Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Рабочие программы / Рабочая программа по Математике 5-9 класс по ФГОС
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Рабочая программа по Математике 5-9 класс по ФГОС

библиотека
материалов





Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 65»











РАБОЧАЯ ПРОГРАММА

По МАТЕМАТИКЕ

для обучающихся 5-9 классов по ФГОС









Обсуждено на заседании Составитель: Крауц О.В.

методического объединения учитель математики

протокол № ___ МБОУ «СОШ № 65»

от _______________

руководитель м/о

____________ /__________/




Утверждено Педагогическим советом:

Протокол № _______

от _______________

Директор МБОУ «СОШ № 65»

_______ Л.А. Пятибратова



Кемерово, 2015 г


Содержание


1 Пояснительная записка……………... ……………………… ……………………………….3

2. Общая характеристика учебного предмета. …………………....……………………….…..4

3. Место учебного предмета «Математика» в базисном учебном плане….............................8

4. Личностные, метапредметные, предметные результаты………………………...………....8

5. Содержание учебного предмета «Математика»………..……………………………….…11

6. Тематический план…………………………………………………………………………..24

7.Учебно-методическое, материально-техническое и информационное обеспечение образовательного процесса. …………………. ……….……………………………………….…...41

8. Планируемые результаты…………………………………………………….………….…..42

9. Критерии оценивания……………………………………………………………………….49

10. Приложение № 1 (Календарно-тематическое планирование, 5 класс) ……………...…57

1. Пояснительная записка

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования (утверждённого приказом Министерства образова­ния и науки РФ от 17.12. 2010г. № 1897), примерной программы основного общего образования по математике 5-9 классы разработанной А.А. Кузнецовым, М.В. Рыжаковым, А.М. Кондаковым (М.: Просвещение, 2010), учебного плана МБОУ «Средняя общеобразовательная школа №65» города Кемерово и обеспечена УМК для 5–6-го классов под редакцией Н.Я. Виленкина (авторы – составители Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд), УМК по алгебре для 7-9-го классов под редакцией Ю.Н. Макарычева и УМК по геометрии для 7-9-го классов под редакцией Л.С. Атанасяна.

Математическое образование является обязательной и не­отъемлемой ча­стью общего образова­ния на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

I В направлении личностного развития:

  • формирование представлений о математике, как части общечеловече­ской культуры, о значимости математики в раз­витии цивилизации и современ­ного общества;

  • развитие логического и критического мышления, куль­туры речи, способно­сти к умствен­ному эксперименту;

  • формирование интеллектуальной честности и объектив­ности, способно­сти к преодоле­нию мыслительных стереоти­пов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих соци­альную мобиль­ность, способ­ность принимать самостоятель­ные решения;

  • формирование качеств мышления, необходимых для адаптации в современ­ном информа­ционном обществе;

  • развитие интереса к математическому творчеству и ма­тематических способ­ностей;

II В метапредметном направлении:

  • развитие представлений о математике как форме опи­сания и методе позна­ния действи­тельности, создание условий для приобретения первоначаль­ного опыта математиче­ского моделирования;

  • формирование общих способов интеллектуальной дея­тельности, характер­ных для мате­матики и являющихся осно­вой познавательной куль­туры, значимой для различных сфер человеческой деятельности;

III В предметном направлении:

овладение математическими знаниями и умениями, не­обходимыми для про­долже­ния образования, изучения смеж­ных дисциплин, применения в повсе­дневной жизни;

создание фундамента для математического развития, формирования меха­низмов мышле­ния, характерных для мате­матической деятельности.

Задачи обучения:

  • овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  • способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

  • воспитывать культуру личности, отношение к математике как части общечеловеческой культуры, играющей особую роль в общественном развитии.


2. Общая характеристика учебного предмета «Математика»


Содержание математического образования в основной школе формиру­ется на основе фунда­ментального ядра школь­ного математического образова­ния. Оно в основной школе включает сле­дующие разделы: арифметика, алгебра, функции, вероятность и стати­стика, геометрия. Наряду с этим в него включены два дополнительных раз­дела: логика и множества, математика в историческом развитии, что свя­зано с реализацией целей общеин­теллектуального и обще­культурного разви­тия учащихся. Содержание каждого из этих разделов разворачивается в содержа­тельно-методическую ли­нию, пронизывающую все основные раз­делы содержания ма­тематического образования на данной ступени обуче­ния.

Содержание раздела «Арифметика» служит базой для даль­нейшего изуче­ния учащи­мися математики, способствует разви­тию их логического мышле­ния, формированию уме­ния поль­зоваться алгоритмами, а также приобрете­нию практических навыков, необходи­мых в повседневной жизни. Развитие поня­тия о числе в основной школе связано с рациональ­ными и ир­рациональ­ными числами, формированием первичных пред­ставлений о действительном числе. Завершение числовой линии (систематизация сведений о действитель­ных числах, о комплексных числах), так же как и более сложные вопросы ариф­ме­тики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени об­щего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирова­ние у учащихся ма­тематиче­ского аппарата для решения задач из разных разделов матема­тики, смежных предметов, окружа­ющей реальности. Язык алгебры подчерки­вает значение мате­матики как языка для построения математических моделей процессов и явлений реального мира. В задачи изуче­ния алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассужде­ний. Преобразова­ние символьных форм вносит специфический вклад в разви­тие воображе­ния учащихся, их способностей к математическо­му творче­ству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с ир­рациональными выражениями, с тригоно­метрическими функ­циями и преобразова­ниями, входят в содержание курса мате­матики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками кон­кретных зна­ний о функции как важнейшей математической модели для описания и исследования разно­образных процессов. Изучение этого мате­риала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графиче­ский), вно­сит вклад в формирование представлений о роли математики в развитии цивилиза­ции и культуры.

Раздел «Вероятность и статистика» — обязательный ком­понент школь­ного образова­ния, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функцио­нальной грамот­ности - умений восприни­мать и критически анализиро­вать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, про­водить простей­шие вероятностные расчеты. Изучение основ комбинаторики позволит уча­щимся рассматривать случаи, осуществлять перебор и подсчет числа вариан­тов, в том чис­ле в про­стейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о совре­менной кар­тине мира и методах его ис­следования, формируется понима­ние роли статистики как ис­точника социально значимой информации, и закладываются основы вероятностного мышле­ния.

Цель содержания раздела «Геометрия» — развить у учащих­ся пространствен­ное воображе­ние и логическое мышление пу­тем систематиче­ского изучения свойств геометриче­ских фигур на плоскости и в пространстве и применения этих свойств при реше­нии задач вычислительного и конструктив­ного характера. Существенная роль при этом отводится разви­тию геометри­ческой интуиции. Сочетание наглядности со строго­стью явля­ется неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значи­тельной степени несет в себе меж­предметные знания, кото­рые находят применение, как в различных математи­ческих дисципли­нах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представлен­ный в нем мате­риал преимущественно изуча­ется и используется в ходе рассмотре­ния различных вопросов курса. Соответствую­щий материал наце­лен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в уст­ной и письменной речи.

Раздел «Математика в историческом развитии» предназна­чен для формирова­ния представле­ний о математике как части человеческой куль­туры, для общего развития школьни­ков, для создания культурно-историче­ской среды обучения. На него не выделя­ется специальных уроков, усвоение его не контролиру­ется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рас­смотрении проблематики основного содержания математичес­кого образования.

Ценностные ориентиры содержания учебного предмета

Математическое образование играет важную роль, как в практической, так и в духов­ной жизни общества. Практическая сторона математического образова­ния связана с формиро­вани­ем способов деятельности, духовная — с интеллектуальным развитием чело­века, формированием характера и общей куль­туры.

Практическая полезность математики обусловлена тем, что ее предметом яв­ляются фунда­ментальные структуры реально­го мира: пространственные формы и количественные отноше­ния — от простейших, усваиваемых в непосред­ственном опы­те, до достаточно слож­ных, необходимых для разви­тия научных и технологических идей. Без конкретных математиче­ских зна­ний затруднено понимание принципов устройства и ис­пользования современ­ной техники, восприятие и интерпретация разнообразной социальной, экономиче­ской, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится вы­полнять достаточно слож­ные расчеты, находить в справочниках нужные фор­мулы и применять их, владеть практиче­скими прие­мами геометрических измере­ний и построений, читать инфор­мацию, представленную в виду таб­лиц, диаграмм, графиков, понимать вероятностный характер случайных собы­тий, со­ставлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным со­времен­ным человеком. В школе математика служит опорным предметом для изучения смежных дисцип­лин. В после школьной жизни реальной необходи­мостью в наши дни является непрерыв­ное образование, что требует полноценной базовой общеобразовательной подго­товки, в том числе и математи­ческой. И наконец, все больше специально­стей, где необхо­дим высо­кий уровень образования, связано с непосредственным применением матема­тики (экономика, бизнес, финансы, физика, химия, техника, информа­тика, био­логия, психоло­гия и др.). Таким образом, расширяется круг школьни­ков, для которых математика стано­вится значимым предметом.

Для жизни в современном обществе важным является формирование математиче­ского стиля мышления, проявляю­щегося в определенных умствен­ных навыках. В процессе ма­тематической деятельности в арсенал приемов и методов че­ловеческого мышления естест­венным образом включаются индукция и дедукция, обобщение и конкрети­зация, анализ и синтез, классификация и систематизация, абстрагирова­ние и аналогия. Объекты математиче­ских умозаключений и пра­вила их конструирования вскрывают механизм логиче­ских построе­ний, выраба­тывают умения формулировать, обосновывать и доказы­вать суждения, тем самым развивают логическое мыш­ление. Ведущая роль принадлежит матема­тике в формирова­нии алгоритмического мышления и воспитании уме­ний дей­ство­вать по заданному алгоритму и конструировать новые. В ходе реше­ния задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная сто­роны мышления.

Обучение математике дает возможность развивать у уча­щихся точную, эко­номную и ин­формативную речь, умение отбирать наиболее подходящие языковые (в частности, сим­волические, графические) средства.

Математическое образование вносит свой вклад в форми­рование общей куль­туры чело­века. Необходимым компонен­том общей культуры в современ­ном толковании явля­ется об­щее знакомство с методами познания действительно­сти, представление о предмете и методе математики, его отли­чия от методов естественных и гуманитарных наук, об особенно­стях примене­ния математики для решения научных и при­кладных задач.

Изучение математики способствует эстетическому воспита­нию человека, по­ниманию кра­соты и изящества математиче­ских рассуждений, восприятию геометрических форм, усвое­нию идеи симметрии.

История развития математического знания дает возмож­ность пополнить за­пас исто­рико-научных знаний школьни­ков, сформировать у них представле­ния о математике как ча­сти общечеловеческой культуры. Знаком­ство с основными историческими вехами возникно­вения и развития математи­че­ской науки, с историей великих открытий, именами людей, творив­ших науку, должно войти в интеллектуальный багаж каждого культур­ного человека.


  1. Описание места учебного предмета «Математика» в учебном плане


Базисный учебный (образовательный) план на изучение математики в основ­ной школе отводит 5 учебных часов в не­делю в течение каждого года обучения, всего 875 уроков.

Согласно Базисного учебного (образовательного) плана в 5—6 клас­сах изуча­ется предмет «Математика» (инте­грированный предмет), в 7—9 классах - «Математика» (включающий разделы «Алгебра» и «Геометрия»)

Предмет «Математика» в 5—6 классах включает арифмети­ческий мате­риал, элементы алгебры и геометрии, а также эле­менты вероятностно-статистиче­ской линии.

Предмет «Математика» в 7 – 9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, алгебраический материал, элементарные функ­ции, элементы вероятностно-статистической линии, а также геометрический мате­риал, традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометриче­ские преобразования.

Раздел «Алгебра» включает некоторые вопросы арифме­тики, развиваю­щие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции.

В рамках учебного раздела «Геометрия» традиционно изучаются евкли­дова геометрия, элементы векторной алгебры, геометрические преобразова­ния.


  1. Личностные, метапредметные и предметные результаты

освоения учебного предмета


Изучение математики в основной школе дает возможность обучающимся дос­тичь следую­щих результатов развития:

В личностном направлении:

умение ясно, точно, грамотно излагать свои мысли в устной и письменной

речи, пони­мать смысл поставленной задачи, выстраивать аргументацию, приво­дить

примеры и контрпримеры;

  • критичность мышления, умение распознавать логически некорректные вы­сказы­вания, отличать гипотезу от факта;

  • представление о математической науке как сфере чело­веческой деятельно­сти, об этапах ее развития, о ее значимо­сти для развития цивилиза­ции;

  • креативность мышления, инициатива, находчивость, активность при реше­нии математических задач;

  • умение контролировать процесс и результат учебной математической дея­тельно­сти;

  • способность к эмоциональному восприятию математи­ческих объектов, за­дач, решений, рассуждений;

Метапредметные результаты:

  • первоначальные представления об идеях и о методах математики как уни­версаль­ном языке науки и техники, сред­стве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проб­лемной ситуа­ции в дру­гих дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для реше­ния математических проблем, представ­лять ее в понятной форме, принимать реше­ние в условиях не­полной и избыточной, точной и вероятност­ной информации;

  • умение понимать и использовать математические сред­ства наглядности (гра­фики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпрета­ции, аргумента­ции;

  • умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­ди­мость их проверки;

  • умение применять индуктивные и дедуктивные спосо­бы рассуждений, ви­деть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действо­вать в соот­ветствии с предложенным алго­ритмом;

  • умение самостоятельно ставить цели, выбирать и созда­вать алгоритмы для реше­ния учебных математических проб­лем;

  • умение планировать и осуществлять деятельность, на­правленную на реше­ние задач исследовательского характера;

Предметные результаты:

  • овладение базовым понятийным аппаратом по основ­ным разделам содержа­ния, представле­ние об основных изуча­емых понятиях (число, геометрическая фигура, уравне­ние, функция, вероятность) как важнейших математических моде­лях, позволяющих описы­вать и изучать реальные процессы и явления;

  • умение работать с математическим текстом (анализиро­вать, извлекать необ­ходи­мую информацию), грамотно приме­нять математическую терминоло­гию и симво­лику, использо­вать различные языки математики;

  • умение проводить классификации, логические обосно­вания, доказатель­ства математиче­ских утверждений;

  • умение распознавать виды математических утверждений (аксиомы, опреде­ления, тео­ремы и др.), прямые и обратные теоремы;

  • развитие представлений о числе и числовых системах от натуральных до действитель­ных чисел, овладение навыка­ми устных, письменных, инструмен­тальных вычисле­ний;

  • овладение символьным языком алгебры, приемами вы­полнения тождествен­ных преобра­зований рациональных вы­ражений, решения уравне­ний, систем уравнений, нера­венств и систем неравенств, умение использо­вать идею координат на плоскости для интерпре­тации уравнений, нера­венств, систем, умение применять алгебраические преобразова­ния, аппарат уравнений и неравенств для решения задач из различных разде­лов курса;

  • овладение системой функциональных понятий, функ­циональным язы­ком и символи­кой, умение на основе функ­ционально-графических представле­ний описывать и анализи­ровать реальные зависимости;

  • овладение основными способами представления и ана­лиза статистиче­ских данных; нали­чие представлений о стати­стических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моде­лях;

  • овладение геометрическим языком, умение использо­вать его для описа­ния предме­тов окружающего мира, разви­тие пространственных представле­ний и изобразительных уме­ний, приобретение навыков геометрических построе­ний;

  • усвоение систематических знаний о плоских фигурах и их свойствах, а также на нагляд­ном уровне — о простейших пространственных телах, умение приме­нять систематические знания о них для решения геометрических и практи­ческих задач;

  • умения измерять длины отрезков, величины углов, ис­пользовать фор­мулы для нахожде­ния периметров, площадей и объемов геометрических фи­гур;

умение применять изученные понятия, результаты, ме­тоды для решения задач практиче­ского характера и задач из смежных дисциплин с использова­нием при необходимо­сти справочных материалов, калькулятора, компью­тера.


  1. Содержание учебного предмета «Математика»

5 класс (170 ч.)

1. Натуральные числа и шкалы (18 ч). Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч.

Цель: систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.

Систематизация сведений о натуральных числах позволяет восстановить у обучающихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков. Рассматриваются простейшие комбинаторные задачи. В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить коор­динатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче.

2. Сложение и вычитание натуральных чисел (20 ч). Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.

Цель: закрепить и развить навыки сложения и вычитания натуральных чисел.

Начиная с этой темы основное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями. В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание).

3. Умножение и деление натуральных чисел (21 ч). Умножение и деление натуральных чисел, свойства умножения. Квадрат и куб числа. Решение текстовых задач.

Цель: закрепить и развить навыки арифметических действий с натуральными числами.

В этой теме проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводятся понятия квадрата и куба числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий. Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», а также задачи на известные обучающимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

4. Площади и объемы (15 ч). Вычисления по формулам. Прямоугольник. Площадь пря­моугольника. Единицы площадей.

Цель: расширить представления обучающихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.

При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.

5. Обыкновенные дроби (26 ч). Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.

Цель: познакомить обучающихся с понятием дроби в объеме, достаточном для введения десятичных дробей.

В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от обучающихся.

  1. Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч). Десятич-

ная дробь. Сравнение, округление, слежение и вычитание десятичных дробей. Решение текстовых задач.

Цель: выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.

При введении десятичных дробей важно добиться у обучающихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби. Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам. Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями. При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.

  1. Умножение и деление десятичных дробей (25 ч). Умножение и деление десятич-

ных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.

Цель: выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.

Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.

8. Инструменты для вычислений и измерений (16 ч). Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла. Единицы измерения углов. Измерение углов. Построение угла заданной величины.

Цель: сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.

У обучающихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого. Продолжается работа по распознаванию и изображению и геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы. Китовые диаграммы дают представления обучающимся о наглядном изображении распределения отдельных составных частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах. В классе, обеспеченном калькуляторами, можно научить школьников использовать калькулятор при выполнении отдельных арифметических действий.

9. Повторение. Решение задач (16 ч).

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 5 класса.





6 класс (170ч.)

1. Делимость чисел (20ч.) Делители и кратные числа. Общий делитель и общее крат­ное. Признаки делимости на 2, 3, 5, 10. Простые и составные числа. Разложение натурального числа на простые множители.

Цель-завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.

Задачи- познакомить с понятиями «делитель» и «кратное», которые находят применение при сокращении обыкновенных дробей и при их приведении к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения - прямым подбором.

Уделить внимание знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить про­стейшие умозаключения, обосновывая свои действия ссылками на определение, правило.

Учащиеся должны уметь разложить число на множители.

2.Сложение и вычитание дробей с разными знаменателями (22ч.) Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей, Сравнение, сложение и вычитание дробей с разными знаменателями. Сложение и вычитание смешанных чисел. Решение текстовых задач.

Цель-выработать прочные навыки преобразования дробей, сложения и вычитания дробей.

Задачи- способствовать усвоению понятия «основное свойство дроби», применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. Научить сокращать дроби, приводить к общему знаменателю. Сравнивать, складывать и вычитать дроби с разными знаменателями.

3.Умножение и деление обыкновенных дробей (31 ч.)

Умножение и деление обыкновенных дробей. Нахождение дроби от числа. Применение распределительного свойства умножения. Взаимно обратные числа. Деление. Нахождение числа по его дроби. Дробные выражения.

Цель- выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.

Задачи- отработать алгоритм действий с обыкновенными дробями. Расширить аппарат действий с дробями, решая текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби.

4.Отношения и пропорции (18ч.) Отношения. Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятия о прямой и обратной пропорциональности величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.

Цель-сформировать понятия пропорции, прямой и обратной пропорциональностей величин.

Задачи – необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.

Понятия о прямой и обратной пропорциональностях величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.

В данной теме даются представления о длине окружности и площади круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.

5.Положительные и отрицательные числа (13ч.) Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координата точки.

Цель- расширить представления учащихся о числе путем введения отрицательных чисел.

Задачи- показать введение отрицательных чисел на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой, с тем чтобы она могла служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел, рассматриваемых в следующей теме.

Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем для овладения и алгоритмами арифметических действий с положительными и отрицательными числами.

6.Сложение и вычитание положительных и отрицательных чисел (11ч). Сложение чисел с помощью координатной прямой. Сложение отрицательных чисел. Сложение чисел с разными знаками. Вычитание.

Цель - выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.

Задачи- ввести действия с отрицательными числами на основе представлений об изменении величин: сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек числовой оси. При изучении данной темы целенаправленно отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.

7. Умножение и деление положительных и отрицательных чисел (12ч). Умножение положительных и отрицательных чисел. Деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.

Цель-выработать прочные навыки арифметических действий с положительными и отрицательными числами.

Задачи- отработать навыки умножения и деления положительных и отрицательных чисел сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.

При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить числитель на знаменатель. В каждом конкретном случае они должны знать, в какую десятичную дробь обращается данная обыкновенная дробь — конечную или бесконечную. При этом необязательно акцентировать внимание на том, что бесконечная десятичная дробь оказывается периодической. Учащиеся должны знать представление в виде десятичной дроби таких дробей, какhello_html_5b2be360.gif,hello_html_m8fb7661.gif, hello_html_m1eb97c24.gif, hello_html_m4591f561.gif .

  1. Решение уравнений (15ч). Простейшие преобразования выражений: раскрытие

скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.

Цель-подготовить учащихся к выполнению преобразований выражений, решению уравнений.

Задачи- преобразования буквенных выражений путем раскрытия скобок, и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения несложных уравнений:

Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приёмами решения линейных уравнений с одним неизвестным.

9.Координаты на плоскости (13ч). Построение перпендикуляра к прямой. Построение параллельных прямых с помощью угольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.

Множества и комбинаторика. Элемент множества, подмножество. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. (Материал подлежит изучению, но не включается в Требования к математической подготовке учащихся).

Цель-познакомить учащихся с прямоугольной системой координат на плоскости.

Задачи- учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и угольника, не требуя точных определений.

Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.

Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел. Представление данных в виде таблиц, диаграмм, графиков. Средние результаты измерений.

10. Повторение. Решение задач (15ч). Повторение. Признаки делимости. Основное свойство дроби. Действия с обыкновенными дробями. Решение основных задач на дроби и на проценты. Нахождение неизвестного члена пропорции. Решение уравнений.

Цель-повторение, обобщение и систематизация знаний, умений и навыков за курс математики 6 класса.

7 класс (170ч.)

1.Выражения, тождества, уравнения (17ч). Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.

Цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решения уравнений с одной переменной, усилить роль теоретических сведений при рассмотрении уравнений.

2.Начальные геометрические сведения (10ч). Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Цель – систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

Задачи – научить различать простейшие геометрические фигуры: прямая, луч, отрезок, научить измерять величины геометрических объектов.

3. Функции (12ч). Функция, область определения функции, способы задания функции, график функции. Функцияy= kx+b и ее график. Функция y=kx и ее график.

Цель – познакомить учащихся с основными функциональными понятиями и с графиками функций y= kx+b, y=kx.

4. Треугольники (17ч). Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, высоты и биссектрисы треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Цель – ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач – на построение с помощью циркуля и линейки.

  1. Степень с натуральным показателем (14ч). Степень с натуральным показате-

лем и ее свойства. Одночлен. Функции у=х2 и у=х3 и их графики.

Цель – выработать умение выполнять действия над степенями с натуральными показателями.

  1. Параллельные прямые (13ч). Признаки параллельности прямых. Аксиома па-

раллельных прямых. Свойства параллельных прямых.

Цель – ввести одно из важнейших понятий – понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

  1. Многочлены (19ч). Многочлен. Сложение, вычитание и умножение многочле-

нов. Разложение многочлена на множители.

Цель – выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

8. Соотношения между сторонами и углами треугольника(20ч). Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Цель- рассмотреть новые интересные и важные свойства треугольников, доказать одну из важнейших теорем геометрии- теорему о сумме углов треугольника.

9.Формулы сокращенного умножения (18ч). Формулы квадрата суммы и разности двух чисел. Формула разности квадратов. Формула суммы и разности кубов. Применение формул сокращенного умножения в преобразованиях и к разложению на множители.

Цель - выработать умение применять в несложных случаях формулы сокращенного умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.

10. Итоговое повторение геометрии (7ч). Повторение. Треугольники. Признаки равенства треугольников. Параллельные прямые. Соотношения между сторонами и углами треугольника.

11. Системы линейных уравнений (12ч). Системы линейных уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Способ сложения. Способ подстановки. Решение задач методом составления систем уравнений.

Цель – познакомить учащихся со способами решения систем линейных уравнений с двумя переменными и применять их при решении текстовых задач.

12. Итоговое повторение алгебры. Решение задач (11ч). Повторение. Выражения, тождества, уравнения. Функции. Область определения функции. Степень с натуральным показателем. Многочлены. Формулы сокращенного умножения.


8 класс (170 ч.)

1. Рациональные дроби (23ч). Рациональная дробь. Основное свойство дроби. Сокращение дробей. Сложение, вычитание, умножение и деление дробей. Преобразование рациональных выражений. Функция y=hello_html_m6d03cadd.gifи ее график.

Цель- выработать умение выполнять тождественные преобразования рациональных выражений.

2.Четырехугольники (16ч). Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель – изучить наиболее важные виды четырехугольников – параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой и центральной симметрией.

3. Квадратные корни (16ч). Понятие об иррациональном числе, Общие сведения о действительных числах. Квадратный корень, приближенное значение квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = hello_html_m7d146455.gif и ее график.

Цель: - систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие числа; выработать умение выполнять простейшие преобразования выражений, содержащих квадратные корни.

4. Площади (14ч). Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Цель – расширить и углубить полученные в 5-6 классах представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии – теорему Пифагора.

5. Квадратные уравнения (22ч). Квадратное уравнение. Формулы корней квадратного уравнения, Теорема Виета. Решение рациональных уравнений. Решение задач, приводящих к квадратным и рациональным уравнениям.

Цель – выработать умения решать квадратные уравнения, простейшие рациональные уравнения и применять их к решению задач.

6. Подобные треугольники (18ч). Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Цель – ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; начать освоение учащимися тригонометрического аппарата геометрии.

7. Неравенства (14ч). Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Применение свойств к оценке значения выражения, Линейное неравенство с одной переменной. Система линейных неравенств с одной переменной.

Цель – выработать умения решать линейные неравенства с одной переменной и их системы.

8. Окружность (17ч). Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Цель – расширить сведения об окружности; изучит новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.

9.Степень с целым показателем (9ч). Степень с целым показателем и ее свойства. Стандартный вид числа. Запись приближенных значений, Действия над приближенными значениями.

Цель – сформировать умение выполнять действия над степенями с целыми показателями, ввести понятие стандартного вида числа.

10. Элементы статистики и теории вероятностей (4ч). Сбор и группировка статистических данных. Наглядное представление статистической информации.

11. Итоговое повторение геометрии. Решение задач (8ч). Повторение. Четырехугольники. Площади. Подобные треугольники. Окружность.

12. Итоговое повторение алгебры. Решение задач (13ч). Повторение. Рациональные дроби. Квадратные корни. Квадратные уравнения. Решение задач на составление квадратных уравнений. Степень с целым показателем.

9 класс (170 ч.)

1. Квадратичная функция (22ч). Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2+bx+c. Ее свойства и график. Степенная функция. Простейшие преобразования графиков функций.

Цель – выработать умение строить график квадратичной функции; расширить сведения о свойствах функции.

2. Векторы (10ч). Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам.

Цель - научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике.

3. Уравнения и неравенства с одной переменной (14ч). Целые уравнения и его корни. Решение уравнений третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введением вспомогательной переменной. Решение задач методом составления систем. Неравенство второй степени с одной переменной. Метод интервалов.

Цель – систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной; сформировать умение решать неравенства вида ах2+bx+c>0, ax2+bx+c<0, где аhello_html_m767798af.gif0.

4. Метод координат (10ч). Координаты вектора. Простейшие задачи в координатах. Уравнение окружности и прямой. Применение векторов и координат при решении задач.

Цель – познакомить с использованием векторов и метода координат при решении задач и доказательстве некоторых теорем.

5. Уравнения и неравенства с двумя переменными (17ч). Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Цель –выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления систем.

6. Соотношения между сторонами и углами треугольника. Скалярное произве-

дение векторов (11ч). Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Цель – развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

7. Арифметическая и геометрическая прогрессии (12ч). Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель – дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

8. Длина окружности и площадь круга (12ч). Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Цель – расширить знания о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

9. Элементы комбинаторики и теории вероятностей (13ч). Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Цель – ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

10. Движения (8ч). Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Цель – познакомить учащихся с понятием движения и его свойствами, с основными видами движений.

11. Начальные сведения из стереометрии (8ч). Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.

Цель –дать начальные представления о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.

12. Об аксиомах геометрии (8ч). Аксиомы геометрии. Беседа о применении аксиом.

Цель –дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

13 . Повторение курса геометрии (6ч). Повторение. Векторы. Метод координат. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. Длина окружности и площадь круга.

14. Повторение курса алгебры. Подготовка к итоговой аттестации (25 час.) Квадратичная функция. Уравнения и неравенства с одной переменной. Уравнения и неравенства с двумя переменными. Решение систем уравнений. Решение задач на составление уравнений, систем уравнений. Решение тестовых заданий ГИА 2008-2011гг.






  1. Тематическое планирование

с определением основных видов учебной деятельности и метапредметных умений и навыков

МАТЕМАТИКА

5—6 классы (350 ч)


Основное содержание по те­мам

Характеристика основных видов дея­тельно­сти уче­ника (на уровне учеб­ных дейст­вий)

Метапредметные уме­ния и навыки

1

2

3

  1. Натуральные числа (50ч)


Натуральный ряд. Десятичная сис­тема счисле­ния. Арифметические действия с нату­ральными числами. Свойства арифме­тиче­ских дейст­вий.

Понятие о степени с натуральным показате­лем.

Квадрат и куб числа.

Числовые выражения, значение чи­сло­вого выра­жения. Порядок дейст­вий в чи­словых выражениях, использование ско­бок.

Решение текстовых задач арифмети­че­скими спо­собами.

Делители и кратные. Наибольший общий дели­тель; наименьшее об­щее кратное. Свой­ства делимо­сти. Признаки делимо­сти на 2, 3, 5, 9, 10. Простые и составные числа. Раз­ложе­ние натурального числа на простые мно­жители. Деление с остат­ком

Описывать свойства натураль­ного ряда.

Читать и записывать натураль­ные числа, срав­нивать и упорядо­чивать их.

Выполнять вычисления с нату­ральными чис­лами; вы­числять значения степеней.

Формулировать свойства арифме­тических дейст­вий, записы­вать их с помощью букв, преоб­разовывать на их основе чи­словые выраже­ния.

Анализировать и осмысливать текст за­дачи, пере­фор­мулиро­вать условие, извле­кать необхо­димую ин­формацию, моделиро­вать усло­вие с помощью схем, ри­сунков, ре­альных предметов; строить логическую це­почку рас­суждений; критически оцени­вать получен­ный ответ, осуществ­лять самокон­троль, про­веряя от­вет на соответ­ствие усло­вию.

Формулировать определения делителя и крат­ного, про­стого числа и составного числа, свой­ства и при­знаки делимости.

Доказывать и опровергать с по­мощью контр­приме­ров утвержде­ния о делимости чи­сел. Клас­сифи­цировать нату­ральные числа (четные и нечетные, по ос­таткам от де­ления на 3 и т. п.).

Исследовать простейшие число­вые закономер­ности, про­водить числовые экспери­менты (в том числе с исполь­зова­нием калькулятора, компью­тера)

Уметь видеть математиче­скую задачу в кон­тексте про­блемной ситуации в ок­ружаю­щей жизни.

Понимать сущности алго­ритмических пред­писаний и умение действовать в соот­вет­ствии с предложен­ным алгоритмом.


  1. Дроби (120ч)


Обыкновенные дроби. Основное свой­ство дроби. Сравнение обыкно­венных дробей. Арифметиче­ские действия с обыкно­венными дробями. Нахожде­ние части от целого и це­лого по его части.

Десятичные дроби. Сравнение деся­тич­ных дро­бей. Арифметиче­ские действия с десятич­ными дро­бями. Представление десятичной дроби в виде обыкновенной дроби и обыкно­венной в виде деся­тич­ной.

Отношение. Пропорция; основное свой­ство про­порции.

Проценты; нахождение процентов от вели­чины и величины по ее про­центам; выраже­ние отношения в процентах.

Решение текстовых задач арифмети­че­скими спо­собами

Моделировать в графической, предметной форме по­нятия и свой­ства, связан­ные с поня­тием обыкновенной дроби.

Формулировать, записывать с помощью букв основ­ное свой­ство обыкновен­ной дроби, пра­вила действий с обыкновенными дробями.

Преобразовывать обыкновен­ные дроби, срав­нивать и упорядо­чивать их. Выполнять вычисле­ния с обыкновен­ными дробями.

Читать и записывать десятич­ные дроби. Представ­лять обыкно­венные дроби в виде деся­тичных и десятич­ные в виде обык­новен­ных; находить десятич­ные прибли­жения обык­но­венных дробей.

Сравнивать и упорядочивать десятичные дроби. Вы­полнять вычисления с десятич­ными дро­бями.

Использовать эквивалентные представления дробных чисел при их сравне­нии, при вычисле­ниях.

Выполнять прикидку и оценку в ходе вычис­лений.

Объяснять, что такое процент. Представ­лять процен­ты в виде дробей и дроби в виде процентов.

Осуществлять поиск информа­ции (в СМИ), содержа­щей дан­ные, выражен­ные в процен­тах, интерпретиро­вать их. Приводить при­меры использо­вания отноше­ний на практике.

Решать задачи на проценты и дроби (в том числе за­дачи из ре­альной прак­тики), исполь­зуя при необходимо­сти калькулятор; ис­пользо­вать понятия отно­шения и пропор­ции при решении задач.

Анализировать и осмысливать текст за­дачи, пере­форму­лиро­вать усло­вие, извле­кать необхо­димую ин­формацию, моделиро­вать условие с помо­щью схем, ри­сунков, ре­альных предметов; строить логическую це­почку рас­суждений; критически оцени­вать получен­ный ответ, осуществ­лять само­кон­троль, про­веряя ответ на соответ­ствие усло­вию.

Проводить несложные исследова­ния, связан­ные со свойст­вами дробных чисел, опира­ясь на числовые экспе­ри­менты том числе с использова­нием калькуля­тора, компью­тера)

Понимать сущности алгоритми­ческих предпи­саний и умение действовать в соответ­ствии с предложенным алгоритмом.
Умение самостоятельно ста­вить цели, выби­рать и созда­вать алгоритмы для решения учеб­ных математических проб­лем;


  1. Рациональные числа (40 ч)


Положительные и отрицатель­ные числа, мо­дуль числа. Изображе­ние чисел точками коорди­натной прямой; геометриче­ская интер­претация модуля числа.

Множество целых чисел. Множе­ство ра­цио­наль­ных чисел. Сравнение рацио­нальных чисел. Арифме­тические дейст­вия с рацио­наль­ными числами. Свой­ства ариф­метиче­ских действий

Приводить примеры использова­ния в окру­жающем мире положи­тельных и отрицатель­ных чисел (темпера­тура, выигрыш — проиг­рыш, выше — ниже уровня моря и т. п.).

Изображать точками координат­ной прямой положи­тель­ные и от­рицатель­ные рациональ­ные числа.

Характеризовать множество це­лых чисел, множество рациональ­ных чи­сел.

Формулировать и записывать с помощью букв свой­ства действий с рацио­нальными чис­лами, приме­нять для преобразования чи­словых выраже­ний.

Сравнивать и упорядочивать рациональ­ные числа, вы­полнять вычисле­ния с рацио­нальными чис­лами

Понимать сущности алго­ритмических предписаний и умение действовать в со­от­ветствии с предложен­ным алгоритмом.

Умение понимать и исполь­зовать математи­че­ские сред­ства наглядности (гра­фики, диаграммы, таб­лицы, схемы и др.) для ил­люстрации, интерпрета­ции, аргу­ментации;



4. Измерения, приближения, оценки. Зависимости между величи­нами (20ч)

Примеры зависимостей между вели­чи­нами ско­рость, время, рас­стояние; производи­тель­ность, время, работа; цена, коли­чество, стоимость и др. Пред­став­ление зависимостей в виде фор­мул. Вычисления по форму­лам.

Решение текстовых задач арифмети­че­скими спосо­бами

Выражать одни единицы измере­ния вели­чины в дру­гих единицах (метры в километ­рах, минуты в часах и т. п.).

Округлять натуральные числа и десятичные дроби. Выпол­нять при­кидку и оценку в ходе вычисле­ний.

Моделировать несложные зависи­мости с помощью фор­мул; выполнять вычисления по форму­лам.

Использовать знания о зависимо­стях между величи­нами (ско­рость, время, расстояние; работа, производи­тельность, время и т. п.) при решении текстовых задач

Уметь видеть математиче­скую задачу в контек­сте про­блемной ситуации в других дис­циплинах, в окружающей жизни

5. Элементы алгебры (25ч)

Использование букв для обозначе­ния чи­сел, для записи свойств ариф­метических дейст­вий.

Буквенные выражения (выражения с пере­мен­ны­ми). Числовое значе­ние буквен­ного выражения.

Уравнение, корень уравнения. Нахо­жде­ние неиз­вестных компонен­тов арифметиче­ских дейст­вий.

Декартовы координаты на плоско­сти. По­строе­ние точки по ее коорди­натам, опреде­ление коорди­нат точ­ки на плоско­сти

Читать и записывать буквенные выраже­ния, состав­лять буквенные выражения по усло­виям задач.

Вычислять числовое значение буквенного выраже­ния при задан­ных значениях букв.

Составлять уравнения по усло­виям задач. Решать про­стейшие уравнения на основе зави­симо­стей между компо­нентами арифме­тических действий.

Строить на координатной плоско­сти точки и фигуры по за­данным координатам; опреде­лять координаты точек

Уметь видеть математиче­скую задачу в кон­тексте проблемной ситуации в ок­ружаю­щей жизни.

Понимать сущности алгорит­мических предпи­саний и уме­ние действовать в соответст­вии с предложенным алгорит­мом.

Первоначальные представле­ния об идеях и о методах математики как уни­версальном языке науки и тех­ники, сред­стве моделирова­ния явлений и про­цессов;




6. Описательная статистика. Вероятность. Комбинаторика. Множества (20ч)

Представление данных в виде таб­лиц, диа­грамм.

Понятие о случайном опыте и собы­тии. Досто­вер­ное и невозмож­ное события. Срав­нение шансов.

Решение комбинаторных задач пере­бо­ром вари­антов

Извлекать информацию из таб­лиц и диа­грамм, вы­пол­нять вычис­ления по таблич­ным дан­ным, сравнивать величины, нахо­дить наибольшие и наимень­шие значе­ния и др.

Выполнять сбор информации в несложных случаях, пред­став­лять информацию в виде таблиц и диаграмм, в том числе с помо­щью компьютерных программ.

Приводить примеры случайных событий, достоверных и невозмож­ных событий. Сравни­вать шансы наступления собы­тий; строить речевые конструк­ции с использова­нием словосочета­ний более вероятно, мало­вероятно и др.

Выполнять перебор всех возмож­ных вариан­тов для пере­счета объек­тов или комбина­ций, выде­лять комби­нации, отвечаю­щие заданным условиям

Приводить примеры конечных и бесконеч­ных мно­жеств. Находить объединение и пересе­чение конкретных множеств. Приво­дить примеры несложных классифика­ций из различных областей жизни.

Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера

Уметь видеть математиче­скую задачу в кон­тексте проблемной си­туации в окружаю­щей жизни.

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки

7. Наглядная геометрия (45ч)

Наглядные представления о фигу­рах на плоско­сти: прямая, отрезок, луч, угол, лома­ная, многоугольник, правильный многоуголь­ник, окруж­ность, круг. Четы­рех­уголь­ник, прямоугольник, квадрат. Тре­уголь­ник, виды треугольников.

Изображение геометрических фи­гур. Вза­им­ное расположение двух прямых, двух окружно­стей, пря­мой и окружности.

Длина отрезка, ломаной. Периметр много­уголь­ни­ка. Единицы измере­ния длины. Измере­ние длины от­резка, построе­ние от­резка заданной длины.

Угол. Виды углов. Градусная мера угла. Измере­ние и построение уг­лов с помо­щью транспортира.

Понятие площади фигуры; еди­ницы изме­ре­ния площади. Пло­щадь прямоуголь­ника и площадь квад­рата. Рав­новеликие фигуры.

Наглядные представления о про­странствен­ных фи­гурах: куб, парал­лелепи­пед, призма, пирамида, шар, сфера, конус, цилиндр. Изобра­жение про­странствен­ных фигур. При­меры сечений. Много­гранники, пра­вильные многогран­ники. Примеры разверток много­гранни­ков, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямо­угольного параллелепи­педа и объем куба.

Понятие о равенстве фигур. Цен­тральная, осе­вая и зеркальная сим­метрии. Изображе­ние симметрич­ных фигур







Распознавать на чертежах, рисун­ках и моде­лях гео­метриче­ские фигуры, конфигурации фи­гур (плоские и пространствен­ные). Приво­дить примеры анало­гов гео­метриче­ских фигур в окру­жающем мире.

Изображать геометрические фи­гуры и их конфигура­ции от руки и с использованием чертежных инст­рументов. Изображать геомет­рические фигуры на клетча­той бу­маге.

Измерять с помощью инструмен­тов и сравни­вать дли­ны отрезков и величины уг­лов. Строить от­резки заданной длины с помо­щью линейки и циркуля и углы задан­ной ве­личины с помощью транспор­тира. Вы­ражать одни еди­ни­цы измерения длин через другие.

Вычислять площади квадратов и прямоуголь­ников, исполь­зуя фор­мулы пло­щади квадрата и пло­щади прямо­угольника.

Выражать одни единицы измере­ния пло­щади через дру­гие.

Изготавливать пространствен­ные фигуры из развер­ток; распо­знавать развертки куба, параллеле­пипеда, пи­ра­миды, ци­линдра и ко­нуса. Рассматри­вать простейшие сечения про­странствен­ных фигур, получае­мые путем пред­метного или ком­пьютерного моделирова­ния, опре­делять их вид.

Вычислять объемы куба и прямо­угольного паралле­лепи­педа, используя формулы объ­ема куба и объема прямо­уголь­ного параллеле­пи­педа. Выра­жать одни еди­ницы измерения объема через другие.

Исследовать и описывать свой­ства геометри­ческих фи­гур (пло­ских и пространст­венных), исполь­зуя экспери­мент, наблюде­ние, измерение. Модели­ровать гео­метри­ческие объекты, исполь­зуя бумагу, пла­стилин, проволо­ку и др. Исполь­зовать компь­ютер­ное мо­делирование и экспе­римент для изучения свойств геометриче­ских объ­ектов.

Находить в окружающем мире плоские и про­стран­ствен­ные сим­метричные фигуры.

Решать задачи на нахождение длин отрез­ков, пери­мет­ров мно­гоугольников, градусной меры уг­лов, площа­дей квадратов и прямо­уголь­ников, объемов ку­бов и пря­моуголь­ных параллеле­пипедов, куба. Выде­лять в усло­вии задачи данные, необходимые для ее реше­ния, стро­ить логическую це­почку рас­суждений, сопостав­лять полу­ченный резуль­тат с усло­вием задачи.

Изображать равные фигуры, сим­метричные фигуры

Строить логическую це­почку рас­суждений, сопостав­лять полу­ченный результат с усло­вием задачи.

Умение применять индуктив­ные и дедуктив­ные спосо­бы рассуждений, ви­деть различ­ные стратегии решения задач

Умение планировать и осуще­ствлять деятель­ность, на­прав­ленную на реше­ние за­дач ис­следовательского характера;





































Резерв времени - 30 ч











Тематическое планирование

Математика 7-9 классы (525ч)

Раздел «Алгебра»

Основное содержание по темам

Характеристика основных видов дея­тельности уче­ника (на уровне учебных дей­ствий)

Метапредметные уме­ния и навыки

1

2

3

  1. Действительные числа (15ч)

Расширение множества натуральных чисел до множества целых, множества целых чисел до множе­ства рациональ­ных. Рациональное число как отношение т/п, где т — целое число, а п — нату­ральное чи­сло.

Степень с целым показателем. Квадрат­ный корень из числа. Корень третьей сте­пени.

Понятие об иррациональном числе. Ирра­цио­нальность числаhello_html_m733785d4.gif и несоизме­римость сто­роны и диагонали квадрата. Десятичные при­ближения ирра­циональных чисел.

Множество действительных чисел; пред­ставле­ние действительных чисел в виде беско­нечных десятич­ных дробей. Сравнение действи­тельных чисел.

Взаимно однозначное соответствие ме­жду дей­ствительными числами и точ­ками координат­ной прямой. Числовые проме­жутки: интервал, отрезок, луч

Описывать множество целых чисел, множе­ство ра­циональ­ных чисел, соотношение ме­жду этими множе­ст­вами.

Сравнивать и упорядочивать рациональ­ные числа, выпол­нять вычисления с рациональ­ными числами, вы­чис­лять значе­ния степеней с целым показателем.

Формулировать определение квадратного корня из числа. Ис­пользовать график функ­ции у = х2 для нахож­дения квад­ратных кор­ней. Вычислять точные и прибли­женные значения корней, используя при необходимо­сти калькуля­тор; проводить оценку квадрат­ных корней.

Формулировать определение корня третьей степени; нахо­дить значения кубических кор­ней, при необходимо­сти используя, калькуля­тор.

Приводить примеры иррацио­нальных чисел; распо­зна­вать рациональные и иррациональ­ные числа; изобра­жать числа точками коорди­натной прямой.

Находить десятичные приближе­ния рацио­нальных и иррацио­нальных чисел; сравни­вать и упорядочивать действи­тельные числа.

Описывать множество действи­тельных чи­сел.

Использовать в письменной ма­тематиче­ской речи обозначе­ния и графические изобра­жения чи­словых мно­жеств, теоретико-мно­жественную символику

Умение понимать и исполь­зовать математиче­ские сред­ства наглядности (гра­фики, диаграммы, таб­лицы, схемы и др.) для ил­люстрации, интерпрета­ции, аргументации.

Умение находить в различ­ных источниках информа­цию, необходимую для ре­шения мате­матических про­блем, представ­лять ее в понятной форме, прини­мать решение в усло­виях не­полной и избыточной, точной и вероят­ност­ной информации.


  1. Измерения, приближения, оценки (10 ч)

Приближенное значение величины, точ­ность приближения. Размеры объек­тов окружаю­щего мира (от элементар­ных частиц до Вселенной), длительность процессов в окру­жающем мире. Выделе­ние множите­ля — сте­пени 10 в записи числа.

Прикидка и оценка результатов вычисле­ний

Находить, анализировать, со­поставлять числовые характе­ри­стики объектов окру­жаю­щего мира.

Использовать запись чисел в стандартном виде для выраже­ния размеров объектов, длитель­ности процессов в окру­жающем мире.

Сравнивать числа и величины, записанные с исполь­зова­нием степени 10.

Использовать разные формы записи прибли­женных значе­ний; делать выводы о точности приближения по за­писи прибли­женного значе­ния.

Выполнять вычисления с реаль­ными дан­ными.

Выполнять прикидку и оценку результатов вычислений


Умение видеть математиче­скую задачу в кон­тексте проб­лемной ситуа­ции в других дис­цип­линах, в окружающей жизни.

Выполнять вычисления с реальными дан­ными.


  1. Введение в алгебру (8ч)

Буквенные выражения (выражения с пе­ремен­ны­ми). Числовое значение буквен­ного выражения. До­пустимые зна­чения перемен­ных. Подстановка выра­же­ний вместо перемен­ных.

Преобразование буквенных выраже­ний на ос­нове свойств арифметических действий. Равен­ство буквен­ных выраже­ний. Тождество

Выполнять элементарные зна­ково-символиче­ские дейст­вия: применять буквы для обозначе­ния чисел, для записи общих ут­верждений; состав­лять буквенные выра­же­ния по условиям, заданным словесно, рисун­ком или чертежом; преоб­разовывать алгебраи­че­ские суммы и произведения (вы­полнять приведение подоб­ных слагае­мых, раскрытие ско­бок, упрощение произведе­ний).

Вычислять числовое значение буквенного выраже­ния; нахо­дить область допустимых значе­ний перемен­ных в выраже­нии

Понимание сущности алгоритмических пред­писаний и умение действо­вать в соответст­вии с предложенным алго­ритмом.

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы и др.) для иллюстрации, интерпрета­ции, аргументации.


  1. Многочлены (45ч)

Степень с натуральным показателем и ее свой­ства. Одночлены и много­члены. Степень многочлена. Сло­жение, вычитание, умноже­ние многочленов. Фор­мулы сокращенного умноже­ния: квад­рат суммы и квадрат разно­сти. Формула разности квадратов. Преобра­зова­ние целого выражения в мно­го­член. Разло­жение мно­гочлена на множители: вынесе­ние общего множи­теля за скобки, группи­ровка, примене­ние формул сокра­щен­ного умножения.

Многочлены с одной переменной. Ко­рень мно­гочлена. Квадратный трех­член, разложе­ние квадратно­го трех­члена на множители



Формулировать, записывать в символиче­ской фор­ме и обос­новывать свойства сте­пени с натуральным по­казате­лем; при­ме­нять свойства степени для преобразо­вания выраже­ний и вычислений.

Выполнять действия с много­членами.

Выводить формулы сокращен­ного умноже­ния, при­менять их в преобразованиях выраже­ний и вычислениях.

Выполнять разложение много­членов на мно­жители.

Распознавать квадратный трех­член, выяс­нять возмож­ность разложения на множи­тели, представлять квадрат­ный трехчлен в виде произведе­ния линейных множителей.

Применять различные формы самоконтроля при вы­полне­нии преобразований

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение самостоятельно ставить цели, выби­рать и созда­вать алгоритмы для решения учеб­ных математических проб­лем.

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.


  1. Алгебраические дроби (22ч)

Алгебраическая дробь. Основное свой­ство ал­геб­раической дроби. Сокраще­ние дробей. Сложение, вы­чита­ние, умножение, деление алгеб­раиче­ских дробей.

Степень с целым показателем и ее свой­ства.

Рациональные выражения и их преобра­зова­ния. Доказательство тож­деств

Формулировать основное свой­ство алгебраи­ческой дроби и применять его для преобразо­вания дробей.

Выполнять действия с алгебраи­ческими дро­бями.

Пред­став­лять целое выраже­ние в виде много­члена, дробное — в виде отношения многочле­нов; доказывать тождества.

Формулировать определение степени с це­лым пока­зателем.

Формулировать, записывать в символиче­ской форме и иллю­стрировать примерами свойства степени с целым показа­телем; приме­нять свой­ства степени для преобразова­ния выражений и вычислений


Умение применять индуктивные и дедуктив­ные спосо­бы рассуждений, ви­деть различные стратегии решения задач.

Понимать сущности алгоритмических предпи­саний и умение действо­вать в соответст­вии с предложенным алго­ритмом;


  1. Квадратные корни (12ч)

Понятия квадратного корня, арифме­тиче­ского квадратного корня. Уравнение вида х2=а. Свойства арифме­тических квадрат­ных корней: ко­рень из произ­ведения, частного, сте­пени; тождества,hello_html_m26d796fa.gif = а, где аhello_html_m78ac82eb.gif

hello_html_3c1670aa.gif = hello_html_m14552bfc.gif Применение свойств арифме­ти­че­ских квадратных корней для преобразова­ния числовых вы­ражений и вычисле­ний

Доказывать свойства арифмети­ческих квад­ратных корней; применять их для пре­образо­вания выражений.

Вычислять значения выраже­ний, содержа­щих квад­ратные корни; выражать перемен­ные из геометрических и физиче­ских фор­мул.

Исследовать уравнение вида х2 = а; нахо­дить точ­ные и при­ближенные корни при

а > 0


Умение планировать и осуществлять деятель­ность, на­правленную на реше­ние за­дач исследовательского характер.



  1. Уравнения с одной переменной (38ч)

Уравнение с одной переменной. Корень уравне­ния. Свойства числовых ра­венств. Равно­сильность урав­нений.

Линейное уравнение. Решение уравне­ний, сводя­щихся к линейным.

Квадратное уравнение. Неполные квад­рат­ные урав­нения. Формула корней квад­ратного уравне­ния. Теоре­ма Виета. Решение уравне­ний, сводящихся к квадрат­ным. Биквадрат­ное уравнение.

Примеры решения уравнений третьей и четвер­той степени разложением на мно­жи­тели.

Решение дробно-рациональных уравне­ний.

Решение текстовых задач алгебраиче­ским спосо­бом

Распознавать линейные и квад­ратные уравне­ния, це­лые и дробные уравнения.

Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; ре­шать дробно-рацио­нальные уравне­ния.

Исследовать квадратные уравне­ния по дискри­ми­нанту и коэффициентам.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления уравнения; ре­шать составленное уравнение; интер­претировать ре­зультат

Умение применять индуктивные и дедуктив­ные спосо­бы рассуждений, ви­деть различные стратегии решения задач.

Первоначальные представления об идеях и о методах математики как уни­версальном языке науки и техники, сред­стве моделирова­ния явлений и процессов.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

  1. Системы уравнений (30ч)

Уравнение с двумя переменными. Линей­ное урав­нение с двумя перемен­ными. Примеры реше­ния урав­нений в целых числах.

Система уравнений с двумя перемен­ными. Равно­сильность систем уравне­ний. Система двух линейных уравнений с двумя перемен­ными; решение подстанов­кой и сложением. Решение сис­тем двух уравнений, одно из кото­рых линейное, а другое второй степени. При­меры решения систем нелинейных уравне­ний.

Решение текстовых задач алгебраиче­ским спо­собом.

Декартовы координаты на плоскости. Графиче­ская интерпретация уравнения с двумя перемен­ными.

График линейного уравнения с двумя перемен­ны­ми, угловой коэффициент пря­мой; условие парал­лельности пря­мых.

Графики простейших нелинейных уравне­ний (па­рабола, гипербола, окруж­ность).

Графическая интерпретация системы уравне­ний с двумя переменными

Определять, является ли пара чисел реше­нием дан­ного уравне­ния с двумя перемен­ными; приводить при­меры ре­шения уравне­ний с двумя пере­менными.

Решать задачи, алгебраической моделью кото­рых яв­ляется урав­нение с двумя перемен­ными; находить целые решения пу­тем перебора.

Решать системы двух уравне­ний с двумя пере­менны­ми, ука­занные в содержании.

Решать текстовые задачи алгеб­раическим способом: пере­ходить от словесной форму­лировки условия задачи к алгебраической мо­дели путем составления системы уравне­ний; решать составленную сис­тему уравне­ний; ин­терпретиро­вать результат.

Строить графики уравнений с двумя перемен­ными.

Конструи­ровать эквивалент­ные речевые вы­сказывания с использованием алгебраиче­ского и геометрического язы­ков.

Решать и исследовать уравне­ния и системы уравне­ний на ос­нове функционально-графиче­ских представле­ний уравнений

Использовать функционально-графические представления для решения и исследования уравнений и систем.

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.

Использовать математические средства на­глядности графики для интерпретации, аргу­ментации.

  1. Неравенства (20ч)

Числовые неравенства и их свойства.

Неравенство с одной переменной. Равно­силь­ность неравенств. Линейные неравенства с од­ной перемен­ной. Квадрат­ные неравенства.

Системы линейных неравенств с одной перемен­ной

Формулировать свойства число­вых нера­венств, ил­люстри­ровать их на координат­ной прямой, доказы­вать алгебраически; приме­нять свойства неравенств при ре­ше­нии задач.

Распознавать линейные и квад­ратные неравен­ства.

Ре­шать линейные неравенства, системы линей­ных нера­венств.

Решать квадратные неравен­ства на основе гра­фиче­ских пред­ставлений

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.

Использовать математические средства на­глядности графики для интерпретации, аргу­ментации.



  1. Зависимости между величинами (15 ч)

Зависимость между величинами.

Представление зависимостей между вели­чи­нами в виде формул. Вычисления по форму­лам.

Прямая пропорциональная зависимость: зада­ние формулой, коэффициент пропор­цио­нально­сти; свой­ства. При­меры прямо пропор­циональных зависимо­стей.

Обратная пропорциональная зависи­мость: зада­ние формулой, коэффициент обратной про­порциональности; свой­ства. Примеры обрат­ных пропорцио­наль­ных зависимостей.

Решение задач на прямую пропорциональ­ность и обратную пропор­циональную зависимо­сти

Составлять формулы, выра­жающие зависимо­сти между ве­личинами, вычислять по форму­лам.

Распознавать прямую и обрат­ную пропорцио­наль­ные зависи­мости.

Решать тексто­вые за­дачи на прямую и обрат­ную про­порциональные зависимо­сти том числе с контек­стом из смежных дисцип­лин, из реаль­ной жизни)

Умение видеть математическую задачу в кон­тексте проб­лемной ситуа­ции в других дис­циплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктив­ные спосо­бы рассуждений, ви­деть различные стратегии решения задач;



  1. Числовые функции (35ч)

Понятие функции. Область определения и множе­ство значений функции. Спо­собы зада­ния функции. График функ­ции. Свойства функ­ции, их отображение на графике: возраста­ние и убывание функ­ции, нули функ­ции, сохранение знака. Чтение и построе­ние гра­фиков функций.

Примеры графиков зависимостей, отра­жаю­щих реальные процессы.

Функции, описывающие прямую и обрат­ную про­порциональные зависимо­сти, их графики.

Линейная функция, ее график и свой­ства.

Квадратичная функция, ее график и свой­ства.

Степенные функции с натуральными пока­зате­лями 2 и 3, их графики и свой­ства. Гра­фики функций

hello_html_347aa596.gif; hello_html_3b3a03bc.gif; hello_html_10281403.gif

Вычислять значения функций, заданных фор­мулами (при необ­ходимости использо­вать калькулятор); со­ставлять таб­лицы значе­ний функций.

Строить по точкам графики функций. Описы­вать свойства функции на основе ее графиче­ского представ­ления.

Моделировать реальные зависи­мости форму­лами и графи­ками. Читать графики реаль­ных зависимостей.

Использовать функциональ­ную символику для запи­си раз­нообразных фактов, связан­ных с рассматриваемы­ми функ­циями, обогащая опыт выполне­ния знаково-символиче­ских действий. Стро­ить речевые конструкции с использо­ванием функциональ­ной терми­ноло­гии.

Использовать компьютерные программы для по­строения гра­фиков функций, для исследо­ва­ния положе­ния на координат­ной плоскости графиков функ­ций в за­висимо­сти от значений коэффициентов, входящих в фор­мулу.

Распознавать виды изучаемых функций. Пока­зывать схемати­чески положение на ко­ординатной плоскости графи­ков изучаемых функций в зави­симости от значений коэффи­ци­ентов, входящих в фор­мулы.

Строить графики изучаемых функций; описы­вать их

свойства

Умение самостоятельно ставить цели, выби­рать и созда­вать алгоритмы для решения учеб­ных математических проб­лем.

Умение видеть математическую задачу в кон­тексте проб­лемной ситуа­ции в других дис­циплинах, в окружающей жизни.

Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.

Планировать и осуществлять деятельность, направленную на решение задач исследователь­ского характера.

  1. Числовые последовательности. Арифметическая и геометриче­ская прогрессии (15ч)

Понятие числовой последовательно­сти. Зада­ние последовательности рекур­рентной фор­мулой и фор­мулой n-го члена.

Арифметическая и геометрическая про­грес­сии. Формулы n-го члена арифме­тиче­ской и геометриче­ской про­грессий, суммы первых п членов. Изобра­же­ние членов арифме­тической и геометрической про­грес­сий точками коор­динатной плоскости. Линей­ный и экспоненциаль­ный рост. Слож­ные про­центы

Применять индексные обозначе­ния, стро­ить рече­вые высказывания с использова­нием терминологии, свя­занной с понятием последо­вательно­сти.

Вычислять члены последова­тельностей, задан­ных форму­лой п-го члена или рекуррент­ной формулой.

Устанавливать закономерность в построе­нии последова­тельно­сти, если из­вестны пер­вые несколько ее чле­нов.

Изображать члены по­следователь­ности точ­ками на ко­ординатной плоскости.

Распознавать арифметическую и геометриче­скую прогрессии при разных спосо­бах задания.

Выводить на основе доказатель­ных рассужде­ний фор­мулы общего чле­на арифме­тической и геометрической про­грессий, суммы первых л членов арифметиче­ской и гео­метрической про­грессий; ре­шать задачи с использованием этих формул.

Рассматривать примеры из ре­альной жизни, иллю­стрирую­щие изменение в арифметиче­ской прогрессии, в геометриче­ской прогрес­сии; изображать соответствую­щие зависимо­сти графически.

Решать задачи на сложные про­центы, в том числе задачи из реальной практики исполь­зованием кальку­лятора)

Понимать сущности алгоритмических предпи­саний и умение действовать в соответст­вии с предложенным алгоритмом.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.


  1. .Описательная статистика (10ч)

Представление данных в виде таблиц, диа­грамм, графиков. Случайная изменчи­вость. Ста­тистические

характеристики набора данных: сред­нее ариф­метиче­ское, медиана, наиболь­шее и наи­меньшее значения, размах. Пред­ставление о выборочном исследова­нии

Извлекать информацию из таб­лиц и диа­грамм, вы­полнять вычисления по таблич­ным дан­ным. Определять по диаграм­мам наибольшие и наименьшие данные, сравни­вать величины.

Представлять информацию в виде таблиц, столбча­тых и круго­вых диаграмм, в том числе с помощью компьютер­ных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), нахо­дить сред­нее арифмети­ческое, размах чи­сло­вых наборов.

Приводить содержательные примеры исполь­зования сред­них для описания данных (уро­вень воды в водоеме, спортив­ные показа­тели, определение границ климати­ческих зон)

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргу­ментации.

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.


  1. Случайные события и вероятность (15ч)

Понятие о случайном опыте и случай­ном со­бытии. Частота случайного события. Статисти­че­ский подход к поня­тию вероятно­сти. Вероятности проти­воположных событий. Достовер­ные и невозможные события. Равновоз­можность событий. Классическое опреде­ле­ние вероятности

Проводить случайные экспери­менты, в том числе с помощью компьютерного моделирова­ния, интерпретиро­вать их резуль­таты. Вычислять частоту слу­чайного собы­тия; оценивать ве­роятность с помощью частоты, получен­ной опытным путем.

Решать задачи на нахождение вероятностей событий.

Приводить примеры случай­ных событий, в частности досто­верных и невозможных собы­тий, маловероятных со­бы­тий.

Приводить примеры рав­новероятных событий

Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.




  1. Элементы комбинаторики (10 ч)

Решение комбинаторных задач перебо­ром ва­ри­антов. Комбинаторное правило умноже­ния. Переста­новки и фак­ториал

-

Выполнять перебор всех воз­можных вариан­тов для пере­счета объектов или комбина­ций.

Применять правило комбина­торного умноже­ния для реше­ния задач на нахожде­ние числа объектов или ком­бинаций (диа­го­нали многоугольника, рукопо­жатия, число ко­дов, шиф­ров, паролей и т. п.).

Распо­знавать задачи на опреде­ление числа переста­но­вок и выполнять соответствую­щие вычисления.

Решать задачи на вычисление вероятности с приме­нением ком­бинаторики

Понимать и использовать математические средства наглядности схемы для иллюстра­ции, интерпретации

  1. Множества. Элементы логики (5 ч)

Множество, элемент множества. Зада­ние мно­жеств перечислением элемен­тов, характери­стическим свойст­вом. Стандартные обозначения число­вых мно­жеств. Пустое множе­ство и его обозначение. Подмно­же­ство. Объедине­ние и пересечение множеств, раз­ность множеств.

Иллюстрация отношений между мно­жест­вами с помощью диаграмм Эйлера — Венна.

Понятия о равносильности, следова­нии, упот­реб­ление логических связок если то, в том и толь­ко том слу­чае. Логические связки и, или

Приводить примеры конечных и бесконеч­ных мно­жеств. Нахо­дить объединение и пересе­че­ние множеств. Приводить при­меры несложных классифика­ций.

Использовать теоретико-множе­ственную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математиче­ские понятия и утверж­дения при­мерами. Использовать при­меры и контрпри­меры в аргумен­тации.

Конструировать математиче­ские предложе­ния с по­мощью связок если то, в том и только том слу­чае, логиче­ских связок и, или

Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргу­ментации.


Резерв -10ч











Раздел « Геометрия»

  1. Прямые и углы (20ч)

Геометрические фигуры. Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, раз­вернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свой­ства углов с параллельными и перпендикуляр­ными сторонами. Взаимное расположение прямых на плоскости: парал­лельные и пересекающиеся прямые. Перпенди­кулярные прямые. Теоремы о парал­лельности и перпендикулярности пря­мых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку.

Решать задачи на построение, доказательство и вычисле­ния. Выделять в условии задачи условие и заклю­чение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопостав­лять полученный результат с условием задачи.


Уметь находить в различных источ­никах информацию, необходи­мую для решения математи­ческих проблем, и пред­ставлять ее в понятной форме, пони­мать и использовать математи­ческие средства наглядно­сти (чертежи) для иллюстрации, интерпретации.








2.Треугольники (65ч.)

Треугольники. Прямоугольные, остро­уголь­ные и тупоугольные треуголь­ники. Вы­сота, медиана, биссек­т­риса, средняя линия треугольника. Равно­бедренные и равносторон­ние тре­угольники; свойства и при­знаки равнобед­ренного треугольника.

Признаки равенства треугольников. При­знаки ра­венства прямоугольных тре­угольни­ков. Неравенство треуголь­ника. Соотноше­ния между сторонами и угла­ми треугольника. Сумма углов тре­угольника. Внешние углы треугольника, теорема о внешнем угле треуголь­ника. Теорема Фалеса. Подобие тре­угольни­ков; коэф­фициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Синус, косинус, тан­генс, ко­тангенс острого угла прямо­угольного треугольника и углов от 0 до 180°; приведе­ние к острому углу. Реше­ние прямоугольных треугольников. Ос­новное тригоно­метриче­ское тождество. Формулы, связывающие си­нус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: тео­рема косинусов и теорема синусов.

Замечательные точки треугольника: точки пересе­чения серединных перпенди­куляров, биссектрис, ме­диан, высот и их продолжений

Формулировать определения прямоугольного, ост­ро­уголь­ного, тупоугольного, равнобед­ренного, равносто­роннего треугольников; вы­соты, медианы, биссек­трисы, средней линии треугольника; распознавать и изобра­жать их на чертежах и рисунках.

Формулировать определение равных треугольников. Форму­лировать и доказы­вать теоремы о признаках ра­венства треугольников.

Объяснять и иллюстриро­вать неравенство тре­уголь­ника.

Формулировать и доказы­вать теоремы о свойствах и признаках равнобедренного треугольника, соотноше­ни­ях между сторонами и углами тре­угольника, сумме углов тре­угольника, внешнем угле треугольника, о сред­ней ли­нии треугольника.

Формулировать определение подобных треугольни­ков.

Формулировать и доказы­вать теоремы о призна­ках подо­бия треугольников, тео­рему Фалеса.

Формулировать определения и иллюстрировать поня­тия синуса, косинуса, тангенса и котангенса ост­рого угла прямо­угольного треугольника. Выводить формулы, выражаю­щие функции угла прямоугольного треугольни­ка через его стороны. Формулиро­вать и доказы­вать те­орему Пифагора.

Формулировать определения синуса, косинуса, тан­генса, ко­тангенса углов от 0 до 180°.

Выводить формулы, выражаю­щие функции углов от 0 до 180° через функции острых углов.

Формулиро­вать и разъяснять основное тригонометри­ческое тожде­ство. По значениям одной три­гонометрической функ­ции угла вычислять значе­ния дру­гих тригонометриче­ских функций этого угла.

Формули­ровать и доказы­вать теоремы синусов и коси­нусов.

Формулировать и доказы­вать теоремы о точках пересе­чения серединных пер­пендикуляров, биссек­трис, медиан, высот или их продолжений.

Исследовать свойства тре­угольника с помощью компь­ю­терных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления. Выделять в усло­вии задачи условие и заключе­ние.

Моделировать условие задачи с помощью чертежа или рисунка, прово­дить дополнительные по­строения в хо­де решения. Опираясь на данные усло­вия задачи, прово­дить необхо­димые рассуждения.

Интерпретировать полу­чен­ный результат и сопостав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.



3. Четырёхугольники (20ч)

Четырехугольник. Параллелограмм, тео­ремы о свойствах сторон, углов и диагона­лей парал­лелограм­ма и его при­знаки.

Прямоугольник, теорема о равенстве диа­гона­лей прямоугольника.

Ромб, теорема о свойстве диагоналей.

Квадрат.

Трапеция, средняя линия трапеции; равно­бедрен­ная трапеция

Формулировать определения параллелограмма, пря­моуголь­ника, квадрата, ромба, трапе­ции, равнобедрен­ной и прямо­угольной трапеции, средней линии трапе­ции; распозна­вать и изображать их на чер­тежах и рисун­ках.

Формулировать и доказы­вать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадра­та, ромба, трапеции.

Исследовать свойства четы­рехугольников с по­мо­щью компьютерных про­грамм.

Решать задачи на построение, доказательство и вы­числе­ния. Моделировать условие за­дачи с помощью чер­тежа или рисунка, проводить дополни­тельные по­строения в ходе ре­шения.

Выделять на чертеже конфигурации, не­обходимые для проведения обоснований логических шагов реше­ния.

Интерпретировать получен­ный резуль­тат и сопостав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


4. Многоугольники (10ч)

Многоугольник. Выпуклые много­угольники. Пра­вильные многоуголь­ники. Теорема о сумме углов вы­пуклого многоугольника. Тео­рема о сумме внеш­них углов выпуклого многоугольника

Распознавать многоуголь­ники, формулировать оп­реде­ление и приводить при­меры многоугольников.

Формулировать и доказы­вать теорему о сумме уг­лов выпуклого многоугольника.

Исследовать свойства много­угольников с помощью компью­терных программ.

Решать задачи на доказатель­ство и вычисления.

Моделиро­вать условие за­дачи с помощью чертежа или рисунка, проводить дополни­тельные построения в ходе ре­шения.

Интерпретировать полученный результат и сопос­тав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


5. Окружность и круг (20ч)

Окружность и круг. Центр, радиус, диа­метр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, вели­чина вписанного угла. Взаимное располо­жение прямой и окружно­сти, двух окружностей. Касательная и секу­щая к окружности, их свойства.

Вписанные и описанные многоуголь­ники. Ок­руж­ность, вписанная в треуголь­ник, и ок­ружность, опи­санная около треугольника. Тео­ремы о существо­вании окружности, вписан­ной в треугольник, и окружности, опи­санной около треугольника.

Вписанные и описанные окружности правиль­ного многоугольника.

Формулы для вычисления стороны пра­виль­ного многоугольника; радиуса окружности, вписанной в правильный многоугольник; ра­диуса окружности, опи­санной около правиль­ного много­угольника

Формулировать определения понятий, связанных с окружно­стью, центрального и вписанного углов, секу­щей и касательной к окружности, уг­лов, связанных с окруж­но­стью.

Формулировать и доказы­вать теоремы о вписан­ных уг­лах, углах, связанных с окруж­ностью.

Изображать, распознавать и описывать взаимное располо­жение прямой и окружности.

Изображать и формулиро­вать определения впи­сан­ных и описанных многоугольников и треугольников;

окружности, вписанной в тре­угольник, и окружности, описанной около треуголь­ника.

Формулировать и доказы­вать теоремы о вписанной и описанной окружностях тре­угольника и многоуголь­ника.

Исследовать свойства конфи­гураций, связанных с ок­ружностью, с помощью компьютерных программ.

Решать задачи на построе­ние, доказательство и вы­чис­ления.

Моделировать ус­ловие задачи с помощью чер­тежа или рисунка, прово­дить дополнительные по­строения в ходе решения.

Вы­делять на чертеже конфи­гурации, необходимые для проведения обоснований ло­гических шагов реше­ния.

Ин­терпретировать получен­ный результат и сопостав­лять его с условием задачи

Умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­димость их проверки.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение самостоятельно ставить цели, выбирать и созда­вать алго­ритмы для решения учебных матема­тических проб­лем.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


6 Геометрические преобразования (10ч)

Понятие о равенстве фигур. Понятие движе­ния: осевая и центральная симмет­рии, парал­лельный пере­нос, поворот. По­нятие о подо­бии фигур и гомотетии

Объяснять и иллюстриро­вать понятия равенства фи­гур, подобия. Строить равные и симметричные фигу­ры, вы­полнять параллельный пере­нос и поворот.

Исследовать свойства движе­ний с помощью компь­ютер­ных программ.

Выполнять проекты по темам геометрических преоб­разова­ний на плоскости

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера.


  1. Построения с помощью циркуля и линейки (5ч)

Построения с помощью циркуля и ли­нейки. Основ­ные задачи на построение: деление от­резка пополам; построение угла, равного дан­ному; построение тре­угольника по трем сторо­нам; построение перпендику­ляра к пря­мой; построение биссектрисы угла; деление отрезка на п равных частей

Решать задачи на построение с помощью циркуля и ли­нейки.

Находить условия существова­ния решения, выпол­нять построение точек, необходимых для построения ис­ко­мой фигуры.

Доказы­вать, что построенная фигура удовлетворяет условиям за­дачи (определять число реше­ний задачи при каждом возмож­ном выборе данных)

Умение видеть математическую задачу в контексте проб­лемной ситуа­ции в других дисциплинах, в окружающей жизни.

Иметь первоначальные представле­ния об идеях и о мето­дах математики как уни­версальном языке науки и техники, сред­стве моделирования явлений и процес­сов.

  1. Измерение геометрических величин (25ч)

Длина отрезка. Длина ломаной. Пери­метр много­угольника.

Расстояние от точки до прямой. Расстоя­ние между параллельными пря­мыми.

Длина окружности, число л; длина дуги окруж­ности.

Градусная мера угла, соответствие ме­жду величи­ной центрального угла и дли­ной дуги окружности.

Понятие площади плоских фигур. Равно­состав­ленные и равновеликие фигуры. Пло­щадь прямоугольни­ка. Пло­щади параллело­грамма, треугольника и трапе­ции (основные формулы). Фор­мулы, выражающие площадь треуголь­ника через две стороны и угол меж­ду ними, через периметр и радиус вписан­ной окруж­ности; формула Герона. Пло­щадь много­угольника. Площадь круга и площадь сектора. Соотношение меж­ду площадями по­добных фигур

Объяснять и иллюстриро­вать понятие периметра много­угольника.

Формулировать определения расстояния между точ­ка­ми, от точки до прямой, между парал­лельными пря­мыми.

Формулировать и объяснять свойства длины, гра­дус­ной меры угла, площади.

Формулировать соответствие между величиной централь­ного угла и длиной дуги окруж­ности.

Объяснять и иллюстриро­вать понятия равновеликих и равносоставленных фигур.

Выводить формулы площадей прямоугольника, па­ралле­ло­грамма, треугольника и трапе­ции, а также фор­мулу, выра­жающую площадь треуголь­ника через две сто­роны и угол между ними, длину окружно­сти, пло­щадь круга.

Находить площадь многоуголь­ника разбиением на тре­угольники и четырех­угольники.

Объяснять и иллюстриро­вать отношение площадей по­добных фигур.

Решать задачи на вычисление линейных величин, градус­ной меры угла и площадей треуголь­ников, четы­рехуголь­ников и многоугольников, длины окружности и площади круга. Опираясь на данные ус­ловия задачи, на­ходить воз­можности применения необхо­димых фор­мул, преобразовы­вать формулы.

Использовать формулы для обоснования дока­затель­ных рассуждений в ходе решения.

Интерпретиро­вать получен­ный результат и сопо­став­лять его с условием задачи

Умение видеть математическую задачу в контексте проб­лемной ситуа­ции в других дисциплинах, в окружающей жизни.

Иметь первоначальные представле­ния об идеях и о мето­дах математики как уни­версальном языке науки и техники, сред­стве моделирования явлений и процес­сов

  1. Координаты (10ч)

Декартовы координаты на плоскости. Уравне­ние прямой. Координаты сере­дины отрезка. Формула рас­стояния ме­жду двумя точками плоскости. Уравне­ние окружности

Объяснять и иллюстриро­вать понятие декартовой сис­темы координат.

Выводить и использовать формулы координат се­ре­дины отрезка, расстояния между двумя точками пло­скости, урав­нения прямой и окружно­сти.

Выполнять проекты по темам использования коор­динат­ного метода при решении задач на вычисления и доказательства

Умение видеть математическую задачу в контексте проб­лемной ситуа­ции в других дисциплинах, в окружающей жизни.

Иметь первоначальные представле­ния об идеях и о мето­дах математики как уни­версальном языке науки и техники, сред­стве моделирования явлений и процес­сов

  1. Векторы (10ч)

Вектор. Длина (модуль) вектора. Равен­ство векто­ров. Коллинеарные век­торы. Коорди­наты вектора. Ум­ножение вектора на число, сумма векторов, разложе­ние вектора по двум неколлинеар­ным векторам. Угол между векто­рами. Скалярное произведение век­тор

Формулировать определения и иллюстрировать по­нятия век­тора, длины (модуля) век­тора, коллинеарных векторов, равных векторов.

Вычислять длину и коорди­наты вектора.

Находить угол между векто­рами.

Выполнять операции над век­торами.

Выполнять проекты по темам использования вектор­ного ме­тода при решении задач на вы­числения и доказа­тельства

Умение понимать и использовать математические сред­ства наглядно­сти.

Умение применять индуктивные и дедуктивные спосо­бы рассужде­ний, ви­деть различные стратегии решения задач.

Умение планировать и осуществ­лять деятельность, на­правленную на реше­ние задач исследователь­ского характера;

Резерв времени - 20ч



  1. Описание учебно-методического и материально-технического

обеспечения образовательного процесса

1. Нормативные документы: Примерная программа основного общего образо­вания по матема­тике

2. Учебники: по математике для 5—6 классов, по алгебре для 7-9 классов, по геометрии для 7—9 классов.

  • УМК Н.Я. Виленкин «Математика» 5,6

  • УМК Ю.Н. Макарычев «Алгебра» 7-9

  • УМК Л.С. Атанасян «Геометрия 7-9»

3. Научная, научно-популярная, историческая литература.

4.Справочные пособия (энциклопедии, словари, справочники по
математике и т.п.).

5. Печатные пособия: Портреты выдающихся деятелей математики.

6. Информационные средства

  • Мультимедийные обучающие программы и электронные учебные издания по основ­ным разделам курса математики.

  • Электронная база данных для создания тематических и итоговых разноуровневых тре­нировочных и проверочных материалов для органи­зации фронтальной и индивиду­альной работы.

7.Технические средства обучения

        • компьютер.

  • Мультимедийный проектор.

8. Учебно-практическое и учебно-лабораторное оборудование

  • Интерактивная доска.

  • Комплект чертежных инструментов (классных и раздаточных): ли­нейка, транспор­тир, угольник (30°, 60°, 90°), угольник (45°, 90°), цир­куль.

  • Комплекты планиметрических и стереометрических тел (демон­стра­ционных и раздаточ­ных).

  • Комплект для моделирования (цветная бумага, картон, калька, клей, ножницы, пласти­лин).

Информационное сопровождение:



  1. Планируемые результаты изучения учебного предмета, курса

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходя­щую в зависимо­сти от конкретной ситуации;

• сравнивать и упорядочивать рациональные числа;

• выполнять вычисления с рациональными числами, сочетая устные и пись­менные приёмы вычислений, применение калькулятора;

• использовать понятия и умения, связанные с пропорциональностью вели­чин, процен­тами, в ходе решения математических задач и задач из смеж­ных предметов, выпол­нять несложные практические расчёты.

Выпускник получит возможность:

• познакомиться с позиционными системами счисления с основаниями, от­личными от 10;

• углубить и развить представления о натуральных числах и свойст­вах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приоб­рести при­вычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

• использовать начальные представления о множестве действительных чи­сел;

• оперировать понятием квадратного корня, применять его в вычисле­ниях.

Выпускник получит возможность:

• развить представление о числе и числовых системах от натураль­ных до действитель­ных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чи­сел (периодиче­ские и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связан­ные с прибли­жёнными значениями величин.

Выпускник получит возможность:

• понять, что числовые данные, которые используются для характери­стики объектов окру­жающего мира, являются преимущест­венно приближёнными, что по записи приближён­ных значений, содержа­щихся в информационных источниках, можно судить о погрешности прибли­жения;

• понять, что погрешность результата вычислений должна быть соизме­рима с погрешно­стью исходных данных.

Алгебраические выражения

Выпускник научится:

• оперировать понятиями «тождество», «тождественное преобразова­ние», решать за­дачи, содержащие буквенные данные; работать с форму­лами;

• выполнять преобразования выражений, содержащих степени с целыми по­казателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе пра­вил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

• выполнять многошаговые преобразования рациональных выражений, применяя широ­кий набор способов и приёмов;

• применять тождественные преобразования для решения задач из раз­личных разде­лов курса (например, для нахождения наиболь­шего/наименьшего значения выражения).

Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, сис­темы двух урав­нений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описа­ния и изуче­ния разнообразных реальных ситуаций, решать текстовые задачи алгебраическим мето­дом;

• применять графические представления для исследования уравнений, иссле­дования и ре­шения систем уравнений с двумя переменными.

Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравне­ний; уве­ренно применять аппарат уравнений для решения разнообраз­ных задач из математики, смеж­ных предметов, практики;

• применять графические представления для исследования уравнений, сис­тем уравне­ний, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

• понимать и применять терминологию и символику, связанные с отноше­нием неравен­ства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; ре­шать квадрат­ные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разде­лов курса.

Выпускник получит возможность научиться:

• разнообразным приёмам доказательства неравенств; уверенно приме­нять аппарат нера­венств для решения разнообразных математиче­ских задач и задач из смежных предме­тов, практики;

• применять графические представления для исследования нера­венств, систем нера­венств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

• понимать и использовать функциональные понятия и язык (термины, сим­волические обо­значения);

• строить графики элементарных функций; исследовать свойства число­вых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описа­ния процес­сов и явлений окружающего мира, применять функциональный язык для описания и исследова­ния зависимостей между физическими величи­нами.

Выпускник получит возможность научиться:

• проводить исследования, связанные с изучением свойств функций, в том числе с исполь­зованием компьютера; на основе графиков изученных функций строить более слож­ные графики (кусочно-заданные, с «выколо­тыми» точками и т. п.);

• использовать функциональные представления и свойства функций для реше­ния матема­тических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

• понимать и использовать язык последовательностей (термины, символиче­ские обозначе­ния);

• применять формулы, связанные с арифметической и геометрической про­грессией, и аппа­рат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, приме­няя при этом аппарат уравне­ний и неравенств;

• понимать арифметическую и геометрическую прогрессию как функ­ции натураль­ного аргумента; связывать арифметическую прогрессию с линейным ростом, геометриче­скую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и ана­лиза статистиче­ских данных.

Выпускник получит возможность приобрести первоначальный опыт орга­низации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представ­лять результаты опроса в виде таб­лицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случай­ного события.

Выпускник получит возможность приобрести опыт проведения случай­ных экспериментов, в том числе с помощью компьютерного моделирова­ния, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире пло­ские и простран­ственные геометрические фигуры;

• вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

• научиться вычислять объёмы пространственных геометрических фи­гур, составлен­ных из прямоугольных параллелепипедов;

• распознавать развёртки куба, прямоугольного параллелепипеда, правиль­ной пира­миды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные раз­меры самой фи­гуры и наоборот;

• углубить и развить представления о пространственных геометриче­ских фигурах;

• научиться применять понятие развёртки для выполнения практиче­ских расчётов.

Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаим­ного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фи­гуры и их конфи­гурации;

• находить значения длин линейных элементов фигур и их отношения, гра­дусную меру углов от 0° до 180°, применяя определения, свойства и при­знаки фигур и их элемен­тов, отношения фигур (равенство, подобие, симмет­рии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элемен­тарные опера­ции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фи­гур и отноше­ний между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алго­ритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от против­ного, методом подобия, методом перебора вариан­тов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометриче­ского аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помо­щью циркуля и ли­нейки: анализ, построение, доказательство и исследова­ние;

• научиться решать задачи на построение методом геометрического места точек и мето­дом подобия;

• приобрести опыт исследования свойств планиметрических фигур с по­мощью компьютер­ных программ;

• приобрести опыт выполнения проектов по темам «Геометрические пре­образования на плоскости», «Построение отрезков по формуле»;

  • описания реальных ситуаций на языке геометрии;

  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять коорди­наты сере­дины отрезка;

• использовать координатный метод для изучения свойств прямых и окруж­ностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и дока­зательства;

• приобрести опыт использования компьютерных программ для ана­лиза частных слу­чаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение коорди­натного метода при решении задач на вычисления и доказатель­ства».

Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, задан­ных геометри­чески, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, коорди­наты суммы и разности двух и более векторов, координаты произведе­ния вектора на число, применяя при необходимости сочетатель­ный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векто­рами, устанавли­вать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и дока­зательства;

• приобрести опыт выполнения проектов на тему «применение вектор­ного метода при ре­шении задач на вычисления и доказательства».


В результате изучения геометрии ученик научится использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • пользоваться языком геометрии для описания предметов окружающего мира;

  • распознавать геометрические фигуры, различать их взаимное расположение;

  • распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, треугольники и их частные виды); изображать указанные геометрические фигуры;

  • выполнять чертежи по условию задачи;

  • владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;

  • уметь решать несложные задачи на вычисление геометрических величин (длин, углов), опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат;

  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

  • владеть алгоритмами решения основных задач на построение.


  1. Оценка планируемых результатов

Система оценки достижения планируемых результатов освоения основной образователь­ной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучаю­щимися всех трёх групп результатов образования: личностных, метапредмет­ных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструмента­рию для оценки достижения планируемых результатов, а также к представле­нию и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образователь­ных достижений на основе «метода сложения», при котором фиксируется дости­жение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индиви­дуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Система оценки достижения планируемых результатов освоения основной образователь­ной программы основного общего образования предполагает комплексный подход к оценке результатов образования, позволяющий вести оценку достижения обучаю­щимися всех трёх групп результатов образования: личностных, метапредмет­ных и предметных.

Система оценки предусматривает уровневый подход к содержанию оценки и инструмента­рию для оценки достижения планируемых результатов, а также к представле­нию и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образователь­ных достижений на основе «метода сложения», при котором фиксируется дости­жение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индиви­дуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

 Особенности оценки предметных результатов

Оценка предметных результатов представляет собой оценку достижения обучаю­щимся планируемых результатов по отдельным предметам.

Формирование этих результатов обеспечивается за счёт основных компонентов образова­тельного процесса — учебных предметов.

Основным объектом оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практиче­ских задач, основанных на изучаемом учебном материале, с использованием способов дейст­вий, релевантных содержанию учебных предметов, в том числе метапредметных (познава­тельных, регулятивных, коммуникативных) действий.

Система оценки предметных результатов освоения учебных программ с учётом уровне­вого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индиви­дуальной работы с обучающимися.

Реальные достижения обучающихся могут соответствовать базовому уровню, а могут от­личаться от него как в сторону превышения, так и в сторону недостижения.

Практика показывает, что для описания достижений обучающихся целесообразно устано­вить следующие пять уровней.

Базовый уровень достижений — уровень, который демонстрирует освоение учеб­ных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следую­щей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).

Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о круго­зоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:

• повышенный уровень достижения планируемых результатов, оценка «хорошо» (от­метка «4»);

• высокий уровень достижения планируемых результатов, оценка «отлично» (от­метка «5»).

Повышенный и высокий уровни достижения отличаются по полноте освоения планируе­мых результатов, уровню овладения учебными действиями и сформированно­стью интересов к данной предметной области.

Индивидуальные траектории обучения обучающихся, демонстрирующих повышен­ный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в стар­ших классах по данному профилю.

Для описания подготовки учащихся, уровень достижений которых ниже базового, целесо­образно выделить также два уровня:

• пониженный уровень достижений, оценка «неудовлетворительно» (отметка «2»);

• низкий уровень достижений, оценка «плохо» (отметка «1»).

Недостижение базового уровня (пониженный и низкий уровни достижений) фиксиру­ется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.

Как правило, пониженный уровень достижений свидетельствует об отсутствии система­тической базовой подготовки, о том, что обучающимся не освоено даже и поло­вины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправлен­ной помощи в достижении базового уровня.

Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требу­ется специальная помощь не только по учебному предмету, но и по формированию мотива­ции к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.

Описанный выше подход целесообразно применять в ходе различных процедур оценива­ния: текущего, промежуточного и итогового.

Для формирования норм оценки в соответствии с выделенными уровнями необхо­димо описать достижения обучающегося базового уровня (в терминах знаний и умений, которые он должен продемонстрировать), за которые обучающийся обоснованно получает оценку «удовлетворительно». После этого определяются и содержательно описываются более высокие или низкие уровни достижений. Важно акцентировать внимание не на ошиб­ках, которые сделал обучающийся, а на учебных достижениях, которые обеспечи­вают продвижение вперёд в освоении содержания образования.

Для оценки динамики формирования предметных результатов в системе внутришколь­ного мониторинга образовательных достижений целесообразно фиксировать и анализировать данные о сформированности умений и навыков, способствующих освое­нию систематических знаний, в том числе:

• первичному ознакомлению, отработке и осознанию теоретических моделей и поня­тий (общенаучных и базовых для данной области знания), стандартных алгоритмов и процедур;

• выявлению и осознанию сущности и особенностей изучаемых объектов, процессов и яв­лений действительности (природных, социальных, культурных, технических и др.) в соответ­ствии с содержанием конкретного учебного предмета, созданию и использованию моделей изучаемых объектов и процессов, схем;

• выявлению и анализу существенных и устойчивых связей и отношений между объек­тами и процессами.

При этом обязательными составляющими системы накопленной оценки являются мате­риалы:

• стартовой диагностики;

• тематических и итоговых проверочных работ по всем учебным предметам;

•  творческих работ, включая учебные исследования и учебные проекты.

Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения зада­ний базового уровня. В период введения Стандарта критерий достижения/освоения учеб­ного материала задаётся как выполнение не менее 50% заданий базового уровня или получе­ние 50% от максимального балла за выполнение заданий базового уровня.



















Уровни подготовки учащихся и критерии успешности обучения по

математике

Уровни

Оценка

Теория

Практика

1

Узнавание

Алгоритмическая дея­тельность с под­сказкой

 

 

«3»

Распознавать объект, находить нужную фор­мулу, признак, свой­ство и т.д.

Уметь выполнять зада­ния по образцу, на непо­средственное примене­ние формул, правил, инст­рукций и т.д.

2

Воспроизведение

Алгоритмическая дея­тельность без под­сказки

 

 

«4»

Знать формулировки всех понятий, их свой­ства, признаки, фор­мулы.

Уметь воспроизвести доказательства, вы­воды, устанавливать взаимосвязь, выбирать нужное для выполне­ния данного задания

Уметь работать с учеб­ной и справочной литера­турой, выполнять задания, требующие не­сложных преобразова­ний с применением изу­чаемого материала

3

Понимание

Деятельность при от­сутствии явно выражен­ного алго­ритма

 



«5»

Делать логические за­ключения, составлять алгоритм, модель не­сложных ситуаций

Уметь применять полу­ченные знания в различ­ных ситуациях. Выпол­нять задания комбиниро­ванного харак­тера, содержащих несколько понятий.

4

Овладение умствен­ной самостоятельно­стью

Творческая исследова­тельская деятельность

 

 

«5»

В совершенстве знать изученный материал, свободно ориентиро­ваться в нем. Иметь знания из дополнитель­ных источников. Вла­деть операциями логиче­ского мышле­ния. Составлять мо­дель любой ситуации.

Уметь применять знания в любой нестандартной ситуации. Самостоя­тельно выполнять твор­ческие исследовательские задания. Выполнять функции консультанта.

 









Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Отметка «5», если:

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.



Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

    • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

    • незнание наименований единиц измерения;

    • неумение выделить в ответе главное;

    • неумение применять знания, алгоритмы для решения задач;

    • неумение делать выводы и обобщения;

    • неумение читать и строить графики;

    • неумение пользоваться первоисточниками, учебником и справочниками;

    • потеря корня или сохранение постороннего корня;

    • отбрасывание без объяснений одного из них;

    • равнозначные им ошибки;

    • вычислительные ошибки, если они не являются опиской;

    • логические ошибки.

К негрубым ошибкам следует отнести:

    • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

    • неточность графика;

    • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

    • нерациональные методы работы со справочной и другой литературой;

    • неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

    • нерациональные приемы вычислений и преобразований;

    • небрежное выполнение записей, чертежей, схем, графиков.


Контроль ЗУН предлагается при проведении математических диктантов, практических ра­бот, самостоятельных работ обучающего и контролирующего вида, контрольных работ.



Календарно-тематическое планирование


п/п

пункта

Тема учебного занятия

Характеристика основных видов деятельности ученика

Кол-во часов

Дата прохождения темы

по плану

фактически

1


Повторение. Порядок выполнения действий.

Выполнять действия с натуральными числами

1



2


Повторение. Решение текстовых задач

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

1



3


Повторение. Решение текстовых задач.

Входная контрольная работа

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

1



Глава I. Натуральные числа

§ 1. Натуральные числа и шкалы (18 ч.)

4

П.1

Обозначение натуральных чисел

Описывать свойства натуральных чисел. Верно использовать в речи термины: цифра, число, называть классы, разряды в записи натурального числа.

1



5

П.1

Обозначение натуральных чисел

Читать и записывать натуральные числа, определять значимость числа, сравнивать и упорядочивать их.

1



6

П.1

Обозначение натуральных чисел

Грамматически правильно читать встречающиеся математические выражения.

1



7

П.1

Обозначение натуральных чисел

Грамматически правильно читать встречающиеся математические выражения.

1



8

П.2

Отрезок. Длина отрезка. Треугольник.

Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры: точку, отрезок, прямую, многоугольник. Приводить примеры аналогов геометрических фигур в окружающем мире.

1



9

П.2

Отрезок. Длина отрезка. Треугольник.

Измерение отрезков, выражение одних единиц измерения через другие.

1



10

П.2

Отрезок. Длина отрезка. Треугольник.

Измерение отрезков, вычисление периметров треугольников. Строить отрезки заданной длины с помощью линейки и циркуля.

1



11

П.3

Плоскость. Прямая. Луч.

Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры: луч, дополнительные лучи, плоскость, многоугольник.

1



12

П.3

Плоскость. Прямая. Луч.

Изображать геометрические фигуры на клетчатой бумаге.

1



13

П.3

Плоскость. Прямая. Луч. Тест.

Изображать геометрические фигуры на клетчатой бумаге.

1



14

П.4

Шкалы и координаты

Пользоваться различными шкалами. Изображать координатный луч, наносить единичные отрезки.

1



15

П.4

Шкалы и координаты.

Определять координаты точек, отмечать точки на координатном луче по заданным координатам.

1



16

П.4

Шкалы и координаты.

Определять координаты точек, отмечать точки на координатном луче по заданным координатам.

1



17

П.5

Меньше или больше

Сравнивать числа по разрядам, по значимости. Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям.

1



18

П.5

Меньше или больше

Сравнение отрезков по длине. Решать текстовые задачи арифметическими способами, критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

1



19

П.5

Меньше или больше

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

1



20


Контрольная работа №1 «Обозначение натуральных чисел»

1



21


Обобщающий урок по теме «Обозначение натуральных чисел»

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

1



§2. Сложение и вычитание натуральных чисел (20 ч)

22

П.6

Сложение натуральных чисел и его свойства

Выполнять сложение натуральных чисел. Верно использовать в речи термины: сумма, слагаемое. Устанавливать взаимосвязи между компонентами и результатом при сложении.

1



23


П.6

Сложение натуральных чисел и его свойства

Формулировать переместительное и сочетательное свойства сложение натуральных чисел, свойства нуля при сложении.

1



24

П.6

Сложение натуральных чисел и его свойства

Грамматически верно читать числовые выражения, содержащие действия сложения. Решать примеры на сложение многозначных чисел.

1



25

П.6

Сложение натуральных чисел и его свойства

Решать задачи. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

1



26

П.6

Сложение натуральных чисел и его свойства.

Тест

Грамматически верно читать числовые выражения, содержащие действия сложения. Решать примеры и задачи.

1



27

П.7

Вычитание

Выполнять вычитание натуральных чисел. Верно использовать в речи термины: разность, уменьшаемое, вычитаемое. Устанавливать взаимосвязи между компонентами и результатом при вычитании.

1



28

П.7

Вычитание

Формулировать свойства вычитания натуральных чисел. Записывать свойства вычитания с помощью букв, уметь читать числовые выражения, содержащие действие вычитания.

1



29

П.7

Вычитание

Решать задачи. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

1



30

П.7

Вычитание.

Грамматически верно читать числовые выражения, содержащие действия вычитания. Решать примеры и задачи.

1



31


Контрольная работа №2 по теме «Сложение и вычитание натуральных чисел»

1



32

П.8

Числовые и буквенные выражения

Верно использовать в речи термины: числовое выражение, значение числового выражения..

1



33

П.8

Числовые и буквенные выражения

Вычислять числовое значение буквенного выражения при заданных значениях букв

1



34

П.8

Числовые и буквенные выражения

Составлять буквенное выражение по условию задачи

1



35

П.9

Буквенная запись свойств сложения и вычитания

Записывать свойства сложения и вычитания с помощью букв.

1



36

П.9

Буквенная запись свойств сложения и вычитания

Записывать свойства сложения и вычитания натуральных чисел с помощью букв, преобразовывать и использовать их для рационализации письменных и устных выражений, составлять буквенные выражения по условию задач.

1



37

П.9

Буквенная запись свойств сложения и вычитания

Записывать буквенные выражения, составлять буквенные выражения по условиям задач. Вычислять периметры многоугольников.

1



38

П.10

Уравнение

Верно использовать в речи термины: уравнение, корень уравнения. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

1



39

П.10

Уравнение

Тест

Составлять простейшие уравнения по условиям задач. Уметь строить логическую цепочку рассуждений, критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию задачи.

1



40

П.10

Уравнение

Решать уравнения, задачи, с помощью уравнений.

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям.

1



41


Контрольная работа №3 по темам «Числовые и буквенные выражения», «Уравнение»

1



§3. Умножение и деление натуральных чисел (21 ч.)

42

П.11

Умножение натуральных чисел и его свойства

Выполнять умножение натуральных чисел. Верно использовать в речи термины: произведение, множитель.

1



43

П.11

Умножение натуральных чисел и его свойства

Формулировать переместительное, сочетательное и распределительное свойства умножения натуральных чисел, свойства нуля и единицы при умножении

1



44

П.11

Умножение натуральных чисел и его свойства

Грамматически верно читать числовые и буквенные выражения, содержащие действие умножение. Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач.

1



45

П.11

Умножение натуральных чисел и его свойства

Исследовать простейшие числовые закономерности, проводить числовые эксперименты. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

1



46

П.11

Умножение натуральных чисел и его свойства. Самостоятельная работа

Выполнять умножение натуральных чисел. Вычислять числовое значение буквенного выражения при заданных значениях букв.

1



47

П.12

Деление

Выполнять деление натуральных чисел. Верно использовать в речи термины: частное, делимое, делитель.

1



48

П.12

Деление

Формулировать свойства деления натуральных чисел. Формулировать свойства нуля и единицы при делении. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

1



49

П.12

Деление

Грамматически верно читать числовые и буквенные выражения, содержащие действие деление.

Записывать свойства умножения и деления натуральных чисел с помощью букв, преобразовывать на их основе числовые и буквенные выражения и использовать их для рационализации письменных и устных вычислений, для упрощения буквенных выражений.

1



50

П.12

Деление

Устанавливать взаимосвязи между компонентами и результатом при умножении и делении, использовать их для нахождения неизвестных компонентов действий с числовыми и буквенными выражениями.

Решать текстовые задачи.

1



51

П.12

Деление. Тест

Выполнять деление натуральных чисел.

Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Решать текстовые задачи.

1



52

П.13

Деление с остатком

Выполнять деление с остатком.

1



53

П.13

Деление с остатком

Выполнять деление с остатком.

Устанавливать взаимосвязи между компонентами при делении с остатком.

1



54


Контрольная работа по теме №4 по теме «Умножение и деление натуральных чисел»

1



55

П.14

Упрощение выражений

Формулировать распределительное свойство умножения относительно сложения и относительно вычитания.

Находить значения выражений.

1



56

П.14

Упрощение выражений

Решать уравнения. Составлять уравнения по условиям задач. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов: строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

1



57

П.14

Упрощение выражений

Тест

Исследовать простейшие числовые закономерности, проводить числовые эксперименты.

1



58

П.15

Порядок выполнения действий

Находить значения числовых выражений.

1



59

П.15

Порядок выполнения действий

Находить значения числовых выражений.

1



60

П.16

Степень числа. Квадрат и куб числа

Вычислять значения степени. Верно использовать в речи термины: степень и показатель степени, квадрат и куб числа.

1



61

П.16

Степень числа. Квадрат и куб числа

Вычислять значения выражений, содержащих степень. Грамматически верно читать числовые и буквенные выражения, содержащие степени. Выполнять перебор всех возможных вариантов для пересчёта объектов или комбинаций, выделять комбинации, отвечающие заданным условиям.

1



62


Контрольная работа №5 по теме «Упрощение выражений»

1



§4. Площади и объемы (15 ч.)

63

П.17

Формулы

Верно использовать в речи термин формула. Выполнять вычисления по формулам. Грамматически верно читать используемые формулы

1



64

П.17

Формулы

Верно использовать в речи термин формула. Выполнять вычисления по формулам. Грамматически верно читать используемые формулы

1



65

П.17

Формулы

Моделировать несложные ситуации с помощью формул; выполнять вычисления по формулам. Использовать знания о зависимостях между величинами скорость, время, путь при решении текстовых задач.

1



66

П.18

Площадь. Формулы площади прямоугольника

Верно использовать в речи термин площадь. Вычислять площадь фигуры по количеству квадратных сантиметров, уложенных в ней.

Вычислять площади квадратов и прямоугольников по формулам. Решать задачи, используя свойства равновеликих фигур.


1



67

П.18

Площадь. Формулы площади прямоугольника

Вычислять площади квадратов и прямоугольников. Моделировать несложные зависимости с помощью формул площади прямоугольника и площади квадрата

1



68

П.18

Площадь. Формулы площади прямоугольника

Вычислять площади квадратов и прямоугольников. Моделировать несложные зависимости с помощью формул площади прямоугольника и площади квадрата

1



69

П.19

Единицы измерения площадей

Выражать одни единицы измерения площади через другие.

1



70

П.19

Единицы измерения площадей

Вычислять площади квадратов, прямоугольников и треугольников (в простейших случаях), используя формулы площади квадрата и прямоугольника. Выражать одни единицы измерения площади через другие.

1



71

П.19

Единицы измерения площадей

Самостоятельная работа

Вычислять площади квадратов, прямоугольников и треугольников (в простейших случаях), используя формулы площади квадрата и прямоугольника. Выражать одни единицы измерения площади через другие.

1



72

П.20

Прямоугольный параллелепипед

Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры, имеющие форму прямоугольного параллелепипеда, приводить примеры аналогов куба, прямоугольного параллелепипеда в окружающем мире; изображать прямоугольный параллелепипед Верно использовать в речи термины: прямоугольный параллелепипед, куб, грани, рёбра и вершины прямоугольного параллелепипеда.

1



73

П.20

Прямоугольный параллелепипед

Изображать прямоугольный параллелепипед Верно использовать в речи термины: прямоугольный параллелепипед, куб, грани, рёбра и вершины прямоугольного параллелепипеда.

1



74

П.21

Объемы. Объем прямоугольного параллелепипеда.

Верно использовать в речи термин объём. Вычислять объем фигуры по количеству кубических сантиметров, уложенных в ней.

Вычислять объёмы куба и прямоугольного параллелепипеда, используя формулы объёма куба и прямоугольного параллелепипеда.

1



75

П.21

Объемы. Объем прямоугольного параллелепипеда.

Вычислять объёмы куба и прямоугольного параллелепипеда, используя формулы. Выражать одни единицы измерения объёма через другие. Моделировать изучаемые геометрические объекты, используя бумагу, пластилин, проволоку и др.

1



76

П.21

Объемы. Объем прямоугольного параллелепипеда.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Выполнять прикидку и оценку в ходе вычислений.

1



77


Контрольная работа № 6 по теме «Площади и объемы»


1



§5. Обыкновенные дроби (26 ч.)

78

П.22

Окружность и круг

Распознавать на рисунках, в окружающем мире геометрические фигуры, имеющие форму окружности, круга. Приводить пример аналогов окружности, круга в окружающем мире. Изображать окружность с использованием циркуля

1



79

П.22

Окружность и круг

Моделировать изучаемые геометрические объекты, используя бумагу, проволоку и др. Верно использовать в речи термины: окружность, круг, их радиус и диаметр, дуга окружности. Изображать окружность с использованием циркуля

1



80

П.23

Доли. Обыкновенные дроби

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием доли, обыкновенной дроби. Верно использовать в речи термины: доля,

обыкновенная дробь, числитель и знаменатель дроби. Грамматически верно читать записи дробей и выражений, содержащих обыкновенные дроби

1



81

П.23

Доли. Обыкновенные дроби

Изображать обыкновенные дроби на координатном луче. Грамматически верно читать записи дробей и выражений, содержащих обыкновенные дроби и записывать дроби под диктовку

1



82

П.23

Доли. Обыкновенные дроби

Грамматически верно читать записи дробей и выражений, содержащих обыкновенные дроби и записывать дроби под диктовку. Анализировать и осмысливать текст задачи , извлекать необходимую информацию, решать задачи

1



83

П.23

Доли. Обыкновенные дроби. Тест

Анализировать и осмысливать текст задачи , извлекать необходимую информацию, решать задачи.

1



84

П.24

Сравнение дробей

Сравнивать обыкновенные дроби с помощью координатного луча и пользуясь правилом. Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям.

1



85

П.24

Сравнение дробей

Сравнение обыкновенные дроби. Решать текстовые задачи арифметическими способами, критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

1



86

П.24

Сравнение дробей

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

1



87

П.25

Правильные и неправильные дроби

Изображать на координатном луче правильные и неправильные дроби. Верно использовать термины «правильная» и «неправильная» дробь. Сравнивать правильные и неправильные дроби с единицей и друг с другом.

1



88

П.25

Правильные и неправильные дроби

Сравнивать правильные и неправильные дроби с единицей и друг с другом. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, решать текстовые задачи.

1



89


Контрольная работа №7 по теме «Доли. Обыкновенные дроби»

1



90

П.26

Сложение и вычитание дробей с одинаковыми знаменателями

Формулировать и записывать с помощью букв правила сложения и вычитания дробей с одинаковыми знаменателями. Выполнять сложение и вычитание обыкновенных дробей с одинаковыми знаменателями.

1



91

П.26

Сложение и вычитание дробей с одинаковыми знаменателями

Выполнять сложение и вычитание обыкновенных дробей с одинаковыми знаменателями.

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, критически оценивать полученный ответ

1



92

П.26

Сложение и вычитание дробей с одинаковыми знаменателями.

Самостоятельная работа

Решать текстовые задачи арифметическими способами вычислений, анализировать и осмысливать текст задачи, критически оценивать полученный ответ

1



93

П.27

Деление и дроби

Использовать эквивалентные представления обыкновенных дробей. Использовать свойство деления суммы на число для рационализации вычислений

1



94

П.27

Деление и дроби

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Выполнять прикидку и оценку в ходе вычислений

1



95

П.27

Деление и дроби

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Выполнять прикидку и оценку в ходе вычислений

1



96

П.28

Смешанные числа

Выполнять преобразование неправильной дроби в смешанное число и смешанного числа в неправильную дробь. Изображать точками координатном луче правильные и неправильные дроби

1



97

П.28

Смешанные числа

Выполнять преобразование неправильной дроби в смешанное число и смешанного числа в неправильную дробь. Записывать единицы измерения массы, времени, длины в виде обыкновенных дробей и смешанных чисел.

1



98

П.28

Смешанные числа

Выполнять преобразование неправильной дроби в смешанное число и смешанного числа в неправильную дробь. Записывать единицы измерения массы, времени, длины в виде обыкновенных дробей и смешанных чисел.

1



99

П.29

Сложение и вычитание смешанных чисел

Моделировать в графической и предметной форме понятия и свойства, связанные с понятием смешанного числа. Грамматически верно читать записи выражений, содержащих смешанные числа. Выполнять сложение и вычитание смешанных чисел.

1



100

П.29

Сложение и вычитание смешанных чисел

Выполнять сложение смешанных чисел и вычитание смешанных чисел, у которых , дробная часть первого меньше дробной части второго или отсутствует вовсе.

1



101

П.29

Сложение и вычитание смешанных чисел

Решать текстовые задачи арифметическими способами вычислений, анализировать и осмысливать текст задачи, критически оценивать полученный ответ

1



102


Контрольная работа №8 по теме «Сложение и вычитание дробей с одинаковыми знаменателями и смешанных чисел»

1



103


Обобщающий урок по теме «Обозначение натуральных чисел»

Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов.

1



§6. Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч.)

104

П.30

Десятичная запись дробных чисел.


Записывать и читать десятичные дроби, представлять обыкновенную дробь в виде десятичной

и наоборот. Называть целую и дробную части десятичных дробей

1



105

П.30

Десятичная запись дробных чисел.


Грамматически верно читать записи выражений, содержащих десятичные дроби. Записывать в виде десятичных дробей значения величин, содержащих различные единицы измерений.

1



106

П.31

Сравнение десятичных дробей

Уравнивать количество знаков в дробной части числа. Сравнивать десятичные дроби.

1



107

П.31

Сравнение десятичных дробей

Сравнивать десятичные дроби. Изображение десятичных дробей на координатном луче

1



108

П.31

Сравнение десятичных дробей

Сравнивать десятичные дроби, а также значения величин различных единиц измерений. определять между какими соседними натуральными числами находится данная десятичная дробь.

1



109

П.32

Сложение и вычитание десятичных дробей.

Представление десятичной дроби в виде суммы разрядных слагаемых. Сложение и вычитание десятичных дробей.

1



110

П.32

Сложение и вычитание десятичных дробей.

Сложение и вычитание десятичных дробей. Разложение десятичных дробей по разрядам.


1



111

П.32

Сложение и вычитание десятичных дробей

Сложение и вычитание десятичных дробей. Сравнение десятичных дробей. Решение текстовых задач, анализ и осмысление условия задачи.

1



112

П.32

Сложение и вычитание десятичных дробей

Представление десятичной дроби в виде суммы разрядных слагаемых. Сложение и вычитание десятичных дробей. Решение текстовых задач, анализ и осмысление условия задачи.

1



113

П.32

Сложение и вычитание десятичных дробей

Тест

Сложение и вычитание десятичных дробей. Разложение десятичных дробей по разрядам. Решение текстовых задач, анализ и осмысление условия задачи.


1



114

П.33

Приближенные значения чисел, округление чисел.

Верно использовать в речи термины: приближенное значение числа с недостатком (с избытком), округлять десятичные дроби до заданного разряда

1



115

П.33

Приближенные значения чисел, округление чисел.

Округлять десятичные дроби . Решать текстовые задачи арифметическими способами вычислений, анализировать и осмысливать текст задачи, критически оценивать полученный ответ

1



116


Контрольная работа № 9 по теме «десятичные дроби. Сложение и вычитание десятичных дробей»

1



§7. Умножение и деление десятичных дробей (25 ч.)

117

П.34

Умножение десятичных дробей на натуральные числа

Выполнять умножение десятичных дробей на натуральные числа в столбик. Решать примеры в несколько действий.

1



118

П.34

Умножение десятичных дробей на натуральные числа

Выполнять умножение десятичных дробей на 10; 100;1000 и т.д. Находить значения буквенных выражений при заданных значениях переменной.

1



119

П.34

Умножение десятичных дробей на натуральные числа

Решать текстовые задачи арифметическими способами вычислений, анализировать и осмысливать текст задачи, критически оценивать полученный ответ

1



120

П.35

Деление десятичных дробей на натуральные числа

Выполнять деление десятичных дробей на натуральные числа уголком. Представлять обыкновенные дроби в виде десятичных с помощью деления числителя дроби на ее знаменатель

1



121

П.35

Деление десятичных дробей на натуральные числа

Выполнять деление десятичных дробей на 10; 100; 1000 и т.д. Находить значения буквенных выражений при заданных значениях переменной

1



122

П.35

Деление десятичных дробей на натуральные числа

Решать уравнения с десятичными дробями. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, строить логическую цепочку рассуждений, оценивать полученный ответ.

1



123

П.35

Деление десятичных дробей на натуральные числа.

Самостоятельная работа

Находить значения числовых и буквенных выражений с десятичными дробями. Решать уравнения и текстовые задачи.

1



124

П.35

Деление десятичных дробей на натуральные числа

Анализировать и осмысливать текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

1



125


Контрольная работа №10 по теме «Умножение и деление десятичных дробей на натуральные числа»

1



126

П.36

Умножение десятичных дробей

Выполнять умножение десятичных дробей столбиком. Выполнять прикидку и оценку в ходе вычислений. Правильно читать и записывать выражения, содержащие сложение, вычитание, умножение десятичных дробей и скобки.

1



127

П.36

Умножение десятичных дробей

Выполнять умножение десятичных дробей на 0,1; 0,01 и т.д. Находить значение выражений, применяя переместительное и сочетательное свойства умножения.

1



128

П.36

Умножение десятичных дробей

Упрощать выражения, находить значения числовых и буквенных выражений, применяя свойства сложении, умножения, вычитания.

1



129

П.36

Умножение десятичных дробей

Решать задачи на нахождение площади участка и на движение. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

1



130

П.36

Умножение десятичных дробей

Тест

Анализировать и осмысливать текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ. Решать примеры и уравнения.

1



131

П.37

Деление на десятичную дробь

Выполнять деление на десятичную дробь уголком. Владеть терминами «делимое», «делитель» и правильно читать и записывать выражения, содержащие несколько действий и скобки.

1



132

П.37

Деление на десятичную дробь

Выполнять деление на 0,1; 0,01 и т .д.

Находить значения числовых и буквенных выражений в несколько действий.

1



133

П.37

Деление на десятичную дробь

Решать задачи на движение. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

1



134

П.37

Деление на десятичную дробь

Решать задачи на движение. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

1



135

П.37

Деление на десятичную дробь

Решать уравнения и задачи с помощью уравнений. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, строить логическую цепочку рассуждений, оценивать полученный ответ

1



136

П.37

Деление на десятичную дробь

Решать уравнения и задачи с помощью уравнений. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, строить логическую цепочку рассуждений, оценивать полученный ответ

1



137

П.37

Деление на десятичную дробь Тест

Выполнять деление на десятичную дробь, решать уравнений и текстовые задачи.

1



138

П.38

Среднее арифметическое

Находить среднее арифметическое нескольких чисел. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, строить логическую цепочку рассуждений, оценивать полученный ответ

1



139

П.38

Среднее арифметическое

Решать задачи на нахождение средних значений. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, строить логическую цепочку рассуждений, оценивать полученный ответ

1



140

П.38

Среднее арифметическое

Решать задачи на нахождение средней скорости движения. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем и рисунков, строить логическую цепочку рассуждений, оценивать полученный ответ

1



141


Контрольная работа №11 по теме «Умножение и деление десятичных дробей»

1



§8. Инструменты для вычислений и измерений (16 ч)

142

П.39

Микрокалькулятор

Находить значения числовых выражений с помощью микрокалькулятора по алгоритму.

1



143

П.40

Проценты

Объяснять, что такое процент. Представлять проценты в дробях и дроби в процентах.

1



144

П.40

Проценты

Представлять проценты в дробях и дроби в процентах.

Решать задачи на нахождение некоторого процента от данной величины.

1



145

П.40

Проценты

Представлять проценты в дробях и дроби в процентах. Решать задачи на нахождение целого по данному проценту. Выполнять прикидку и оценку в ходе вычислений.

1



146

П.40

Проценты

Представлять проценты в дробях и дроби в процентах. Решать задачи на определение количества процентов в данной величине. Выполнять прикидку и оценку в ходе вычислений

1



147

П.40

Проценты

Решать задачи всех видов на проценты. Выполнять прикидку и оценку в ходе вычислений

1



148


Контрольная работа №12 по теме «Проценты»

1



149

П.41

Угол. Прямой и развернутый угол. Чертежный треугольник.

Распознавать на чертежах, рисунках, в окружающем мире разные виды углов.. приводить примеры аналогов этих фигур в окружающем мире. Изображать углы от руки и с помощью чертежных инструментов.

1



150

П.41

Угол. Прямой и развернутый угол. Чертежный треугольник

Изображать углы от руки и с помощью чертежных инструментов. Моделировать различные виды углов . верно использовать в речи термины

« угол», «сторона угла», «вершина угла», «биссектриса угла», «тупой угол», «прямой угол», «развернутый угол

1



151

П.41

Угол. Прямой и развернутый угол. Чертежный треугольник

Изображать углы от руки и с помощью чертежных инструментов. Моделировать различные виды углов . верно использовать в речи термины

« угол», «сторона угла», «вершина угла», «биссектриса угла», «тупой угол», «прямой угол», «развернутый угол

1



152

П.42

Измерение углов. Транспортир.

Измерять и строить углы с помощью транспортира.

1



153

П.42

Измерение углов. Транспортир.

Самостоятельная работа.

Измерять и строить углы с помощью транспортира. Решать простейшие геометрические задачи.

1



154

П.42

Измерение углов. Транспортир.

Измерять и строить углы с помощью транспортира. Решать простейшие геометрические задачи.

1



155

П.43

Круговые диаграммы

Строить круговые диаграммы по условию задачи.

1



156

П.43

Круговые диаграммы

Анализировать и осмысливать текст задачи, извлекать необходимую информацию, строить логическую цепочку рассуждений, изображать результат в виде круговой диаграммы

1



157


Контрольная работа №13 по теме «Измерение углов. Транспортир»

1



Итоговое повторение курса математики 5 класса. Решение задач. (13+3 ч)

158


Натуральные числа. Действия с натуральными числами.

Складывать, вычитать, умножать, делить натуральные числа. Решать текстовые задачи

1



159


Числовые и буквенные выражения

Находить значения числовых выражений, содержащих несколько действий. Находить значения буквенных выражений при заданных значения переменных.

1



160


Буквенные выражения. Преобразование буквенных выражений.

Находить значения буквенных выражений при заданных значения переменных. Решать задачи на составление буквенных выражений.

1



161


Упрощение выражений

Упрощать буквенные выражения с помощью свойств сложения, вычитания и умножения. Решать задачи на составление буквенных выражений

1



162


Уравнение.

Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий

1



163


Проценты

Решать задачи всех видов на проценты. Выполнять прикидку и оценку в ходе вычислений

1



164


Контрольная работа №14 (итоговая)

1



165


Формулы. Площадь прямоугольника

Вычислять площади квадратов, прямоугольников и треугольников (в простейших случаях), используя формулы площади квадрата и прямоугольника. Выражать одни единицы измерения площади через другие.

1



166


Объем прямоугольного параллелепипеда

Вычислять объем прямоугольного параллелепипеда и куба с помощью форму. Находить площадь поверхности прямоугольного параллелепипеда и куба.

1



167


Сложение и вычитание смешанных чисел

Выполнять сложение смешанных чисел и вычитание смешанных чисел, у которых , дробная часть первого меньше дробной части второго или отсутствует вовсе.

1



168


Действия с десятичными дробями

Складывать, вычитать, умножать и делить десятичные дроби. Решать примеры в несколько действий.. решать уравнения с десятичными дробями.

1



169


Действия с десятичными дробями

Самостоятельная работа

Анализировать и осмысливать текст задачи, выстраивать логическую цепочку решения, критически оценивать полученный ответ

1



170


Построение углов. Транспортир

Измерять и строить углы с помощью транспортира. Решать простейшие геометрические задачи.

1





23



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования (утверждённого приказом Министерства образова­ния и науки РФ от 17.12. 2010г. № 1897), примерной программы основного общего образования поматематике 5-9 классы разработанной А.А. Кузнецовым, М.В. Рыжаковым, А.М. Кондаковым (М.: Просвещение, 2010), учебного плана МБОУ «Средняя общеобразовательная школа №65» города Кемерово и обеспечена УМК для 5–6-го классов под редакцией Н.Я. Виленкина (авторы – составители Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд), УМК по алгебре для 7-9-го классов под редакцией Ю.Н. Макарычева и УМК по геометрии для 7-9-го классов под редакцией Л.С. Атанасяна.

Автор
Дата добавления 11.09.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров347
Номер материала ДA-037327
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх