямая

1

2


Целые числа. Первичное представление о множестве рациональных чисел..

Рациональные числа.

Изображение чисел на числовой (координатной) прямой.

1

1


Модуль числа, геометрическая интерпретация модуля числа.

1

3



Сравнение чисел.

Контрольная работа.

1

3

1

Сложение рациональных чисел

Свойства сложения рациональных чисел

Вычитание рациональных чисел

Контрольная работа № 8

3

9

1

Умножение рациональных чисел

Свойства умножения рациональных чисел

Коэффициент. Распределительное свойство умножения

3

10


Деление рациональных чисел.

Действия с положительными и отрицательными числами.

Действия с рациональными числами

Контрольная работа.

2

3

1



Решение уравнений

Решение задач с помощью уравнений.

Единицы измерений: массы. Зависимости между единицами измерения каждой величины. Зависимости между величинами: производительность, время, работа; цена, количество, стоимость.

Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.


Контрольная работа.

2

8

1

Перпендикулярные прямые

1

2


Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.


1

3


Параллельные прямые

1

1


Координатная плоскость

1

3




Графики

Повторение и систематизация учебного материала

Контрольная работа.

1

4

1

Повторение и систематизация
учебного материала

25ч.

Упражнения для повторения курса 6 класса.

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Контрольная работа.



2

22

1


Итого 204

50

141

13




Алгебра. 7 класс.

(3 часа в неделю, всего 102 часа)

Тематическое планирование

Количество часов

Содержание курса

Всего часов, из них

Характеристика деятельности обучающегося

Теоретическая часть

Практическая часть

Контроль

Линейное уравнение
с одной переменной

14

Введение в алгебру. Числовое равенство. Свойства числовых равенств. Равенство с переменной.

1

2


Распознавать числовые выражения и выражения с переменными, линейные уравнения. Приводить примеры выражений с переменными, линейных уравнений. Составлять выражение с переменными по условию задачи.

Выполнять преобразования выражений: приводить подобные слагаемые, раскрывать скобки.

Находить значение выражения с переменными при заданных значениях переменных.

Классифицировать алгебраические выражения.

Описывать целые выражения.

Формулировать определение линейного уравнения.

Решать линейное уравнение в общем виде. Интерпретировать уравнение как математическую модель реальной ситуации. Описывать схему решения текстовой задачи, применять её для решения задач.

Учащийся получит возможность решать линейное уравнение с параметрами, определять количество корней линейного уравнения.

Линейное уравнение с одной переменной. Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

1

3



Решение задач с помощью уравнений. Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов.

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Контрольная работа.

История математики.

Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки. Зарождение алгебры в недрах арифметики. Ал-Хорезми.

1

5

1

Целые выражения

.

51

Тождественные преобразования

Тождественно равные выражения. Тождества

1

1


Формулировать:

определения: тождественно равных выражений, тождества, степени с натуральным показателем, одночлена, стандартного вида одночлена, коэффициента одночлена, степени одночлена, многочлена, степени многочлена;

свойства: степени с натуральным показателем, знака степени;

правила: доказательства тождеств, умножения одночлена на многочлен, умножения многочленов.

Доказывать свойства степени с натуральным показателем. Записывать и доказывать формулы: произведения суммы и разности двух выражений, разности квадратов двух выражений, квадрата суммы и квадрата разности двух выражений, суммы кубов и разности кубов двух выражений.

Вычислять значение выражений с переменными. Применять свойства степени для преобразования выражений. Выполнять умножение одночленов и возведение одночлена в степень. Приводить одночлен к стандартному виду. Записывать многочлен в стандартном виде, определять степень многочлена. Преобразовывать произведение одночлена и многочлена; суммы, разности, произведения двух многочленов в многочлен. Выполнять разложение многочлена на множители способом вынесения общего множителя за скобки, способом группировки, по формулам сокращённого умножения и с применением нескольких способов. Использовать указанные преобразования в процессе решения уравнений, доказательства утверждений, решения текстовых задач.

Учащийся получит возможность научиться способу группировки при разложении на множители, применять формулы сокращенного умножения.

Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

1

4


Одночлены.

1

1


Многочлены. Сложение и вычитание многочленов.

Контрольная работа.

1

3

1

Умножение одночлена на многочлен

Умножение многочлена на многочлен

2

6


Разложение многочленов на множители. Вынесение общего множителя за скобки

Разложение многочленов на множители. Метод группировки.

Контрольная работа.

2

4

1



Произведение разности и суммы двух выражений

1

2


Формулы сокращенного умножения: разность квадратов двух выражений

Формулы сокращенного умножения: квадрат суммы и квадрат разности двух выражений

Преобразование многочлена в квадрат суммы или разности двух выражений.

Контрольная работа.

3

6

1

Формулы сокращенного умножения: сумма и разность кубов двух выражений

1

1


Применение различных способов разложения многочлена на множители. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения.

1

3


Повторение и систематизация учебного материала. Решение задач

Контрольная работа.

История математики.

Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт.


2

1


Функции


12

Связи между величинами. Функция. Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты».

Способы задания функций: аналитический, графический, табличный. Примеры функций, получаемых в процессе исследований различных реальных процессов.

График функции. Значение функции в точке.

3

3


Приводить примеры зависимостей между величинами. Различать среди зависимостей функциональные зависимости.

Описывать понятия: зависимой и независимой переменных, функции, аргумента функции; способы задания функции. Формулировать определения: области определения функции, области значений функции, графика функции, линейной функции, прямой пропорциональности.

Вычислять значение функции по заданному значению аргумента. Составлять таблицы значений функции. Строить график функции, заданной таблично. По графику функции, являющейся моделью реального процесса, определять характеристики этого процесса. Строить график линейной функции и прямой пропорциональности. Описывать свойства этих функций. Учащийся получит возможность научиться нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой

Линейная функция, её график и свойства. Угловой коэффициент прямой.

Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена.

Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.


Графики функции hello_html_68179cac.gif .

Повторение и систематизация учебного материала. Контрольная работа

1

4

1

Системы линейных уравнений
с двумя переменными

19

Понятие уравнения и корня уравнения. Равенство с переменной.

Уравнения с двумя переменными.

Линейное уравнение с двумя переменными и его график. Прямая как графическая интерпретация линейного уравнения с двумя переменными. Графический метод решения уравнения.


2

3


Приводить примеры: уравнения с двумя переменными; линейного уравнения с двумя переменными; системы двух линейных уравнений с двумя переменными; реальных процессов, для которых уравнение с двумя переменными или система уравнений с двумя переменными являются математическими моделями.

Определять, является ли пара чисел решением данного уравнения с двумя переменными.

Формулировать:

определения: решения уравнения с двумя переменными; что значит решить уравнение с двумя переменными; графика уравнения с двумя переменными; линейного уравнения с двумя переменными; решения системы уравнений с двумя переменными;

свойства уравнений с двумя переменными.

Описывать: свойства графика линейного уравнения в зависимости от значений коэффициентов, графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух линейных уравнений с двумя переменными.

Строить график линейного уравнения с двумя переменными. Решать системы двух линейных уравнений с двумя переменными.

Решать текстовые задачи, в которых система двух линейных уравнений с двумя переменными является математической моделью реального процесса, и интерпретировать результат решения системы.

Учащийся получит возможность решать системы линейных уравнений с параметром

Понятие системы уравнений. Системы уравнений с двумя переменными. Решение системы уравнений.

Графический метод решения системы двух линейных уравнений с двумя переменными

1

2


Решение систем линейных уравнений методом подстановки.

Решение систем линейных уравнений методом сложения. Системы линейных уравнений с параметром.


2

3


Решение задач с помощью систем линейных уравнений. Задачи на движение, работу и покупки.


Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.


Повторение и систематизация учебного материала.

Контрольная работа

1

4

1

Повторение и систематизация
учебного материала

6

Упражнения для повторения курса 7 класса. Первичные представления о других методах решения задач (геометрические и графические методы).

Итоговая контрольная работа


5

1

Учащийся получит возможность узнать о других методах решения задач.

Итого 102

27

67

8



Алгебра 8 класс.

(4 часа, всего 136 часов)

Тематическое планирование

Количество часов

Содержание курса

Всего часов, из них

Характеристика основных видов деятельности ученика

Теоретическая часть

Практическая часть

Контроль

Рациональные выражения

54

Рациональные дроби.

1

2


Распознавать целые рациональные выражения, дробные рациональные выражения, приводить примеры таких выражений.

Формулировать:

определения: рационального выражения, допустимых значений переменной, тождественно равных выражений, тождества, равносильных уравнений, рационального уравнения, степени с нулевым показателем, степени с целым отрицательным показателем, стандартного вида числа, обратной пропорциональности;

свойства: основное свойство рациональной дроби, свойства степени с целым показателем, уравнений, функции;

правила: сложения, вычитания, умножения, деления дробей, возведения дроби в степень;

условие равенства дроби нулю.

Доказывать свойства степени с целым показателем.

Описывать графический метод решения уравнений с одной переменной.

Учащийся получит возможность решать уравнения графическим способом.

Применять основное свойство рациональной дроби для сокращения и преобразования дробей.

Учащийся получит возможность

приводить дроби к новому (общему) знаменателю. Выполнять тождественные преобразования рациональных выражений.

Учащийся получит возможность находить

допустимые значения переменных в дробно-рациональных выражениях.

Учащийся получит возможность выполнять

действия с алгебраическими дробями: сложение и вычитание рациональных дробей с разными знаменателями, сокращать алгебраические дроби.

Решать уравнения с переменной в знаменателе дроби.

Применять свойства степени с целым показателем для преобразования выражений.

Записывать числа в стандартном виде.

Выполнять построение и чтение графика функции

Учащийся получит возможность решать дробно-рациональные уравнения, находить

область определения уравнения (область допустимых значений переменной), применять методы решения уравнений: методы равносильных преобразований.






Алгебраическая дробь. Основное свойство рациональной дроби. Допустимые значения переменных в дробно-рациональных выражениях.

Приведение алгебраических дробей к общему знаменателю.

Решение линейных уравнений с параметром.

1

3


Сложение и вычитание рациональных дробей с одинаковыми знаменателями. Преобразование дробно-линейных выражений: сложение, умножение, деление.

1

3


Действия с алгебраическими дробями: сложение и вычитание рациональных дробей с разными знаменателями. Сокращение алгебраических дробей

Контрольная работа.

1

5

1

Действия с алгебраическими дробями: умножение, деление, возведение рациональной дроби в степень.

1

4


Тождественные преобразования рациональных выражений.

Контрольная работ.

1

9

1



Рациональные уравнения. Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Область определения уравнения (область допустимых значений переменной). Представление о равносильности уравнений. Методы решения уравнений: методы равносильных преобразований.





1

3



Степень с целым показателем. Степень с целым отрицательным показателем

1

4


Свойства степени с целым показателем

1

5


Обратная пропорциональность. Функция
и её график. Гипербола. Свойства функции
hello_html_m7c4f1826.gif.

Графики функций .

Графический метод решения уравнений.

Контрольная работа.

1

3

1

Квадрат

ные корни.
Действи

тельные числа

29

Функция y = x2
и её график. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач.
Методы решения уравнений: графический метод

1

2


Описывать: понятие множества, элемента множества, способы задания множеств; множество натуральных чисел, множество целых чисел, множество рациональных чисел, множество действительных чисел и связи между этими числовыми множествами; связь между бесконечными десятичными дробями и рациональными, иррациональными числами.

Распознавать рациональные и иррациональные числа. Приводить примеры рациональных чисел и иррациональных чисел.

Записывать с помощью формул свойства действий с действительными числами.

Формулировать:

определения: квадратного корня из числа, арифметического квадратного корня из числа, равных множеств, подмножества, пересечения множеств, объединения множеств;

свойства: функции y = x2, арифметического квадратного корня, функции .

Доказывать свойства арифметического квадратного корня.

Строить графики функций y = x2 и.

Учащийся получит возможность решать уравнения графическим способом.

Применять понятие арифметического квадратного корня для вычисления значений выражений.

Упрощать выражения, содержащие арифметические квадратные корни. Решать уравнения. Сравнивать значения выражений. Выполнять преобразование выражений с применением вынесения множителя из-под знака корня, внесения множителя под знак корня. Выполнять освобождение от иррациональности в знаменателе дроби, анализ соотношений между числовыми множествами и их элементами.

Учащийся получит возможность сравнивать иррациональные числа.

Учащийся получит возможность представлять рациональное число десятичной дробью.


Учащийся получит возможность решать простейшие иррациональные уравнения вида , .





.


Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.


Квадратные корни. Арифметический квадратный корень. Арифметический квадратный корень.

Простейшие иррациональные уравнения вида , .

1

3



Множество и его элементы.

1

1


Подмножество. Операции над множествами.

1

1


Числовые множества. Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.


История математики.

Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора. Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт.


1

2




Арифметический квадратный корень. Свойства арифметического квадратного корня.

1

3


Тождественные преобразования выражений, содержащих квадратные корни. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

1

6


Функция
и её график.
Использование свойств функций при решении уравнений.

Контрольная работа

1

2

1


Квадратные уравнения

35

Квадратные уравнения. Неполные квадратные уравнения. Решение неполных квадратных уравнений.

История математики.

История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа

1

3


Распознавать и приводить примеры квадратных уравнений различных видов (полных, неполных, приведённых), квадратных трёхчленов.

Описывать в общем виде решение неполных квадратных уравнений.

Формулировать:

определения: уравнения первой степени, квадратного уравнения; квадратного трёхчлена, дискриминанта квадратного уравнения и квадратного трёхчлена, корня квадратного трёхчлена; биквадратного уравнения;

свойства квадратного трёхчлена;

теорему Виета и обратную ей теорему.

Записывать и доказывать формулу корней квадратного уравнения.

Учащийся получит возможность

исследовать количество корней квадратного уравнения в зависимости от знака его дискриминанта,

доказывать теоремы: Виета (прямую и обратную), о разложении квадратного трёхчлена на множители, о свойстве квадратного трёхчлена с отрицательным дискриминантом.

Описывать на примерах метод замены переменной для решения уравнений.

Находить корни квадратных уравнений различных видов.

Учащийся получит возможность применять теорему Виета и обратную ей теорему. Выполнять разложение квадратного трёхчлена на множители.

Учащийся получит возможность решать биквадратные уравнения, уравнения, сводимые к линейным и квадратным, квадратные уравнения с параметром, решать уравнения методом замены переменной.

Находить корни уравнений, которые сводятся к квадратным. Составлять квадратные уравнения и уравнения, сводящиеся к квадратным, являющиеся математическими моделями реальных ситуаций.


Дискриминант квадратного уравнения. Формула корней квадратного уравнения.

1

4


Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений: использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта.

Контрольная работа

1

4

1

Квадратный трёхчлен, разложение квадратного трехчлена на множители.

1

4


Решение уравнений, сводящихся к квадратным уравнениям. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром. Решения уравнений методом замены переменной.

1

6


Рациональные уравнения как математические модели реальных ситуаций.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.


Контрольная работа

1

6

1

Повторение и системати

зация
учебного материала

18

Упражнения для повторения курса 8 класса.


Контрольная работа.


17

1


Итого

136


24

105

7















Алгебра 8 класс.

(4 часа в неделю, всего 136 часов)

Тематическое планирование

Количество часов

Содержание курса

Всего часов, из них

Характеристика деятельности обучающегося




Теоретическая часть

Практическая часть

Контроль


Неравенства

24

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

2

5


Распознавать и приводить примеры числовых неравенств, неравенств с переменными, линейных неравенств с одной переменной, двойных неравенств.

Формулировать:

определения: сравнения двух чисел, решения неравенства с одной переменной, равносильных неравенств, решения системы неравенств с одной переменной, области определения выражения;

свойства числовых неравенств, сложения и умножения числовых неравенств

Доказывать: свойства числовых неравенств, теоремы о сложении и умножении числовых неравенств.

Решать линейные неравенства.

Записывать решения неравенств и их систем в виде числовых промежутков, объединения, пересечения числовых промежутков. Решать систему неравенств с одной переменной. Оценивать значение выражения. Изображать на координатной прямой заданные неравенствами числовые промежутки

Учащийся получит возможность находить область определения неравенства (область допустимых значений переменной).











Сложение и умножение числовых неравенств. Оценивание значения выражения

1

2





Неравенство с переменной. Строгие и нестрогие неравенства.

1

1





Решение неравенств с одной переменной. Решение линейных неравенств.

Числовые промежутки.

Область определения неравенства (область допустимых значений переменной).

1

4





Системы линейных неравенств с одной переменной.

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных.

Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.


Контрольная работа

1

5

1


Квадратичная функция

44

Повторение и расширение сведений о функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач.

1

3


Описывать понятие функции как правила, устанавливающего связь между элементами двух множеств.

Формулировать:

определения: нуля функции; промежутков знакопостоянства функции; функции, возрастающей (убывающей) на множестве; квадратичной функции; квадратного неравенства;

свойства квадратичной функции;

правила построения графиков функций с помощью преобразований вида f(x) → f(x) + b;

f(x) → f(x + а); f(x) → kf(x).

Строить графики функций с помощью преобразований вида f(x) → f(x) + b;

f(x) → f(x + а); f(x) → kf(x).

Строить график квадратичной функции. По графику квадратичной функции описывать её свойства.

Описывать схематичное расположение параболы относительно оси абсцисс в зависимости от знака старшего коэффициента и дискриминанта соответствующего квадратного трёхчлена.

Решать квадратные неравенства, используя схему расположения параболы относительно оси абсцисс.

Описывать графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух уравнений с двумя переменными, одно из которых не является линейным.

Решать текстовые задачи, в которых система двух уравнений с двумя переменными является математической моделью реального процесса, и интерпретировать результат решения системы.

Учащиеся получат возможность научиться решать неравенства, используя свойств и графика квадратичной функции, метод интервалов,
научится решать целые и дробно-рациональные неравенства методом интервалов.

Учащиеся получат возможность научиться определять асимптоты, находить промежутки непрерывности функции, строить кусочно заданные функции.

Учащиеся получат возможность строить

графики функций , ,

hello_html_68179cac.gif, .











Свойства функции.

Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

1

3





Как построить график функции y = kf(x), если известен график функции y = f(x)

1

2





Преобразование графика функции для построения графиков функций вида .

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

1

3





Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Построение графиков функций с модулем.

Контрольная работа

1

5

1




Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Решение систем квадратных неравенств с одной переменной. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.


1

6





Уравнение с двумя переменными. Системы уравнений с двумя переменными.

1

6





Решение задач с помощью систем уравнений второй степени.

Контрольная работа

История математики.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.


1

6

1


Элементы прикладной математики

25

Математическое моделирование.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).



1

3


Приводить примеры: математических моделей реальных ситуаций; прикладных задач; приближённых величин; использования комбинаторных правил суммы и произведения; случайных событий, включая достоверные и невозможные события; опытов с равновероятными исходами; представления статистических данных в виде таблиц, диаграмм, графиков; использования

вероятностных свойств окружающих явлений.

Формулировать:

определения: абсолютной погрешности, относительной погрешности, достоверного события, невозможного события; классическое определение вероятности;

правила: комбинаторное правило суммы, комбинаторное правило произведения.

Описывать этапы решения прикладной задачи.

Пояснять и записывать формулу сложных процентов. Проводить процентные расчёты с использованием сложных процентов.

Находить точность приближения по таблице приближённых значений величины. Использовать различные формы записи приближённого значения величины. Оценивать приближённое значение величины.

Проводить опыты со случайными исходами. Пояснять и записывать формулу нахождения частоты случайного события. Описывать статистическую оценку вероятности случайного события. Находить вероятность случайного события

в опытах с равновероятными исходами.

Описывать этапы статистического исследования.

Учащийся получит возможность вычислять вероятности в опытах с применением комбинаторных формул.

Учащийся получит возможность применять

правило умножения, перестановки, факториал числа, формулу числа сочетаний.

Учащийся получит возможность вычисление вероятностей в опытах с применением комбинаторных формул.











Процентные расчёты.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

1

3





Абсолютная и относительная погрешности. Приближённые вычисления.

1

2





Основные правила комбинаторики.

Частота и вероятность случайного события.

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля.

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями.

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

2

4





Классическое определение вероятности.

Классические вероятностные опыты с использованием монет, кубиков.

Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

История математики.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.

1

3












Начальные сведения о статистике.

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Контрольная работа


1

2

1

Оформлять информацию в виде таблиц и диаграмм.

Извлекать информацию из таблиц и диаграмм. Находить и приводить примеры использования статистических характеристик совокупности данных: среднее значение, мода, размах,

Описывать статистические показатели числовых наборов: среднее арифметическое, наибольшее и наименьшее значения.

Определять меры рассеивания: размах.

Учащийся получит возможность находить медиану выборки, исследовать закономерности в изменчивых величинах, дисперсию и стандартное отклонение.



Числовые последовательности

22

Числовые последовательности. Примеры числовых последовательностей. Бесконечные последовательности.

1

2


Приводить примеры: последовательностей; числовых последовательностей, в частности арифметической и геометрической прогрессий; использования последовательностей в реальной жизни; задач, в которых рассматриваются суммы с бесконечным числом слагаемых.

Описывать: понятия последовательности, члена последовательности; способы задания последовательности.

Вычислять члены последовательности, заданной формулой n-го члена или рекуррентно.

Формулировать:

определения: арифметической прогрессии, геометрической прогрессии;

свойства членов геометрической и арифметической прогрессий.

Задавать арифметическую и геометрическую прогрессии рекуррентно.

Учащийся получит возможность записывать и пояснять формулы общего члена арифметической и геометрической прогрессий.

Учащийся получит возможность записывать и доказывать: формулы суммы n первых членов арифметической и геометрической прогрессий; формулы, выражающие свойства членов арифметической и геометрической прогрессий.

Вычислять сумму бесконечной геометрической прогрессии, у которой | q | < 1. Представлять бесконечные периодические дроби в виде обыкновенных










Арифметическая прогрессия и ее свойства.

1

3





Формула общего члена и суммы n первых членов арифметической прогрессий.

1

3





Геометрическая прогрессия

1

3





Формула общего члена и суммы n первых членов геометрической прогрессий.

1

2





Сходящаяся геометрическая прогрессия. Сумма бесконечной геометрической прогрессии, у которой | q | < 1.

Контрольная работа.

История математики.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи.

Задача о шахматной доске. Сходимость геометрической прогрессии.


1

2

1


Повторение и систематизация учебного материала. Контрольная работа.

21


20

1


Итого

136


27

103

6









ГЕОМЕТРИЯ


Курс

Количество часов в неделю

Количество часов в год

Геометрия 7 класс

3

102

Геометрия 8 класс

3

102

Геометрия 9 класс

2

68

Итого

272








Раздел курса

По рабочей программе

(кол-во часов)

7 класс

8 класс

9 класс

Простейшие геометрические фигуры и их свойства.

15

15



Треугольники.

28

28



Параллельные прямые. Сумма углов треугольника.

27

27



Окружность и круг. Геометрические построения.

22

22



Четырехугольники

30


30


Подобие треугольников

24


24


Решение прямоугольных треугольников

22


22


Многоугольники. Площадь многоугольников

18


18


Решение треугольников

16



16

Правильные многоугольники

8



8

Декартовы координаты на плоскости

11



11

Векторы

12



12

Геометрические преобразования

13



13

Повторение курса геометрии

26

10

8

8

Итого

272

102

102

68

Примерное тематическое планирование.

Геометрия. 7 класс.

(3 часа в неделю, всего 102 часов)

Тематическое планирование

Количество часов

Содержание курса

Всего часов, из них

Характеристика деятельности обучающегося




Теоретическая часть

Практическая часть

Контроль


Простейшие

геометрические фигуры
и их свойства

15

Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».

Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов.

Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.

Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей

1

3


Приводить примеры геометрических фигур.

Описывать точку, прямую, отрезок, луч, угол.

Формулировать:

определения: равных отрезков, середины отрезка, расстояния между двумя точками, дополнительных лучей, развёрнутого угла, равных углов, биссектрисы угла, смежных и вертикальных углов, пересекающихся прямых, перпендикулярных прямых, перпендикуляра, наклонной, расстояния от точки до прямой;

свойства: расположения точек на прямой, измерения отрезков и углов, смежных и вертикальных углов, перпендикулярных прямых; основное свойство прямой.

Классифицировать углы.

Доказывать: теоремы о пересекающихся прямых, о свойствах смежных и вертикальных углов, о единственности прямой, перпендикулярной данной (случай, когда точка лежит на данной прямой).

Находить длину отрезка, градусную меру угла, используя свойства их измерений.

Изображать с помощью чертёжных инструментов геометрические фигуры: отрезок, луч, угол, смежные и вертикальные углы, перпендикулярные прямые, отрезки и лучи.

Пояснять, что такое аксиома, определение.

Решать задачи на вычисление и доказательство, проводя необходимые доказательные рассуждения



Смежные и вертикальные углы

1

3





Прямой угол. Перпендикуляр к прямой. Наклонная, проекция.

Перпендикулярные прямые.

Аксиомы.

1

3





Повторение и систематизация учебного материала.

Контрольная работа.


История математики.

От земледелия к геометрии. Пифагор и его школа.


2

1


Треугольники

28

Прямоугольный, остроугольный, тупоугольный треугольники.

Равные треугольники. Высота, медиана, биссектриса треугольника.

Расстояние между точками. Расстояние от точки до прямой.

1

4


Описывать смысл понятия «равные фигуры». Приводить примеры равных фигур.

Изображать и находить на рисунках равносторонние, равнобедренные, прямоугольные, остроугольные, тупоугольные треугольники и их элементы.

Классифицировать треугольники по сторонам и углам.

Формулировать:

определения: остроугольного, тупоугольного, прямоугольного, равнобедренного, равностороннего, разностороннего треугольников; биссектрисы, высоты, медианы треугольника; равных треугольников; серединного перпендикуляра отрезка; периметра треугольника;

свойства: равнобедренного треугольника, серединного перпендикуляра отрезка, основного свойства равенства треугольников;

признаки: равенства треугольников, равнобедренного треугольника.

Доказывать теоремы: о единственности прямой, перпендикулярной данной (случай, когда точка лежит вне данной прямой); три признака равенства треугольников; признаки равнобедренного треугольника; теоремы о свойствах серединного перпендикуляра, равнобедренного и равностороннего треугольников.

Разъяснять, что такое теорема, описывать структуру теоремы. Объяснять, какую теорему называют обратной данной, в чём заключается метод доказательства от противного. Приводить примеры использования этого метода.

Решать задачи на вычисление и доказательство

Учащийся получит возможность узнать и научиться применять признаки перпендикулярности.



Признаки и свойства равных треугольников. Первый и второй признаки равенства треугольников

1

5





Равнобедренный треугольник и его свойства.

Признаки равнобедренного треугольника.

Равносторонний треугольник. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности

2

7





Третий признак равенства треугольников

1

3





Теоремы.

Внешние углы треугольника. Неравенство треугольника.

Повторение и систематизация учебного материала.

Контрольная работа.

История математики.

Триссекция угла

2

1

1


Параллельные прямые.

Сумма углов треугольника

27

Параллельные прямые. Признаки параллельности прямых. Свойства параллельных прямых. Аксиома параллельности Евклида.

2

7


Распознавать на чертежах параллельные прямые.

Изображать с помощью линейки и угольника параллельные прямые.

Описывать углы, образованные при пересечении двух прямых секущей.

Формулировать:

определения: параллельных прямых, расстояния между параллельными прямыми, внешнего угла треугольника, гипотенузы и катета;

свойства: параллельных прямых; углов, образованных при пересечении параллельных прямых секущей; суммы улов треугольника; внешнего угла треугольника; соотношений между сторонами и углами треугольника; прямоугольного треугольника; основное свойство параллельных прямых;

признаки: параллельности прямых, равенства прямоугольных треугольников.

Доказывать: теоремы о свойствах параллельных прямых, о сумме углов треугольника, о внешнем угле треугольника, неравенство треугольника, теоремы о сравнении сторон и углов треугольника, теоремы о свойствах прямоугольного треугольника, признаки параллельных прямых, равенства прямоугольных треугольников.

Решать задачи на вычисление и доказательство.

Учащийся получит возможность познакомиться с аксиомой параллельности Евклида.



Сумма углов треугольника

1

5





Прямоугольный треугольник. Свойства прямоугольного треугольника.

1

7





Повторение и систематизация материала.

Контрольная работа.

История математики.

«Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.

1

2

1


Ок

руж

ность и круг.

Геометрические построения

22

Геометрическое место точек. Окружность, круг, их элементы и свойства. Касательная к окружности

2

6


Пояснять, что такое задача на построение; геометрическое место точек (ГМТ). Приводить примеры ГМТ.

Изображать на рисунках окружность и её элементы; касательную к окружности; окружность, вписанную в треугольник, и окружность, описанную около него. Описывать взаимное расположение окружности и прямой.

Формулировать:

определения: окружности, круга, их элементов; касательной к окружности; окружности, описанной около треугольника, и окружности, вписанной в треугольник;

свойства: серединного перпендикуляра как ГМТ; биссектрисы угла как ГМТ; касательной к окружности; диаметра и хорды; точки пересечения серединных перпендикуляров сторон треугольника; точки пересечения биссектрис углов треугольника;

признаки касательной.

Доказывать: теоремы о серединном перпендикуляре и биссектрисе угла как ГМТ;
о свойствах касательной; об окружности, вписанной в треугольник, описанной около треугольника; признаки касательной.

Учащийся получит возможность научиться решать основные задачи на построение: построение угла, равного данному; построение серединного перпендикуляра данного отрезка; построение прямой, проходящей через данную точку и перпендикулярной данной прямой; построение биссектрисы данного угла; построение треугольника по двум сторонам и углу между ними; по стороне и двум прилежащим к ней углам.

Решать задачи на построение методом ГМТ.

Строить треугольник по трём сторонам.

Решать задачи на вычисление, доказательство и построение



Вписанные и описанные окружности для треугольников

1

4





Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному

Задачи на построение. Метод геометрических мест точек в задачах на построение. Геометрические построения для иллюстрации свойств геометрических фигур.

Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.

1

5





Повторение и систематизация учебного материала.

Контрольная работа.


2

1


Обобщение и систематизация
знаний учащихся.
Упражнения для повторения курса 7 класса. Контрольная работа.


9

1


Итого 102

19

78

5




.




















Геометрия. 8 класс.

(3часа в неделю, всего 102 часа)


Тематическое планирование

Количество часов

Содержание курса

Всего часов, из них

Характеристика деятельности обучающегося




Теоретическая часть

Практическая часть

Контроль


Четырёхугольники

30

Четырёхугольник и его элементы

1

1


Пояснять, что такое четырёхугольник. Описывать элементы четырёхугольника.

Распознавать выпуклые и невыпуклые четырёхугольники.

Изображать и находить на рисунках четырёхугольники разных видов и их элементы.

Формулировать:

определения: параллелограмма, высоты параллелограмма; прямоугольника, ромба, квадрата; средней линии треугольника; трапеции, высоты трапеции, средней линии трапеции; центрального угла окружности, вписанного угла окружности; вписанного и описанного четырёхугольника;

свойства: параллелограмма, прямоугольника, ромба, квадрата, средних линий треугольника и трапеции, вписанного угла, вписанного и описанного четырёхугольника;

признаки: параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольника.

Доказывать: теоремы о сумме углов четырёхугольника, о градусной мере вписанного угла, о свойствах и признаках параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольника.

Применять изученные определения, свойства и признаки к решению задач

Учащийся получит возможность узнать свойства секущей и применять его при решении задач.



Параллелограмм. Свойства параллелограмма.

Признаки параллелограмма

2

3





Свойства и признаки ромба, прямоугольника, квадрата Прямоугольник. Ромб. Квадрат.

Контрольная работа.

2

3

1




Средняя линия треугольника

1

2





Трапеция. Средняя линия трапеции. Равнобедренная трапеция.

2

3





Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства.

Центральные и вписанные углы

1

3





Вписанные и описанные четырёхугольники.

Контрольная работа.

История математики

Геометрия и искусство. Геометрические закономерности окружающего мира.

1

3

1


Подобие треугольников

24

Теорема Фалеса. Теорема о пропорциональных отрезках.

Деление отрезка в данном отношении.

2

9


Формулировать:

определение подобных треугольников;

свойства: медиан треугольника, биссектрисы треугольника, пересекающихся хорд, касательной и секущей;

признаки подобия треугольников.

Доказывать:

теоремы: Фалеса, о свойствах медиан треугольника, биссектрисы треугольника;

свойства: пересекающихся хорд, касательной и секущей;

признаки подобия треугольников.

Применять изученные определения, свойства и признаки к решению задач.

Учащийся получит возможность узнать о пропорциональных отрезках и подобных треугольниках, доказывать теоремы о пропорциональных отрезках, делить отрезок в данном отношении.



Подобие

Пропорциональные отрезки,

Подобие фигур. Подобные треугольники.

Признаки подобия треугольников.

Контрольная работа.

История математики.

Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.

3

9

1


Решение прямоугольных
треугольников

22

Метрические соотношения в прямоугольном треугольнике

Теорема Пифагора.

Контрольная работа

2

7

1

Формулировать:

определения: синуса, косинуса, тангенса, котангенса острого угла прямоугольного треугольника;

свойства: выражающие метрические соотношения в прямоугольном треугольнике и соотношения между сторонами и значениями тригонометрических функций в прямоугольном треугольнике.

Записывать тригонометрические формулы, выражающие связь между тригонометрическими функциями одного и того же острого угла.

Решать прямоугольные треугольники.

Доказывать:

теорему о метрических соотношениях в прямоугольном треугольнике, теорему Пифагора;

формулы, связывающие синус, косинус, тангенс, котангенс одного и того же острого угла.

Выводить основное тригонометрическое тождество и значения синуса, косинуса, тангенса и котангенса для углов 30°, 45°, 60°.

Применять изученные определения, теоремы и формулы к решению задач



Тригонометрические функции острого угла прямоугольного треугольника.

1

3





Решение прямоугольных треугольников. Вычисление элементов треугольников с использованием тригонометрических соотношений

Контрольная работа.



1

6

1


Многоугольники.

Площадь многоугольника

18

Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники.

1

1


Пояснять, что такое площадь многоугольника.

Описывать многоугольник, его элементы;

Учащийся получит возможность познакомиться с классификацией многоугольников: выпуклые и невыпуклые многоугольники.

Изображать и находить на рисунках многоугольник и его элементы; многоугольник, вписанный в окружность, и многоугольник, описанный около окружности.

Формулировать:

определения: вписанного и описанного многоугольника, площади многоугольника, равновеликих многоугольников;

основные свойства площади многоугольника.

Доказывать: теоремы о сумме углов выпуклого n-угольника, площади прямоугольника, площади треугольника, площади трапеции.

Применять изученные определения, теоремы и формулы к решению задач



Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади

Понятие площади

многоугольника.

Площадь прямоугольника

1

1





Площадь параллелограмма.

Формулы площади параллелограмма и его частных видов,

1

4





Формулы площади треугольника. Площадь треугольника

1

4





Площадь трапеции. Сравнение и вычисление площадей.

Контрольная работа

1

2

1


Повторение и систематизация учебного материала.

Контрольная работа


7

1


Итого 102

24

71

7




Геометрия. 9 класс

(2 часа в неделю, всего 68 часов)


Тематическое планирование

Количество часов

Содержание курса

Всего часов, из них

Характеристика деятельности обучающегося




Теоретическая часть

Практическая часть

Контроль


Решение треугольников

16

Синус, косинус, тангенс и котангенс угла от 0° до 180°.

Тригонометрические функции тупого угла.

1

1


Формулировать:

определения: синуса, косинуса, тангенса, котангенса угла от 0° до 180°;

Учащийся получит возможность научиться находить тригонометрические функции тупого угла.

свойство связи длин диагоналей и сторон параллелограмма.

Формулировать и разъяснять основное тригонометрическое тождество. Вычислять значение тригонометрической функции угла по значению одной из его заданных функций.

Формулировать и доказывать теоремы: синусов, косинусов, следствия из теоремы косинусов и синусов, о площади описанного многоугольника.

Записывать и доказывать формулы для нахождения площади треугольника, радиусов вписанной и описанной окружностей треугольника.

Применять изученные определения, теоремы и формулы к решению задач



Теорема косинусов

1

2





Теорема синусов

1

2





Решение треугольников

1

3





Формулы для нахождения площади треугольника.

Контрольная работа

1

2

1



Правильные многоугольники

8

Правильные многоугольники и их свойства. Вписанные и описанные окружности правильных многоугольников.


1

3


Пояснять, что такое центр и центральный угол правильного многоугольника, сектор и сегмент круга.

Формулировать:

определение правильного многоугольника;

свойства правильного многоугольника.

Доказывать свойства правильных многоугольников.

Записывать и разъяснять формулы длины окружности, площади круга.

Записывать и доказывать формулы длины дуги, площади сектора, формулы для нахождения радиусов вписанной и описанной окружностей правильного многоугольника.

Строить с помощью циркуля и линейки правильные треугольник, четырёхугольник, шестиугольник.

Применять изученные определения, теоремы и формулы к решению задач.

Учащийся получит возможность научиться строить правильные многоугольники.



Формулы длины окружности и площади круга.

Контрольная работа.

История математики.

Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение.

1

2

1


Декартовы

координаты на плоскости

11

Расстояние между двумя точками с заданными координатами. Координаты середины отрезка

1

2


Описывать прямоугольную систему координат.

Формулировать: определение уравнения фигуры, необходимое и достаточное условия параллельности двух прямых.

Записывать и доказывать формулы расстояния между двумя точками, координат середины отрезка.

Выводить уравнение окружности, общее уравнение прямой, уравнение прямой с угловым коэффициентом.

Доказывать необходимое и достаточное условие параллельности двух прямых.

Применять изученные определения, теоремы и формулы к решению задач.

Учащийся получит возможность рассматривать взаимное расположение двух окружностей, применять при решении задач.



Уравнение фигуры. Уравнение окружности. Взаимное расположение прямой и окружности, двух окружностей.

История математики.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.


1

2





Уравнение прямой. Угловой коэффициент прямой.

История математики.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Контрольная работа.

1

3

1


Векторы

12

Основные понятия, понятие вектора, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

1


3


Описывать понятия векторных и скалярных величин. Иллюстрировать понятие вектора.

Формулировать:

определения: модуля вектора, коллинеарных векторов, равных векторов, координат вектора, суммы векторов, разности векторов, противоположных векторов, умножения вектора на число, скалярного произведения векторов;

свойства: равных векторов, координат равных векторов, сложения векторов, координат вектора суммы и вектора разности двух векторов, коллинеарных векторов, умножения вектора на число, скалярного произведения двух векторов, перпендикулярных векторов.

Доказывать теоремы: о нахождении координат вектора, о координатах суммы и разности векторов, об условии коллинеарности двух векторов,

о нахождении скалярного произведения двух векторов, об условии перпендикулярности.

Находить косинус угла между двумя векторами.

Применять изученные определения, теоремы и формулы к решению задач.

Учащийся получит возможность раскладывать вектор на составляющие, применение векторов и координат для решения простейших геометрических задач.




Действия над векторами.

Сложение и вычитание векторов.

Умножение вектора на число.

1

2





Скалярное произведение векторов, использование векторов в физике, разложение вектора на составляющие.

Применение векторов и координат для решения простейших геометрических задач.

Контрольная работа.

История математики. Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

1

3

1


Геометрические

преобразования

13

Преобразования

Понятие преобразования. Представление о метапредметном понятии «преобразование».

Движение (перемещение) фигуры. Параллельный перенос

1

3


Приводить примеры преобразования фигур.

Описывать преобразования фигур: параллельный перенос, осевая симметрия, центральная симметрия, поворот, гомотетия, подобие.

Формулировать:

определения: движения; равных фигур; точек, симметричных относительно прямой; точек, симметричных относительно точки; фигуры, имеющей ось симметрии; фигуры, имеющей центр симметрии; подобных фигур;

свойства: движения, параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии.

Доказывать теоремы: о свойствах параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии, об отношении площадей подобных треугольников.

Применять изученные определения, теоремы и формулы к решению задач.

Учащийся получит возможность использовать при построениях и решении задач комбинации движений на плоскости и их свойства.



Фигуры в геометрии и в окружающем мире

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур

Поворот.

1

3





Гомотетия. Подобие фигур.

Комбинации движений на плоскости и их свойства.

Контрольная работа.

1

3

1


Повторение

и систематизация

учебного материала. Повторение понятий об объеме и его свойствах. Измерение объема. Единицы измерения объемов.

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

Контрольная работа.

7

1


Итого 68

16

46

6






1 Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

2


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 27.06.2016
Раздел Математика
Подраздел Рабочие программы
Просмотров98
Номер материала ДБ-133855
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх