Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по математике, 5-6 классы

Рабочая программа по математике, 5-6 классы

  • Математика

Поделитесь материалом с коллегами:

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа составлена на основе федерального образовательного стандарта нового поколения, Примерной программы по учебным предметам «Стандарты второго поколения. Математика 5 – 9 класс» – М.: Просвещение, 2011 г. и «Математика. Сборник рабочих программ 5 – 6 классы», - М.Просвещение, 2011. Составитель Т. А. Бурмистрова.

Учебник: Математика, 5 класс: учебник для общеобразовательных учреждений / Н.Я.Виленкин и др. – 34-е изд. – М.: Мнемозина, 2015.

Учебник: Математика, 6 класс: учебник для общеобразовательных учреждений / Н.Я.Виленкин и др. – 34 изд. – М.: Мнемозина, 2015.

Учебники содержит разнообразные упражнения к каждому параграфу. Среди них: задания, связанные с закреплением изученного материала, задачи повышенной трудности, занимательные и развивающие упражнения, некоторые упражнения из учебника с пояснениями, иллюстрациями, образцами выполнения заданий, помогающими учащимся лучше понять их содержание. Состоит в федеральном перечне. Рекомендованы Министерством образования и науки Российской Федерации.

В состав УМК входят различные пособия для учащихся и учителей: контрольные работы, математические диктанты, математический тренажер, методические рекомендации для учителя, которые обеспечивают преемственность курсов математики в начальной школе и курсов алгебры в последующих классах для большинства программ, позволяют проводить разноуровневое обучение и качественную подготовку школьников к изучению курсов алгебры и геометрии (в том числе стереометрии) в старших классах, а также смежных дисциплин — физики, химии и др.

При составлении рабочей программы учтены рекомендации инструктивно-методического письма «О преподавании математики в 2013-2014 учебном году в общеобразовательных учреждениях Тульской области. А так же основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.




Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития

развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

развитие интереса к математическому творчеству и математических способностей;


2) в метапредметном направлении


формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;


3) в предметном направлении


овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.


На основании требований Государственного образовательного стандарта в содержании рабочей программы, а также календарно-тематического планирования предполагается реализовать актуальные в настоящее время компетентностный, личностно-ориентированный, деятельностный подходы, которые определяют задачи обучения математике:

  • приобретение математических знаний и умений

  • овладение обобщенными способами мыслительной, творческой деятельности;

  • освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной и профессионально-трудового выбора.



ЦЕЛИ И ЗАДАЧИ ПРОГРАММЫ ОБУЧЕНИЯ В ОБЛАСТИ ФОРМИРОВАНИЯ СИСТЕМЫ ЗНАНИЙ, УМЕНИЙ


Целью изучения курса математики в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии.

Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

Задачи:

  • Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

  • Интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов, устойчивого интереса учащихся к предмету;

  • Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;

  • Выявление и формирование математических и творческих способностей.

МЕСТО ПРЕДМЕТА В ФЕДЕРАЛЬНОМ БАЗИСНОМ УЧЕБНОМ ПЛАНЕ


Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования в 5-6 классах отводится 5 ч в неделю за 35 учебных недель. Итого за два года обучения – 350 часов.

Из общего количества часов на тематические контрольные работы отводится 30 часов: 14 часов – в 5 классе и 16 часов – в 6 классе.



















УЧЕБНО- ТЕМАТИЧЕСКИЙ ПЛАН



п/п


Содержание




Количество часов


Контрольные

работы


5 класс



1.

Натуральные числа и шкалы

15

1

2.

Сложение и вычитание натуральных чисел

21

2

3.

Умножение и деление натуральных чисел

27

2

4.

Площади и объёмы

12

1

5.

Обыкновенные дроби

25

2

6.

Десятичные дроби. Сложение и вычитание десятичных дробей

13

1

7.

Умножение и деление десятичных дробей

26

2

8.

Инструменты для вычислений и измерений

17

2

9.

Повторение. Решение задач

19

1


Всего:

175

14


6 класс



1.

Делимость чисел

20

1

2.

Сложение и вычитание дробей с разными знаменателями

22

2

3.

Умножение и деление обыкновенных дробей

32

3

4.

Отношения и пропорции

18

2

5.

Положительные и отрицательные числа

13

1

6.

Сложение и вычитание положительных и отрицательных чисел

11

1

7.

Умножение и деление положительных и отрицательных чисел

12

2

8.

Решение уравнений

15

1

9.

Координаты на плоскости

13

1

10.

Итоговое повторение курса математики 5- 6 классов

19

1


Всего:

175

15














СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

Математика

(350 ч)

1) Числа и вычисления. Натуральные числа. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Степень с натуральным показателем.

Делители и кратные числа. Признаки делимости. Простые числа. Разложение числа на простые множители.

Обыкновенные дроби. Основное свойство дроби.

Сокращение дробей. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части числа и числа по его части.

Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление обыкновенных дробей десятичными. Среднее арифметическое.

Отношения. Пропорции. Основное свойство пропорции.

Проценты. Основные задачи на проценты. Решение текстовых задач арифметическими приёмами.

Положительные и отрицательные числа. Противоположные числа. Модуль числа. Сравнение чисел. Арифметические действия с положительными и отрицательными числами, свойства арифметических действий.

Рациональные числа. Изображение чисел точками координатной прямой.

Приближённые значения. Округление натуральных чисел и десятичных дробей. Прикидка результатов вычислений.

2) Выражения и их преобразования. Буквенные выражения. Числовые подстановки в буквенные выражения. Вычисления по формулам. Буквенная запись свойств арифметических действий.

3) Уравнения и неравенства. Уравнения с одной переменной. Корни уравнения. Решение текстовых задач методом составления уравнений.

Числовые неравенства.

4) Функции. Прямоугольная система координат на плоскости.Таблицы и диаграммы. Графики реальных процессов.Геометрические фигуры и их свойства. Измерение геометрических величин.Представление о начальных понятиях геометрии и геометрических фигурах. Равенство фигур.Отрезок. Длина отрезка и её свойства. Расстояние между точками.Угол. Виды углов. Градусная мера угла.Параллельные прямые. Перпендикулярные прямые.Многоугольники. Правильные многоугольники.Окружность и круг. Длина окружности и площадь круга.Формула объёма прямоугольного параллелепипеда.

5) Множества и комбинаторика. Множества. Элемент множества, подмножество1. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.


5 КЛАСС

(5 часов в неделю, всего 175 часов)

Плановых контрольных работ – 14.

1. Натуральные числа и шкалы (16 ч)

Десятичная система счисления. Римская нумерация. Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч.

Основная цель – систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.

Учащиеся знакомятся с десятичной позиционной системой счисления и на примере римских цифр с непозиционной системой счисления.

Систематизация сведений о натуральных числах позволяет восстановить у учащихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков. Вводится понятие двойного неравенства. Продолжается изучение единиц измерения длины, времени, скорости, массы.

В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче, определить по координатам расположение точек относительно друг друга (правее-левее).

В этой же теме можно познакомить учащихся решением ряда простейших комбинаторных задач.

2. Сложение и вычитание натуральных чисел (22 ч)

Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение (выражения с переменными) и его числовое значение. Решение линейных уравнений, корень уравнения.

Основная цель – закрепить и развить навыки сложения и вычитания натуральных чисел.

Начиная с этой темы основное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями.

В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание). Учащиеся должны понимать, что решить уравнение – значит найти все его корни (или убедиться, что это уравнение не имеет ни одного корня).

3. Умножение и деление натуральных чисел (28 ч)

Умножение и деление натуральных чисел, свойства умножения. Деление с остатком. Степень числа. Квадрат и куб числа. Степень с натуральным показателем. Решение текстовых задач.

Основная цель – закрепить и развить навыки арифметических действий с натуральными числами.

В этой теме проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел, порядок выполнения действий, использование скобок, прикидки и оценки результатов вычислений. Вводятся понятия квадрата и куба числа, степени числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий.

Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», «что больше на... (в...)», «что меньше на... (в...)», а также задачи на известные учащимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.

4. Площади и объемы (12 ч)

Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей и объема.

Основная цель – расширить представления учащихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.

При изучении темы учащиеся встречаются с формулами, определяющими зависимость между величинами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи. Можно познакомить учащихся с понятием факториала.

5. Обыкновенные дроби (23 ч)

Окружность и круг. Обыкновенная дробь. Нахождение части от целого и целого по его части. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.

Основная цель – познакомить учащихся с понятием дроби в объеме, достаточном для введения десятичных дробей.

В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от учащихся.

6. Десятичные дроби. Сложение и вычитание десятичных дробей (14 ч)

Десятичная дробь. Сравнение, округление, сложение и вычитание десятичных дробей. Решение текстовых задач.

Основная цель – выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.

При введении десятичных дробей важно добиться у учащихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.

Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам.

Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями.

При изучении операции округления числа вводится новое понятие – «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.

7.Умножение и деление десятичных дробей (26 ч)

Умножение и деление десятичных дробей. Представление обыкновенной дроби в виде десятичной. Среднее арифметическое нескольких чисел. Решение текстовых задач.

Основная цель – выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.

Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.

8. Инструменты для вычислений и измерений (19 ч)

Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла. Единицы измерения углов. Измерение углов. Построение угла заданной величины.

Основная цель – сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.

У учащихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: нахождение процента от величины, величины по ее проценту, сколько процентов одно число составляет от другого.

Продолжается работа по распознаванию и изображению геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы, что пригодится при изучении геометрии.

Круговые диаграммы дают представления учащимся о наглядном изображении распределения отдельных составных частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах, журналах и интернете.

Т.ккабинет обеспечен интерактивной доской, можно научить школьников использовать компьютер для наглядного представления информации.

9. Повторение. Решение задач (15 ч)



6 КЛАСС

(5 часов в неделю, всего –175 часов)

Плановых контрольных работ – 16.

1. Делимость чисел (16 ч)

Делители и кратные. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9 и 10. Простые и составные числа. Разложение натурального числа на простые множители.

Основная цель – завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.

В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству с понятиями «делитель» и «кратное», которые находят применение при сокращении дробей и при приведении к НОЗ.

Упражнения полезно выполнять с опорой на таблицу умножения прямым подбором. Понятия «наибольший общий делитель» и «наименьшее общее кратное» вместе с алгоритмами их нахождения можно не рассматривать.

Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.

Учащиеся должны уметь разложить число на множители. Например, они должны понимать, что 36 = 6 · 6 = 4 · 9. Вопрос о разложении числа на простые множители не относится к числу обязательных.

2. Сложение и вычитание дробей с разными знаменателями (25 ч)

Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей. Решение текстовых задач.

Основная цель – выработать прочные навыки преобразования дробей, сложения и вычитания дробей.

Одним из важнейших результатов обучения является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. При этом рекомендуется излагать материал без опоры на понятия НОД и НОК. Умение приводить дроби к общему знаменателю используется для сравнения дробей.

При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Важно обратить внимание на случай вычитания дроби из целого числа. Что касается сложения и вычитания смешанных чисел, которые не находят активного применения в последующем изучении курса, то учащиеся должны лишь получить представление о принципиальной возможности выполнения таких действий.

3. Умножение и деление обыкновенных дробей (33 ч)

Умножение и деление обыкновенных дробей. Основные задачи на дроби.

Основная цель – выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.

В этой теме завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования умений выполнять действия с алгебраическими дробями.

Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби, выполняя соответственно умножение или деление на дробь.

4.Отношения и пропорции (17 ч)

Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятие о прямой и обратной пропорциональности величин. Задачи на пропорцию. Масштаб. Формулы длины окружности и площади круга. Шар.

Основная цель – сформировать понятия пропорции, прямой и обратной пропорциональности величин.

Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, химии, физики. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.

Понятия о прямой и обратной пропорциональностях величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.

В данной теме даются представления о длине окружности и площади круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.

5. Положительные и отрицательные числа (13 ч)

Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Изображение чисел на координатной прямой. Координаты точки.

Основная цель – расширить представления учащихся о числе путём введения отрицательных чисел.

Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой, с тем чтобы она могла служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел, рассматриваемых в следующей теме.

Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем для овладения и алгоритмами арифметических действий с положительными и отрицательными числами.

6. Сложение и вычитание положительных и отрицательных чисел (12 ч)

Сложение и вычитание положительных и отрицательных чисел.

Основная цель – выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.

Действия с отрицательными числами вводятся на основе представлений об изменении величин: сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек числовой оси. При изучении данной темы целенаправленно отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.

7. Умножение и деление положительных и отрицательных чисел (9 ч)

Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.

Основная цель – выработать прочные навыки арифметических действий с положительными и отрицательными числами.

Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.

При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить числитель на знаменатель. В каждом конкретном случае они должны знать, в какую десятичную дробь обращается данная обыкновенная дробь — конечную или бесконечную. При этом необязательно акцентировать внимание на том, что бесконечная десятичная дробь оказывается периодической. Учащиеся должны знать представление в виде десятичной дроби таких дробей, как hello_html_2d8b9681.gif, hello_html_m2fa5e784.gif, hello_html_6d2b34a0.gif, hello_html_4c7059de.gif.

8. Решение уравнений (18 ч)

Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.

Основная цель – подготовить учащихся к выполнению преобразований выражений, решению уравнений.

Преобразования буквенных выражений путем раскрытия скобок, и приведения подобных слагаемых отрабатываются в той степени, в которой они необходимы для решения несложных уравнений:

Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приёмами решения линейных уравнений с одним неизвестным.

9. Координаты на плоскости (11 ч)

Построение перпендикуляра к прямой и параллельных прямых с помощью чертёжного треугольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.

Основная цель – познакомить учащихся с прямоугольной системой координат на плоскости.

Учащиеся должны научиться распознавать и изображать перпендикулярные и параллельные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и угольника, не требуя точных определений.

Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точек плоскости и их названий, умения построить координатные оси, отметить точку по заданным ее координатам, определить координаты точки, отмеченной на координатной плоскости.

Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.

10. Повторение. Решение задач (17 ч)

Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 6 класса.



ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ


В результате изучения математики в 5-6 классе ученик должен

уметь:

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты – в виде дроби и дробь – в виде процентов;

  • выполнять арифметические действия с дробями, находить значения числовых выражений, сравнивать рациональные числа;

  • округлять целые числа и десятичные дроби, выполнять оценку числовых выражений;

  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

  • в простейших случаях составлять буквенные выражения по условиям задач, решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

  • осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;

  • выполнять в простейших случаях возведение в степень с натуральным показателем;

  • решать линейные уравнения и текстовые задачи;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; строить диаграммы;

  • изображать числа точками на координатной прямой;

  • определять координаты точки плоскости, строить точки с заданными координатами;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках, строить диаграммы;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

  • устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;

  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

  • решения практических задач в повседневной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

  • выполнения расчетов по формулам;

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

  • построения геометрическими инструментами (линейка, угольник, циркуль, транспортир);

владеть компетенциями:

  • учебно-познавательной, ценностно-ориентационной, рефлексивной, коммуникативной, информационной, социально-трудовой.


ПЕРЕЧЕНЬ УЧЕБНО – МЕТОДИЧЕСКИХ СРЕДСТВ ОБУЧЕНИЯ

Основная литература:

  1. Виленкин Н.Я и др.Математика, 5 класс: учебник для общеобразовательных учреждений. – М.: Мнемозина, 2013.

  2. Виленкин Н.Я и др.Математика, 6 класс: учебник для общеобразовательных учреждений. – М.: Мнемозина, 2013.

  3. Программа. Планирование учебного материала. Математика. 5 – 6 классы /авт. – сост. В. И. Жохов/ - 2-е изд., стер. – М.: Мнемозина, 2010.

Дополнительная литература:

  1. Попова Л.П. Поурочные разработки по математике: 5 класс. – М.:ВАКО, 2009.

  2. Попова Л.П. Контрольно-измерительные материала. Математика: 5 класс. – М.:ВАКО, 2010.

  3. Попова Л.П. Контрольно-измерительные материала. Математика: 6 класс. – М.:ВАКО, 2010.

  4. Юрченко Е.В. Математикака. Тесты. 5-6 классы. – М.: Дрофа, 2003.

  5. Научно-теоретический и методический журнал «Математика в школе».

  6. CD-диск: Тренажёр по математике: 5 класс.

  7. CD-диск: Математика: 5 класс. Курс «1С:Школа».

  8. CD-диск: Математика: 6 класс. Курс «1С:Школа».

  9. CD-диск: Современный учебно-методический комплекс. Математика: 5-6 класс. Все задачи школьной математики.

  10. CD-диск: Проверь себя: Тесты. Математика: 5-6 класс. – Издательство «Учитель».

  11. Интернет-ресурс «Единая коллекция цифровых образовательных ресурсов». – http://school-collection.edu.ru.

  12. Интернет-ресурс «Открытый банк заданий по математике». – http://mathege.ru:8080/or/ege/Main.

  13. Мультимедийные презентации










Используемые сокращения в календарно-тематическом планировании



Тип урока

Формы контроля

УОНМ

Урок ознакомления с новым материалом

УС

Устный счёт

УЗИ

Урок закрепления изученного

УО

Устный опрос

УПЗУ

Урок применения знаний и умений

ФО

Фронтальный опрос

УОСЗ

Урок обобщения и систематизации знаний

СР

Самостоятельная работа

УПКЗУ

Урок проверки и коррекции знаний и умений

ИЗ

Индивидуальное задание

КУ

Комбинированный урок

Т

Тест

УКЗ

Урок коррекции знаний

МД

Математический диктант

КОЗ

Контроль и оценка знаний

ПР

Практическая работа



КР

Контрольная работа



ГД

Графический диктант



1

Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 07.10.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров218
Номер материала ДВ-040343
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх